Leveraging Deep Learning Decision-Support System in Specialized Oncology Center: A Multi-Reader Retrospective Study on Detection of Pulmonary Lesions in Chest X-ray Images

. 2023 Mar 09 ; 13 (6) : . [epub] 20230309

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36980351

Chest X-ray (CXR) is considered to be the most widely used modality for detecting and monitoring various thoracic findings, including lung carcinoma and other pulmonary lesions. However, X-ray imaging shows particular limitations when detecting primary and secondary tumors and is prone to reading errors due to limited resolution and disagreement between radiologists. To address these issues, we developed a deep-learning-based automatic detection algorithm (DLAD) to automatically detect and localize suspicious lesions on CXRs. Five radiologists were invited to retrospectively evaluate 300 CXR images from a specialized oncology center, and the performance of individual radiologists was subsequently compared with that of DLAD. The proposed DLAD achieved significantly higher sensitivity (0.910 (0.854-0.966)) than that of all assessed radiologists (RAD 10.290 (0.201-0.379), p < 0.001, RAD 20.450 (0.352-0.548), p < 0.001, RAD 30.670 (0.578-0.762), p < 0.001, RAD 40.810 (0.733-0.887), p = 0.025, RAD 50.700 (0.610-0.790), p < 0.001). The DLAD specificity (0.775 (0.717-0.833)) was significantly lower than for all assessed radiologists (RAD 11.000 (0.984-1.000), p < 0.001, RAD 20.970 (0.946-1.000), p < 0.001, RAD 30.980 (0.961-1.000), p < 0.001, RAD 40.975 (0.953-0.997), p < 0.001, RAD 50.995 (0.985-1.000), p < 0.001). The study results demonstrate that the proposed DLAD could be utilized as a decision-support system to reduce radiologists' false negative rate.

Zobrazit více v PubMed

Sone S., Takashima S., Li F., Yang Z., Honda T., Maruyama Y., Hasegawa M., Yam A.T., Kubo K., Hanamura K., et al. Mass screening for lung cancer with mobile spiral computed tomography scanner. Lancet. 1998;351:1242–1245. doi: 10.1016/S0140-6736(97)08229-9. PubMed DOI

Hansell D.M., Bankier A.A., MacMahon H., McLoud T.C., Müller N.L., Remy J. Fleischner Society: Glossary of terms for thoracic imaging. Radiology. 2008;246:697–722. doi: 10.1148/radiol.2462070712. PubMed DOI

Herring W. Learning Radiology: Recognizing the Basics. Elsevier Health Sciences; Oxford, UK: 2019.

Gamboa A., Ethun C., Switchenko J., Lipscomb J., Poultsides G., Grignol V., Howard J., Gamblin T., Roggin K., Votanopoulos K., et al. Lung surveillance strategy for high-grade soft tissue sarcomas: Chest X-ray or CT scan? J. Am. Coll. Surg. 2019;229:449–457. doi: 10.1016/j.jamcollsurg.2019.07.010. PubMed DOI PMC

Muhm J.R., Miller W.E., Fontana R.S.S., Erson D.R., Uhlenhopp M.A. Lung cancer detected during a screening program using four-month chest radiographs. Radiology. 1983;148:609–615. doi: 10.1148/radiology.148.3.6308709. PubMed DOI

Albert R., Russell J. Evaluation of the solitary pulmonary nodule. Am. Fam. Physician. 2009;80:827–831. PubMed

Goo J.M., Park C.M., Lee H.J. Ground-glass nodules on chest CT as imaging biomarkers in the management of lung adenocarcinoma. AJR Am. J. Roentgenol. 2011;196:533–543. doi: 10.2214/AJR.10.5813. PubMed DOI

Tang A.W., Moss H.A., Robertson R.J. The solitary pulmonary nodule. Eur. J. Radiol. 2003;45:69–77. doi: 10.1016/S0720-048X(02)00297-8. PubMed DOI

Molina P., Hiken J., Glazer H. Imaging evaluation of obstructive atelectasis. J. Thorac. Imaging. 1996;11:176–186. doi: 10.1097/00005382-199622000-00002. PubMed DOI

