Endothelial glycocalyx in acute care surgery - what anaesthesiologists need to know for clinical practice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31862008
PubMed Central
PMC6925438
DOI
10.1186/s12871-019-0896-2
PII: 10.1186/s12871-019-0896-2
Knihovny.cz E-zdroje
- Klíčová slova
- Acute care surgery, Anaesthesia, Endothelial glycocalyx, Fluid therapy, Major trauma, Transfusion,
- MeSH
- anesteziologie metody MeSH
- chirurgie operační metody MeSH
- endoteliální buňky metabolismus MeSH
- glykokalyx fyziologie MeSH
- lidé MeSH
- mikrocirkulace fyziologie MeSH
- perioperační péče metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The endothelial glycocalyx (EG) is the thin sugar-based lining on the apical surface of endothelial cells. It has been linked to the physiological functioning of the microcirculation and has been found to be damaged in critical illness and after acute care surgery. This review aims to describe the role of EG in severely injured patients undergoing surgery, discuss specific situations (e.G. major trauma, hemorrhagic shock, trauma induced coagulopathy) as well as specific interventions commonly applied in these patients (e.g. fluid therapy, transfusion) and specific drugs related to perioperative medicine with regard to their impact on EG.EG in acute care surgery is exposed to damage due to tissue trauma, inflammation, oxidative stress and inadequate fluid therapy. Even though some interventions (transfusion of plasma, human serum albumin, hydrocortisone, sevoflurane) are described as potentially EG protective there is still no specific treatment for EG protection and recovery in clinical medicine.The most important principle to be adopted in routine clinical practice at present is to acknowledge the fragile structure of the EG and avoid further damage which is potentially related to worsened clinical outcome.
Biomedical centrum Faculty of Medicine in Plzen Charles University Prague Czech Republic
Department of Computer Science Dalhousie University Halifax NS Canada
Department of Microbiology and Immunology Dalhousie University Halifax NS Canada
Department of Pharmacology Dalhousie University Halifax NS Canada
Department of Pharmacy East West University A 2 Jahurul Islam Avenue Dhaka Bangladesh
Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
Faculty of Medicine in Hradec Kralove Charles University Prague Czech Republic
Faculty of Medicine in Plzen Charles University Prague Czech Republic
Zobrazit více v PubMed
Cruz-Chu ER, Malafeev A, Pajarskas T, Pivkin IV, Koumoutsakos P. Structure and response to flow of the glycocalyx layer. Biophys J. 2014;106(1):232–243. doi: 10.1016/j.bpj.2013.09.060. PubMed DOI PMC
Pillinger NL, Kam P. Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive Care. 2017;45(3):295–307. doi: 10.1177/0310057X1704500305. PubMed DOI
Fu BM, Tarbell JM. Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med. 2013;5(3):381–390. doi: 10.1002/wsbm.1211. PubMed DOI PMC
Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J Intern Med. 2006;259(4):393–400. doi: 10.1111/j.1365-2796.2006.01625.x. PubMed DOI
Xiao H, Woods EC, Vukojicic P, Bertozzi CR. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci. 2016;113(37):10304–10309. doi: 10.1073/pnas.1608069113. PubMed DOI PMC
Kurzelewski M, Czarnowska E, Beresewicz A. Superoxide- and nitric oxide-derived species mediate endothelial dysfunction, endothelial glycocalyx disruption, and enhanced neutrophil adhesion in the post-ischemic Guinea-pig heart. J Physiol Pharmacol. 2005;56(2):163–178. PubMed
Salmon AHJ, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226(4):562–574. doi: 10.1002/path.3964. PubMed DOI
