Individualizing Fluid Management in Patients with Acute Respiratory Distress Syndrome and with Reduced Lung Tissue Due to Surgery-A Narrative Review

. 2023 Mar 08 ; 13 (3) : . [epub] 20230308

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36983668

Grantová podpora
FNPl, 00669806 Faculty hospital in Plzen
Cooperacio Charles University

Fluids are the cornerstone of therapy in all critically ill patients. During the last decades, we have made many steps to get fluid therapy personalized and based on individual needs. In patients with lung involvement-acute respiratory distress syndrome-finding the right amount of fluids after lung surgery may be extremely important because lung tissue is one of the most vulnerable to fluid accumulation. In the current narrative review, we focus on the actual perspectives of fluid therapy with the aim of showing the possibilities to tailor the treatment to a patient's individual needs using fluid responsiveness parameters and other therapeutic modalities.

Zobrazit více v PubMed

Song K., Yang T., Gao W. Association of hyperchloremia with all-cause mortality in patients admitted to the surgical intensive care unit: A retrospective cohort study. BMC Anesthesiol. 2022;22:14. doi: 10.1186/s12871-021-01558-5. PubMed DOI PMC

Coats T.J., Brazil E., Heron M. The effects of commonly used resuscitation fluids on whole blood coagulation. Emerg. Med. J. 2006;23:546–549. doi: 10.1136/emj.2005.032334. PubMed DOI PMC

Wiedermann C.J., Dunzendorfer S., Gaioni L.U., Zaraca F., Joannidis M. Hyperoncotic colloids and acute kidney injury: A meta-analysis of randomized trials. Crit. Care. 2010;14:R191. doi: 10.1186/cc9308. PubMed DOI PMC

Lowell J.A., Schifferdecker C., Driscoll D.F., Benotti P.N., Bistrian B.R. Postoperative fluid overload: Not a benign problem. Crit. Care. Med. 1990;18:728–733. doi: 10.1097/00003246-199007000-00010. PubMed DOI

Malbrain M.L.N.G., Martin G., Ostermann M. Everything you need to know about deresuscitation. Intensive Care Med. 2022;48:1781–1786. doi: 10.1007/s00134-022-06761-7. PubMed DOI PMC

Comparison of Two Fluid-Management Strategies in Acute Lung Injury. N. Engl. J. Med. 2006;354:2564–2575. doi: 10.1056/NEJMoa062200. PubMed DOI

Grissom C.K., Hirshberg E.L., Dickerson J.B., Brown S.M., Lanspa M., Liu K., Schoenfeld D., Tidswell M., Hite R.D., Rock P., et al. Fluid Management With a Simplified Conservative Protocol for the Acute Respiratory Distress Syndrome*. Crit. Care Med. 2015;43:288–295. doi: 10.1097/CCM.0000000000000715. PubMed DOI PMC

Shin C.H., Long D.R., McLean D., Grabitz S.D., Ladha K., Timm F.P., Thevathasan T., Pieretti A., Ferrone C., Hoeft A., et al. Effects of Intraoperative Fluid Management on Postoperative Outcomes: A Hospital Registry Study. Ann. Surg. 2018;267:1084–1092. doi: 10.1097/SLA.0000000000002220. PubMed DOI

Silversides J.A., Major E., Ferguson A.J., Mann E.E., McAuley D.F., Marshall J.C., Blackwood B., Fan E. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: A systematic review and meta-analysis. Intensive Care Med. 2017;43:155–170. doi: 10.1007/s00134-016-4573-3. PubMed DOI

Li J., Qi Z., Li D., Huang X., Qi B., Feng J., Qu J., Wang X. Alveolar epithelial glycocalyx shedding aggravates the epithelial barrier and disrupts epithelial tight junctions in acute respiratory distress syndrome. Biomed. Pharmacother. 2021;133:111026. doi: 10.1016/j.biopha.2020.111026. PubMed DOI PMC

LaRivière W.B., Schmidt E.P. Current Topics in Membranes. Volume 82. Elsevier Inc.; Philadelphia, PA, USA: 2018. The Pulmonary Endothelial Glycocalyx in ARDS: A Critical Role for Heparan Sulfate. PubMed DOI