Vaaler A., Forrester J., Lesar M., Edison M., Johnson B., Venzon D. Obstructive atelectasis in patients with small cell lung cancer: Incidence and response to treatment. Chest. 1997;111:115–120. doi: 10.1378/chest.111.1.115. PubMed DOI

Strollo D., Christenson L., Jett J. Primary mediastinal tumors: Part ll. Tumors of the middle and posterior mediastinum. Chest. 1997;112:1344–1357. doi: 10.1378/chest.112.5.1344. PubMed DOI

Chastre J., Trouillet J., Vuagnat A., Joly-Guillou M., Clavier H., Dombret M., Gibert C. Nosocomial pneumonia in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1998;157:1165–1172. doi: 10.1164/ajrccm.157.4.9708057. PubMed DOI

Seemann M., Staebler A., Beinert T., Dienemann H., Obst B., Matzko M., Pistitsch C., Reiser M. Usefulness of morphological characteristics for the differentiation of benign from malignant solitary pulmonary lesions using HRCT. Eur. Radiol. 1999;9:409–417. doi: 10.1007/s003300050683. PubMed DOI

Janzen D., Padley S., Adler B., Müller N. Acute pulmonary complications in immunocompromised non-AIDS patients: Comparison of diagnostic accuracy of CT and chest radiography. Clin. Radiol. 1993;47:159–165. doi: 10.1016/S0009-9260(05)81153-5. PubMed DOI

Okada M., Nishio W., Sakamoto T., Uchino K., Yuki T., Nakagawa A., Tsubota N. Effect of tumor size on prognosis in patients with non–small cell lung cancer: The role of segmentectomy as a type of lesser resection. J. Thorac. Cardiovasc. Surg. 2005;129:87–93. doi: 10.1016/j.jtcvs.2004.04.030. PubMed DOI

Kim Y., Cho Y., Wu C., Park S., Jung K., Seo J., Lee H., Hwang H., Lee S., Kim N. Short-term reproducibility of pulmonary nodule and mass detection in chest radiographs: Comparison among radiologists and four different computer-aided detections with convolutional neural net. Sci. Rep. 2019;9:18738. doi: 10.1038/s41598-019-55373-7. PubMed DOI PMC

Ausawalaithong W., Thirach A., Marukatat S., Wilaiprasitporn T. Automatic lung cancer prediction from chest X-ray images using the deep learning approach; Proceedings of the 2018 11th Biomedical Engineering International Conference (BMEiCON); Chaing Mai, Thailand. 21–24 November 2018; pp. 1–5.

Li X., Shen L., Xie X., Huang S., Xie Z., Hong X., Yu J. Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif. Intell. Med. 2020;103:101744. doi: 10.1016/j.artmed.2019.101744. PubMed DOI

Nasrullah N., Sang J., Alam M., Mateen M., Cai B., Hu H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors. 2019;19:3722. doi: 10.3390/s19173722. PubMed DOI PMC

Hryniewska W., Bombiński P., Szatkowski P., Tomaszewska P., Przelaskowski A., Biecek P. Checklist for responsible deep learning modeling of medical images based on COVID-19 detection studies. Pattern Recognit. 2021;118:108035. doi: 10.1016/j.patcog.2021.108035. PubMed DOI PMC

Oakden-Rayner L. Exploring large-scale public medical image datasets. Acad. Radiol. 2020;27:106–112. doi: 10.1016/j.acra.2019.10.006. PubMed DOI

Nam J., Park S., Hwang E., Lee J., Jin K., Lim K., Vu T., Sohn J., Hwang S., Goo J., et al. Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290:218–228. doi: 10.1148/radiol.2018180237. PubMed DOI

Schalekamp S., Ginneken B., Koedam E., Snoeren M., Tiehuis A., Wittenberg R., Karssemeijer N., Schaefer-Prokop C. Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology. 2014;272:252–261. doi: 10.1148/radiol.14131315. PubMed DOI

Arterys Retrospective Study X-ray Chest AI Whitepaper. Arterys. 2020. [(accessed on 15 January 2023)]. Available online: https://www.arterys.com/retrospective-study-x-ray-chest-ai-wp.