Oberleithner H, Wilhelmi M. Vascular Glycocalyx sodium store - determinant of salt sensitivity? Blood Purif. 2015;39(1–3):7–10. doi: 10.1159/000368922. PubMed DOI
Yu W-K, McNeil JB, Wickersham NE, Shaver CM, Bastarache JA, Ware LB. Vascular endothelial cadherin shedding is more severe in sepsis patients with severe acute kidney injury. Crit Care. 2019;23(1):18. doi: 10.1186/s13054-019-2315-y. PubMed DOI PMC
Cerny V, Astapenko D, Brettner F, et al. Targeting the endothelial glycocalyx in acute critical illness as a challenge for clinical and laboratory medicine. Crit Rev Clin Lab Sci. 2017;54(5):343–357. doi: 10.1080/10408363.2017.1379943. PubMed DOI
Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol. 2009;22(2):155–162. doi: 10.1097/ACO.0b013e328328d1b6. PubMed DOI
Luft JH. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966;25(6):1773–83. PubMed
Danielli JF. Capillary permeability and oedema in the perfused frog. J Physiol. 1940;98(1):109–129. doi: 10.1113/jphysiol.1940.sp003837. PubMed DOI PMC
Cerny Vladimir, Astapenko David, Burkovskiy Ian, Hyspler Radomir, Ticha Alena, Trevors Mary Ann, Lehmann Christian. Glycocalyx in vivo measurement. Clinical Hemorheology and Microcirculation. 2017;67(3-4):499–503. doi: 10.3233/CH-179235. PubMed DOI
Lee DH, Dane MJC, van den Berg BM, et al. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One. 2014;9(5):e96477. doi: 10.1371/journal.pone.0096477. PubMed DOI PMC
Gonzalez Rodriguez E, Ostrowski SR, Cardenas JC, et al. Syndecan-1: a quantitative marker for the Endotheliopathy of trauma. J Am Coll Surg. 2017;225(3):419–427. doi: 10.1016/j.jamcollsurg.2017.05.012. PubMed DOI
Lennon FE, Singleton PA. Hyaluronan regulation of vascular integrity. Am J Cardiovasc Dis. 2011;1(3):200–213. PubMed PMC
Oberleithner H. Sodium selective erythrocyte glycocalyx and salt sensitivity in man. Pflugers Arch. 2015;467(6):1319–1325. doi: 10.1007/s00424-014-1577-0. PubMed DOI PMC
Dicker D, Nguyen G, Abate D, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1684–1735. doi: 10.1016/S0140-6736(18)31891-9. PubMed DOI PMC
Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma. JAMA. 2015;313(5):471. doi: 10.1001/jama.2015.12. PubMed DOI PMC
Sobrino J, Shafi S. Timing and causes of death after injuries. Proc (Baylor Univ Med Cent) 2013;26(2):120–123. doi: 10.1080/08998280.2013.11928934. PubMed DOI PMC
Diebel LN, Diebel ME, Martin JV, Liberati DM. Acute hyperglycemia exacerbates trauma-induced endothelial and glycocalyx injury: an in vitro model. J Trauma Acute Care Surg. 2018;85(5):960–967. doi: 10.1097/TA.0000000000001993. PubMed DOI
Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol. 2002;168(10):5233–5239. doi: 10.4049/jimmunol.168.10.5233. PubMed DOI
Darwiche SS, Ruan X, Hoffman MK, et al. Selective roles for toll-like receptors 2, 4, and 9 in systemic inflammation and immune dysfunction following peripheral tissue injury. J Trauma Acute Care Surg. 2013;74(6):1454–1461. doi: 10.1097/TA.0b013e3182905ed2. PubMed DOI PMC
Edwards JR, Peterson KD, Andrus ML, et al. National Healthcare Safety Network (NHSN) report, data summary for 2006, issued June 2007. Am J Infect Control. 2007;35(5):290–301. doi: 10.1016/j.ajic.2007.04.001. PubMed DOI
Croce MA, Brasel KJ, Coimbra R, et al. National Trauma Institute prospective evaluation of the ventilator bundle in trauma patients: does it really work? J Trauma Acute Care Surg. 2013;74(2):354–360. doi: 10.1097/TA.0b013e31827a0c65. PubMed DOI
Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–394. doi: 10.1093/bja/aer515. PubMed DOI
Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med. 2015;13:117. doi: 10.1186/s12967-015-0481-5. PubMed DOI PMC