Starling E.H., Starling E.H. On the Absorption of Fluids from the Connective Tissue Spaces. J. Physiol. 1896;19:312–326. doi: 10.1113/jphysiol.1896.sp000596. PubMed DOI PMC

Astapenko D., Benes J., Pouska J., Lehmann C., Islam S., Cerny V. Endothelial glycocalyx in acute care surgery—What anaesthesiologists need to know for clinical practice. BMC Anesthesiol. 2019;19:238. doi: 10.1186/s12871-019-0896-2. PubMed DOI PMC

Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012;108:384–394. doi: 10.1093/bja/aer515. PubMed DOI

Benatti M.N., Fabro A.T., Miranda C.H. Endothelial glycocalyx shedding in the acute respiratory distress syndrome after flu syndrome. J. Intensive Care. 2020;8:72. doi: 10.1186/s40560-020-00488-7. PubMed DOI PMC

Chappell D., Bruegger D., Potzel J., Jacob M., Brettner F., Vogeser M., Conzen P., Becker B.F., Rehm M. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit. Care. 2014;18:538. doi: 10.1186/s13054-014-0538-5. PubMed DOI PMC

Kalagara T., Moutsis T., Yang Y., Pappelbaum K.I., Farken A., Cladder-Micus L., Vidal-Y-Sy S., John A., Bauer A.T., Moerschbacher B.M., et al. The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood Adv. 2018;2:2347–2357. doi: 10.1182/bloodadvances.2017013995. PubMed DOI PMC

Parra-Medina R., Herrera S., Mejia J. Systematic Review of Microthrombi in COVID-19 Autopsies. Acta Haematol. 2021;144:476–483. doi: 10.1159/000515104. PubMed DOI PMC

Suzuki K., Okada H., Takemura G., Takada C., Kuroda A., Yano H., Zaikokuji R., Morishita K., Tomita H., Oda K., et al. Neutrophil Elastase Damages the Pulmonary Endothelial Glycocalyx in Lipopolysaccharide-Induced Experimental Endotoxemia. Am. J. Pathol. 2019;189:1526–1535. doi: 10.1016/j.ajpath.2019.05.002. PubMed DOI

Rivers E., Nguyen B., Havstad S., Ressler J., Muzzin A., Knoblich B., Peterson E., Tomlanovich M. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. N. Engl. J. Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307. PubMed DOI

Mouncey P.R., Osborn T.M., Power G.S., Harrison D.A., Sadique M.Z., Grieve R.D., Jahan R., Harvey S.E., Bell D., Bion J.F., et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N. Engl. J. Med. 2015;372:1301–1311. doi: 10.1056/NEJMoa1500896. PubMed DOI

Peake S.L., Delaney A., Bailey M., Bellomo R., Cameron P.A., Cooper D.J., Higgins A.M., Holdgate A., Howe B.D., Webb S.A., et al. Goal-Directed Resuscitation for Patients with Early Septic Shock. N. Engl. J. Med. 2014;371:1496–1506. doi: 10.1056/NEJMoa1404380. PubMed DOI

ProCESS Investigators. Yealy D.M., Kellum J.A., Huang D.T., Barnato A.E., Weissfeld L.A., Pike F., Terndrup T., Wang H.E., Hou P.C., et al. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med. 2014;370:1683–1693. doi: 10.1056/NEJMoa1401602. PubMed DOI PMC

Maitland K., Kiguli S., Opoka R.O., Engoru C., Olupot-Olupot P., Akech S.O., Nyeko R., Mtove G., Reyburn H., Lang T., et al. Mortality after fluid bolus in African children with severe infection. N. Engl. J. Med. 2011;364:2483–2495. doi: 10.1056/NEJMoa1101549. PubMed DOI

de-Madaria E., Buxbaum J.L., Maisonneuve P., de Paredes A.G.G., Zapater P., Guilabert L., Vaillo-Rocamora A., Rodríguez-Gandía M., Donate-Ortega J., Lozada-Hernández E.E., et al. Aggressive or Moderate Fluid Resuscitation in Acute Pancreatitis. N. Engl. J. Med. 2022;387:989–1000. doi: 10.1056/NEJMoa2202884. PubMed DOI