Sim Y., Chung M., Kotter E., Yune S., Kim M., Do S., Han K., Kim H., Yang S., Lee D., et al. Deep convolutional neural network–based software improves radiologist detection of malignant lung nodules on chest radiographs. Radiology. 2020;294:199–209. doi: 10.1148/radiol.2019182465. PubMed DOI

Homayounieh F., Digumarthy S., Ebrahimian S., Rueckel J., Hoppe B., Sabel B., Conjeti S., Ridder K., Sistermanns M., Wang L., et al. An Artificial Intelligence–Based Chest X-ray Model on Human Nodule Detection Accuracy from a Multicenter Study. JAMA Netw. Open. 2021;4:e2141096. doi: 10.1001/jamanetworkopen.2021.41096. PubMed DOI PMC

Mahboub B., Tadepalli M., Raj T., Santhanakrishnan R., Hachim M., Bastaki U., Hamoudi R., Haider E., Alabousi A. Identifying malignant nodules on chest X-rays: A validation study of radiologist versus artificial intelligence diagnostic accuracy. Adv. Biomed. Health Sci. 2022;1:137. doi: 10.4103/abhs.abhs_17_22. DOI

Monkam P., Qi S., Ma H., Gao W., Yao Y., Qian W. Detection and classification of pulmonary nodules using convolutional neural networks: A survey. IEEE Access. 2019;7:78075–78091. doi: 10.1109/ACCESS.2019.2920980. DOI

Yamashita R., Nishio M., Do R., Togashi K. Convolutional neural networks: An overview and application in radiology. Insights Into Imaging. 2018;9:611–629. doi: 10.1007/s13244-018-0639-9. PubMed DOI PMC

Whaley J., Pressman B., Wilson J., Bravo L., Sehnert W., Foos D. Investigation of the variability in the assessment of digital chest X-ray image quality. J. Digit. Imaging. 2013;26:217–226. doi: 10.1007/s10278-012-9515-1. PubMed DOI PMC

Gavelli G., Giampalma E. Sensitivity and specificity of chest X-ray screening for lung cancer. Cancer. 2000;89:2453–2456. doi: 10.1002/1097-0142(20001201)89:11+<2453::AID-CNCR21>3.0.CO;2-M. PubMed DOI

Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA. 27–30 June 2016; pp. 779–788.

Liu C., Tao Y., Liang J., Li K., Chen Y. Object detection based on YOLO network; Proceedings of the 2018 IEEE 4th Information Technology Furthermore, Mechatronics Engineering Conference (ITOEC); Chongqing, China. 14–16 December 2018; pp. 799–803.

Katsamenis I., Karolou E., Davradou A., Protopapadakis E., Doulamis A., Doulamis N., Kalogeras D. Novel & Intelligent Digital Systems, Proceedings of the 2nd International Conference (NiDS 2022), Athens, Greece, 29–30 September 2022. Sprigner; Berlin/Heidelberg, Germany: 2022. TraCon: A novel dataset for real-time traffic cones detection using deep learning; pp. 382–391.

Janssen-Heijnen M., Schipper R., Razenberg P., Crommelin M., Coebergh J. Prevalence of co-morbidity in lung cancer patients and its relationship with treatment: A population-based study. Lung Cancer. 1998;21:105–113. doi: 10.1016/S0169-5002(98)00039-7. PubMed DOI

Low S., Eng P., Keng G., Ng D. Positron emission tomography with CT in the evaluation of non-small cell lung cancer in populations with a high prevalence of tuberculosis. Respirology. 2006;11:84–89. doi: 10.1111/j.1440-1843.2006.00789.x. PubMed DOI

Margerie-Mellon C., Chassagnon G. Artificial intelligence: A critical review of applications for lung nodule and lung cancer. Diagn. Interv. Imaging. 2022;104:11–17. doi: 10.1016/j.diii.2022.11.007. PubMed DOI

Bi W., Hosny A., Schabath M., Giger M., Birkbak N., Mehrtash A., Allison T., Arnaout O., Abbosh C., Dunn I., et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019;69:127–157. doi: 10.3322/caac.21552. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...