Wei S, Gonzalez Rodriguez E, Chang R, et al. Elevated Syndecan-1 after trauma and risk of Sepsis: a secondary analysis of patients from the pragmatic, randomized optimal platelet and plasma ratios (PROPPR) trial. J Am Coll Surg. 2018;227(6):587–595. doi: 10.1016/j.jamcollsurg.2018.09.003. PubMed DOI PMC
Gonzalez Rodriguez E, Cardenas JC, Cox CS, et al. Traumatic brain injury is associated with increased syndecan-1 shedding in severely injured patients. Scand J Trauma Resusc Emerg Med. 2018;26(1):102. doi: 10.1186/s13049-018-0565-3. PubMed DOI PMC
Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200. doi: 10.1097/SLA.0b013e318226113d. PubMed DOI
Noble LJ, Mautes AE, Hall JJ. Characterization of the microvascular glycocalyx in normal and injured spinal cord in the rat. J Comp Neurol. 1996;376(4):542–556. doi: 10.1002/(SICI)1096-9861(19961223)376:4<542::AID-CNE4>3.0.CO;2-1. PubMed DOI
Osuka A, Kusuki H, Yoneda K, et al. Glycocalyx shedding is enhanced by age and correlates with increased fluid requirement in patients with major burns. Shock. 2018;50(1):60–65. doi: 10.1097/SHK.0000000000001028. PubMed DOI
Johansson Pär I., Henriksen Hanne H., Stensballe Jakob, Gybel-Brask Mikkel, Cardenas Jessica C., Baer Lisa A., Cotton Bryan A., Holcomb John B., Wade Charles E., Ostrowski Sisse R. Traumatic Endotheliopathy. Annals of Surgery. 2017;265(3):597–603. doi: 10.1097/SLA.0000000000001751. PubMed DOI PMC
Fries CA, Midwinter MJ. Trauma resuscitation and damage control surgery. Surg. 2010;28(11):563–567. doi: 10.1016/j.mpsur.2010.08.002. DOI
Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med. 1994;331(17):1105–1109. doi: 10.1056/NEJM199410273311701. PubMed DOI
Naumann DN, Hazeldine J, Midwinter MJ, Hutchings SD, Harrison P. Poor microcirculatory flow dynamics are associated with endothelial cell damage and glycocalyx shedding after traumatic hemorrhagic shock. J Trauma Acute Care Surg. 2018;84(1):81–88. doi: 10.1097/TA.0000000000001695. PubMed DOI
Brettner F, von Dossow V, Chappell D. The endothelial glycocalyx and perioperative lung injury. Curr Opin Anaesthesiol. 2016;30(1):1. doi: 10.1097/ACO.0000000000000434. PubMed DOI
Torres LN, Sondeen JL, Dubick MA, Filho IT. Systemic and microvascular effects of resuscitation with blood products after severe hemorrhage in rats. J Trauma Acute Care Surg. 2014;77(5):716–723. doi: 10.1097/TA.0000000000000448. PubMed DOI
Nelson A, Statkevicius S, Schött U, Johansson PI, Bentzer P. Effects of fresh frozen plasma, Ringer’s acetate and albumin on plasma volume and on circulating glycocalyx components following haemorrhagic shock in rats. Intensive Care Med Exp. 2016;4(1):6. doi: 10.1186/s40635-016-0080-7. PubMed DOI PMC
Torres Filho I, Torres LN, Sondeen JL, Polykratis IA, Dubick MA. In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy. Microvasc Res. 2013;85:128–133. doi: 10.1016/j.mvr.2012.11.005. PubMed DOI
Guerci Philippe, Ergin Bulent, Uz Zuhre, Ince Yasin, Westphal Martin, Heger Michal, Ince Can. Glycocalyx Degradation Is Independent of Vascular Barrier Permeability Increase in Nontraumatic Hemorrhagic Shock in Rats. Anesthesia & Analgesia. 2019;129(2):598–607. doi: 10.1213/ANE.0000000000003918. PubMed DOI
Jepsen CH. deMoya MA, Perner a, et al. effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury. J Trauma Acute Care Surg. 2014;77(2):292–297. doi: 10.1097/TA.0000000000000333. PubMed DOI
Simmons JW, Powell MF. Acute traumatic coagulopathy: pathophysiology and resuscitation. Br J Anaesth. 2016;117(suppl 3):iii31–iii43. doi: 10.1093/bja/aew328. PubMed DOI