Hahn R.G., Lyons G. The half-life of infusion fluids: An educational review. Eur. J. Anaesthesiol. 2016;33:475–482. doi: 10.1097/EJA.0000000000000436. PubMed DOI PMC

Russotto V., Tassistro E., Myatra S.N., Parotto M., Antolini L., Bauer P., Lascarrou J.B., Szułdrzyński K., Camporota L., Putensen C., et al. Peri-intubation Cardiovascular Collapse in Patients Who Are Critically Ill: Insights from the INTUBE Study. Am. J. Respir. Crit. Care Med. 2022;206:449–458. doi: 10.1164/rccm.202111-2575OC. PubMed DOI

Russell D.W., Casey J.D., Gibbs K.W., Ghamande S., Dargin J.M., Vonderhaar D.J., Joffe A.M., Khan A., Prekker M.E., Brewer J.M., et al. Effect of Fluid Bolus Administration on Cardiovascular Collapse Among Critically Ill Patients Undergoing Tracheal Intubation. JAMA. 2022;328:270. doi: 10.1001/jama.2022.9792. PubMed DOI PMC

Janz D.R., Casey J., Semler M.W., Russell D.W., Dargin J., Vonderhaar D.J., Dischert K.M., West J.R., Stempek S., Wozniak J., et al. Effect of a fluid bolus on cardiovascular collapse among critically ill adults undergoing tracheal intubation (PrePARE): A randomised controlled trial. Lancet Respir. Med. 2019;7:1039–1047. doi: 10.1016/S2213-2600(19)30246-2. PubMed DOI PMC

Das A., Haque M., Chikhani M., Cole O., Wang W., Hardman J.G., Bates D.G. Hemodynamic effects of lung recruitment maneuvers in acute respiratory distress syndrome. BMC Pulm. Med. 2017;17:34. doi: 10.1186/s12890-017-0369-7. PubMed DOI PMC

Jozwiak M., Teboul J.-L., Anguel N., Persichini R., Silva S., Chemla D., Richard C., Monnet X. Beneficial Hemodynamic Effects of Prone Positioning in Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2013;188:1428–1433. doi: 10.1164/rccm.201303-0593OC. PubMed DOI

Cecconi M., De Backer D., Antonelli M., Beale R., Bakker J., Hofer C., Jaeschke R., Mebazaa A., Pinsky M.R., Teboul J.L., et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40:1795–1815. doi: 10.1007/s00134-014-3525-z. PubMed DOI PMC

Jozwiak M., Silva S., Persichini R., Anguel N., Osman D., Richard C., Teboul J.-L., Monnet X. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome*. Crit. Care Med. 2013;41:472–480. doi: 10.1097/CCM.0b013e31826ab377. PubMed DOI

Vignon P., Evrard B., Asfar P., Busana M., Calfee C.S., Coppola S., Demiselle J., Geri G., Jozwiak M., Martin G.S., et al. Fluid administration and monitoring in ARDS: Which management? Intensive Care Med. 2020;46:2252–2264. doi: 10.1007/s00134-020-06310-0. PubMed DOI PMC

Michard F., Chemla D., Teboul J.L. Applicability of pulse pressure variation: How many shades of grey? Crit. Care. 2015;19:144. doi: 10.1186/s13054-015-0869-x. PubMed DOI PMC

Teboul J.L., Monnet X. Pulse pressure variation and ARDS. Minerva Anestesiol. 2013;79:398–407. PubMed

Wang X., Liu S., Gao J., Zhang Y., Huang T. Does tidal volume challenge improve the feasibility of pulse pressure variation in patients mechanically ventilated at low tidal volumes? A systematic review and meta-analysis. Crit. Care. 2023;27:45. doi: 10.1186/s13054-023-04336-6. PubMed DOI PMC

Monnet X., Osman D., Ridel C., Lamia B., Richard C., Teboul J.-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit. Care Med. 2009;37:951–956. doi: 10.1097/CCM.0b013e3181968fe1. PubMed DOI

Abdullah T., Ali A., Saka E., Canbaz M., Gokduman C., Polat O., Esen F., Sungur M.O. Ability of short-time low peep challenge to predict fluid responsiveness in mechanically ventilated patients in the intensive care. J. Clin. Monit. Comput. 2022;36:1165–1172. doi: 10.1007/s10877-021-00752-7. PubMed DOI PMC