Hoffman M, Monroe DM. A cell-based model of hemostasis. Thromb Haemost. 2001;85(6):958–965. doi: 10.1055/s-0037-1615947. PubMed DOI
Cohen MJ, Kutcher M, Redick B, et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013;75:S40–S47. doi: 10.1097/TA.0b013e31828fa43d. PubMed DOI PMC
Dunbar NM, Chandler WL. TRANSFUSION PRACTICE: Thrombin generation in trauma patients. Transfusion. 2009;49(12):2652–2660. doi: 10.1111/j.1537-2995.2009.02335.x. PubMed DOI
Esmon CT. The protein C pathway. Chest. 2003;124(3 Suppl):26S–32S. doi: 10.1378/chest.124.3_suppl.26S. PubMed DOI
Genet GF, Johansson PI, Meyer MAS, et al. Trauma-induced coagulopathy: standard coagulation tests, biomarkers of coagulopathy, and endothelial damage in patients with traumatic brain injury. J Neurotrauma. 2013;30(4):301–306. doi: 10.1089/neu.2012.2612. PubMed DOI
Albert V, Subramanian A, Agrawal D, Pati H, Gupta S, Mukhopadhyay A. Acute traumatic Endotheliopathy in isolated severe brain injury and its impact on clinical outcome. Med Sci. 2018;6(1):5. doi: 10.3390/medsci6010005. PubMed DOI PMC
Ostrowski SR, Henriksen HH, Stensballe J, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82(2):293–301. doi: 10.1097/TA.0000000000001304. PubMed DOI
Maegele M. The coagulopathy of trauma. Eur J Trauma Emerg Surg. 2014;40(2):113–126. doi: 10.1007/s00068-014-0389-4. PubMed DOI
Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010;38:S26–S34. doi: 10.1097/CCM.0b013e3181c98d21. PubMed DOI
Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–1906. doi: 10.1161/CIRCULATIONAHA.106.684852. PubMed DOI
Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–66. doi: 10.1097/TA.0b013e31825b5c10. PubMed DOI
Johansson PI, Sørensen A, Perner A, et al. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? An observational study. Crit Care. 2011;15(6):R272. doi: 10.1186/cc10553. PubMed DOI PMC
Halbgebauer Rebecca, Braun Christian K., Denk Stephanie, Mayer Benjamin, Cinelli Paolo, Radermacher Peter, Wanner Guido A., Simmen Hans-Peter, Gebhard Florian, Rittirsch Daniel, Huber-Lang Markus. Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. Journal of Critical Care. 2018;44:229–237. doi: 10.1016/j.jcrc.2017.11.025. PubMed DOI
Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538. doi: 10.1186/s13054-014-0538-5. PubMed DOI PMC
Torres LN, Sondeen JL, Ji L, Dubick MA, Filho IT. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats. J Trauma Acute Care Surg. 2013;75(5):759–766. doi: 10.1097/TA.0b013e3182a92514. PubMed DOI
Diebel ME, Martin JV, Liberati DM, Diebel LN. The temporal response and mechanism of action of tranexamic acid in endothelial glycocalyx degradation. J Trauma Acute Care Surg. 2018;84(1):75–80. doi: 10.1097/TA.0000000000001726. PubMed DOI
Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–1251. doi: 10.1056/NEJMra1208627. PubMed DOI
Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016;116(3):339–349. doi: 10.1093/bja/aev349. PubMed DOI
Benes J, Kirov M, Kuzkov V, et al. Fluid therapy: double-edged sword during critical care? Biomed Res Int. 2015;2015:1–14. doi: 10.1155/2015/729075. PubMed DOI PMC
Torres Filho IP, Torres LN, Salgado C, Dubick MA. Plasma syndecan-1 and heparan sulfate correlate with microvascular glycocalyx degradation in hemorrhaged rats after different resuscitation fluids. Am J Physiol Heart Circ Physiol. 2016;310(11):H1468–H1478. doi: 10.1152/ajpheart.00006.2016. PubMed DOI
Smart Lisa, Boyd C. J., Claus M. A., Bosio E., Hosgood G., Raisis A. Large-Volume Crystalloid Fluid Is Associated with Increased Hyaluronan Shedding and Inflammation in a Canine Hemorrhagic Shock Model. Inflammation. 2018;41(4):1515–1523. doi: 10.1007/s10753-018-0797-4. PubMed DOI
Smart L, Macdonald SPJ, Burrows S, Bosio E, Arendts G, Fatovich DM. Endothelial glycocalyx biomarkers increase in patients with infection during emergency department treatment. J Crit Care. 2017;42:304–309. doi: 10.1016/j.jcrc.2017.07.001. PubMed DOI
Johansson P, Stensballe J, Ostrowski S. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25. doi: 10.1186/s13054-017-1605-5. PubMed DOI PMC
Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87(2):198–210. doi: 10.1093/cvr/cvq062. PubMed DOI
Puskarich MA, Cornelius DC, Tharp J, Nandi U, Jones AE. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J Crit Care. 2016;36:125–129. doi: 10.1016/j.jcrc.2016.06.027. PubMed DOI PMC
James MFM, Michell WL, Joubert IA, Nicol AJ, Navsaria PH, Gillespie RS. Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (fluids in resuscitation of severe trauma) Br J Anaesth. 2011;107(5):693–702. doi: 10.1093/bja/aer229. PubMed DOI
Hahn RG, Lyons G. The half-life of infusion fluids: an educational review. Eur J Anaesthesiol. 2016;33(7):475–482. doi: 10.1097/EJA.0000000000000436. PubMed DOI PMC
van Haren F. Personalised fluid resuscitation in the ICU: still a fluid concept? Crit Care. 2017. 10.1186/s13054-017-1909-5. PubMed PMC
Berg S, Golster M, Lisander B. Albumin extravasation and tissue washout of hyaluronan after plasma volume expansion with crystalloid or hypooncotic colloid solutions. Acta Anaesthesiol Scand. 2002;46(2):166–172. doi: 10.1034/j.1399-6576.2002.460207.x. PubMed DOI
Berg S, Engman A, Hesselvik JF, Laurent TC. Crystalloid infusion increases plasma hyaluronan. Crit Care Med. 1994;22(10):1563–1567. doi: 10.1097/00003246-199410000-00010. PubMed DOI
Powell M, Mathru M, Brandon A, Patel R, Frölich M. Assessment of endothelial glycocalyx disruption in term parturients receiving a fluid bolus before spinal anesthesia: a prospective observational study. Int J Obstet Anesth. 2014;23(4):330–334. doi: 10.1016/j.ijoa.2014.06.001. PubMed DOI
Belavić M, Sotošek Tokmadžić V, Fišić E, et al. The effect of various doses of infusion solutions on the endothelial glycocalyx layer in laparoscopic cholecystectomy patients. Minerva Anestesiol. 2018;84(9):1032–1043. doi: 10.23736/S0375-9393.18.12150-X. PubMed DOI
Pouska J, Tegl V, Astapenko D, Cerny V, Lehmann C, Benes J. Impact of intravenous fluid challenge infusion time on macrocirculation and endothelial Glycocalyx in surgical and critically ill patients. Biomed Res Int. 2018;2018:1–11. doi: 10.1155/2018/8925345. PubMed DOI PMC
Martin JV, Liberati DM, Diebel LN. Excess sodium is deleterious on endothelial and glycocalyx barrier function. J Trauma Acute Care Surg. 2018;85(1):128–134. doi: 10.1097/TA.0000000000001892. PubMed DOI
Astapenko D, Dostalova V, Dostalova V, et al. Effect of acute hypernatremia induced by hypertonic saline administration on endothelial glycocalyx in rabbits. Clin Hemorheol Microcirc. 2019;72(1):107–116. doi: 10.3233/CH-189907. PubMed DOI
Wodack Karin H., Poppe Annika M., Lena Tomköetter, Bachmann Kai A., Strobel Cilly M., Bonk Sarah, Havel Jan, Heckel Kai, Gocht Andreas, Saugel Bernd, Mann Oliver, Izbicki Jakob R., Goetz Alwin E., Trepte Constantin J. C., Reuter Daniel A. Individualized Early Goal-Directed Therapy in Systemic Inflammation. Critical Care Medicine. 2014;42(12):e741–e751. doi: 10.1097/CCM.0000000000000657. PubMed DOI
Alves Natascha G., Trujillo Andrea N., Breslin Jerome W., Yuan Sarah Y. Sphingosine-1-Phosphate Reduces Hemorrhagic Shock and Resuscitation-Induced Microvascular Leakage by Protecting Endothelial Mitochondrial Integrity. SHOCK. 2019;52(4):423–433. doi: 10.1097/SHK.0000000000001280. PubMed DOI PMC