Biais M., Lanchon R., Sesay M., Le Gall L., Pereira B., Futier E., Nouette-Gaulain K. Changes in Stroke Volume Induced by Lung Recruitment Maneuver Predict Fluid Responsiveness in Mechanically Ventilated Patients in the Operating Room. Anesthesiology. 2017;126:260–267. doi: 10.1097/ALN.0000000000001459. PubMed DOI

Watanabe R., Suehiro K., Mukai A., Tanaka K., Yamada T., Mori T., Nishikawa K. Changes in stroke volume induced by lung recruitment maneuver can predict fluid responsiveness during intraoperative lung-protective ventilation in prone position. BMC Anesthesiol. 2021;21:303. doi: 10.1186/s12871-021-01527-y. PubMed DOI PMC

Monnet X., Teboul J.-L. Passive leg raising: Five rules, not a drop of fluid! Crit. Care. 2015;19:18. doi: 10.1186/s13054-014-0708-5. PubMed DOI PMC

Biais M., de Courson H., Lanchon R., Pereira B., Bardonneau G., Griton M., Sesay M., Nouette-Gaulain K. Mini-fluid Challenge of 100 mL of Crystalloid Predicts Fluid Responsiveness in the Operating Room. Anesthesiology. 2017;127:450–456. doi: 10.1097/ALN.0000000000001753. PubMed DOI

Lee C.-T., Lee T.-S., Chiu C.-T., Teng H.-C., Cheng H.-L., Wu C.-Y. Mini-fluid challenge test predicts stroke volume and arterial pressure fluid responsiveness during spine surgery in prone position. Medicine. 2020;99:e19031. doi: 10.1097/MD.0000000000019031. PubMed DOI PMC

Vincent J.-L., Cecconi M., De Backer D. The fluid challenge. Crit. Care. 2020;24:703. doi: 10.1186/s13054-020-03443-y. PubMed DOI PMC

Ospina-Tascón G.A., Hernandez G., Alvarez I., Calderón-Tapia L.E., Manzano-Nunez R., Sánchez-Ortiz A.I., Quiñones E., Yucuma J.E.R., Aldana J.L., Teboul J.-L., et al. Effects of very early start of norepinephrine in patients with septic shock: A propensity score-based analysis. Crit. Care. 2020;24:52. doi: 10.1186/s13054-020-2756-3. PubMed DOI PMC

Gazmuri R.J., Whitehouse K., Whittinghill K., Baetiong A., Shah K., Radhakrishnan J. Early and sustained vasopressin infusion augments the hemodynamic efficacy of restrictive fluid resuscitation and improves survival in a liver laceration model of hemorrhagic shock. J. Trauma Acute Care Surg. 2017;82:317–327. doi: 10.1097/TA.0000000000001318. PubMed DOI

Rydz A.C., Elefritz J.L., Conroy M., Disney K.A., Miller C.J., Porter K., Doepker B.A. Early Initiation of Vasopressin Reduces Organ Failure and Mortality in Septic Shock. Shock. 2022;58:269–274. doi: 10.1097/SHK.0000000000001978. PubMed DOI

Gordon A., Mason A., Thirunavukkarasu N., Perkins G., Cecconi M., Cepkova M., Pogson D.G., Aya H.D., Anjum A., Frazier G.J., et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock. JAMA. 2016;316:509. doi: 10.1001/jama.2016.10485. PubMed DOI

Currigan D.A., Hughes R.J.A., Wright C.E., Angus J.A., Soeding P.F. Vasoconstrictor Responses to Vasopressor Agents in Human Pulmonary and Radial Arteries. Anesthesiology. 2014;121:930–936. doi: 10.1097/ALN.0000000000000430. PubMed DOI

Sarkar J., Golden P.J., Kajiura L.N., Murata L.-A.M., Uyehara C.F.T. Vasopressin Decreases Pulmonary–to–Systemic Vascular Resistance Ratio in a Porcine Model of Severe Hemorrhagic Shock. Shock. 2015;43:475–482. doi: 10.1097/SHK.0000000000000325. PubMed DOI

Sugawara Y., Mizuno Y., Oku S., Goto T. Effects of vasopressin during a pulmonary hypertensive crisis induced by acute hypoxia in a rat model of pulmonary hypertension. Br. J. Anaesth. 2019;122:437–447. doi: 10.1016/j.bja.2019.01.014. PubMed DOI PMC

Mizota T., Fujiwara K., Hamada M., Matsukawa S., Segawa H. Effect of arginine vasopressin on systemic and pulmonary arterial pressure in a patient with pulmonary hypertension secondary to pulmonary emphysema: A case report. JA Clin. Rep. 2017;3:1. doi: 10.1186/s40981-016-0072-3. PubMed DOI PMC

Bashir M.U., Tawil A., Mani V.R., Farooq U., ADeVita M. Hidden Obligatory Fluid Intake in Critical Care Patients. J. Intensive Care Med. 2017;32:223–227. doi: 10.1177/0885066615625181. PubMed DOI

Barmparas G., Ko A., Harada M.Y., Zaw A.A., Murry J.S., Smith E.J., Ashrafian S., Sun B.J., Ley E.J. Decreasing maintenance fluids in normotensive trauma patients may reduce intensive care unit stay and ventilator days. J. Crit. Care. 2016;31:201–205. doi: 10.1016/j.jcrc.2015.09.030. PubMed DOI

Jiang L., The Beijing Acute Kidney Injury Trial (BAKIT) Workgroup. Zhu Y., Luo X., Wen Y., Du B., Wang M., Zhao Z., Yin Y., Zhu B., et al. Epidemiology of acute kidney injury in intensive care units in Beijing: The multi-center BAKIT study. BMC Nephrol. 2019;20:468. doi: 10.1186/s12882-019-1660-z. PubMed DOI PMC

McMahon B.A., Chawla L.S. The furosemide stress test: Current use and future potential. Ren. Fail. 2021;43:830–839. doi: 10.1080/0886022X.2021.1906701. PubMed DOI PMC

Bhatt G.C., Das R.R., Satapathy A. Early versus Late Initiation of Renal Replacement Therapy: Have We Reached the Consensus? An Updated Meta-Analysis. Nephron. 2021;145:371–385. doi: 10.1159/000515129. PubMed DOI

Beaubien-Souligny W., Rola P., Haycock K., Bouchard J., Lamarche Y., Spiegel R., Denault A.Y. Quantifying systemic congestion with Point-Of-Care ultrasound: Development of the venous excess ultrasound grading system. Ultrasound. J. 2020;12:16. doi: 10.1186/s13089-020-00163-w. PubMed DOI PMC

Rola P., Miralles-Aguiar F., Argaiz E., Beaubien-Souligny W., Haycock K., Karimov T., Dinh V.A., Spiegel R. Clinical applications of the venous excess ultrasound (VExUS) score: Conceptual review and case series. Ultrasound. J. 2021;13:32. doi: 10.1186/s13089-021-00232-8. PubMed DOI PMC

Cordemans C., De Laet I., Van Regenmortel N., Schoonheydt K., Dits H., Huber W., Malbrain M.L. Fluid management in critically ill patients: The role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann. Intensive Care. 2012;2:S1. doi: 10.1186/2110-5820-2-S1-S1. PubMed DOI PMC

Martin G.S., Mangialardi R.J., Wheeler A.P., Dupont W.D., Morris J.A., Bernard G.R. Albumin and furosemide therapy in hypoproteinemic patients with acute lung injury*. Crit. Care Med. 2002;30:2175–2182. doi: 10.1097/00003246-200210000-00001. PubMed DOI

Chung Y.J., Kim E.Y. Usefulness of bioelectrical impedance analysis and ECW ratio as a guidance for fluid management in critically ill patients after operation. Sci. Rep. 2021;11:12168. doi: 10.1038/s41598-021-91819-7. PubMed DOI PMC

Myatchin I., Abraham P., Malbrain M.L.N.G. Bio-electrical impedance analysis in critically ill patients: Are we ready for prime time? J. Clin. Monit. Comput. 2020;34:401–410. doi: 10.1007/s10877-019-00439-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...