Zeng Y, Adamson RH, Curry F-RE, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Circ Physiol. 2014;306(3):H363–H372. doi: 10.1152/ajpheart.00687.2013. PubMed DOI PMC
Jacob M, Bruegger D, Rehm M, Welsch U, Conzen P, Becker BF. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology. 2006;104(6):1223–1231. doi: 10.1097/00000542-200606000-00018. PubMed DOI
Jacob M, Paul O, Mehringer L, et al. Albumin augmentation improves condition of Guinea pig hearts after 4 hr of cold ischemia. Transplantation. 2009;87(7):956–965. doi: 10.1097/TP.0b013e31819c83b5. PubMed DOI
Rossaint R, Cerny V, Coats TJ, et al. Key issues in advanced bleeding care in trauma. Shock. 2006;26(4). 10.1097/01.shk.0000225403.15722.e9. PubMed
Ostrowski SR, Henriksen HH, Stensballe J, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma. J Trauma Acute Care Surg. 2017;82(2):293–301. doi: 10.1097/TA.0000000000001304. PubMed DOI
Larsen A. M., Leinøe E. B., Johansson P. I., Birgens H., Ostrowski S. R. Haemostatic function and biomarkers of endothelial damage before and after RBC transfusion in patients with haematologic disease. Vox Sanguinis. 2015;109(1):52–61. doi: 10.1111/vox.12249. PubMed DOI
Ostrowski SR, Sørensen AM, Windeløv NA, et al. High levels of soluble VEGF receptor 1 early after trauma are associated with shock, sympathoadrenal activation, glycocalyx degradation and inflammation in severely injured patients: a prospective study. Scand J Trauma Resusc Emerg Med. 2012;20(1):27. doi: 10.1186/1757-7241-20-27. PubMed DOI PMC
Johansson PI, Henriksen HH, Stensballe J, et al. Traumatic Endotheliopathy. Ann Surg. 2017;265(3):597–603. doi: 10.1097/SLA.0000000000001751. PubMed DOI PMC
Kozar RA, Pati S. Syndecan-1 restitution by plasma after hemorrhagic shock. J Trauma Acute Care Surg. 2015;78(6 Suppl 1):S83–S86. doi: 10.1097/TA.0000000000000631. PubMed DOI PMC
Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112(6):1289–1295. doi: 10.1213/ANE.0b013e318210385c. PubMed DOI PMC
Adamson RH, Clough G. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol. 1992;445:473–486. doi: 10.1113/jphysiol.1992.sp018934. PubMed DOI PMC
Genét GF, Bentzer P, Ostrowski SR, Johansson PI. Resuscitation with pooled and pathogen-reduced plasma attenuates the increase in brain water content following traumatic brain injury and hemorrhagic shock in rats. J Neurotrauma. 2017;34(5):1054–1062. doi: 10.1089/neu.2016.4574. PubMed DOI
Vigiola Cruz M, Carney BC, Luker JN, et al. Plasma ameliorates endothelial dysfunction in burn injury. J Surg Res. 2019;233:459–466. doi: 10.1016/j.jss.2018.08.027. PubMed DOI
Barelli S, Alberio L. The role of plasma transfusion in massive bleeding: protecting the endothelial Glycocalyx? Front Med. 2018;5:91. doi: 10.3389/fmed.2018.00091. PubMed DOI PMC
Watson JJJ, Pati S, Schreiber MA. Plasma transfusion. SHOCK. 2016;46(5):468–479. doi: 10.1097/SHK.0000000000000663. PubMed DOI
Hofmann Nikolaus, Zipperle Johannes, Brettner Florian, Jafarmadar Mohammad, Ashmwe Mostafa, Keibl Claudia, Ponschab Martin, Kipman Ulrike, Bahrami Arian, Redl Heinz, Bahrami Soheyl, Fuhrmann Valentin, Schöchl Herbert. Effect of Coagulation Factor Concentrates on Markers of Endothelial Cell Damage in Experimental Hemorrhagic Shock. SHOCK. 2019;52(5):497–505. doi: 10.1097/SHK.0000000000001286. PubMed DOI
Wu F, Chipman A, Pati S, Miyasawa B, Corash L, Kozar RA. Resuscitative strategies to modulate the Endotheliopathy of trauma: from cell to patient. Shock. 2019;1. 10.1097/SHK.0000000000001378. PubMed PMC
Russell R, McDaniel J, Cao W, et al. Low plasma ADAMTS13 activity is associated with coagulopathy, endothelial cell damage and mortality after severe Paediatric trauma. Thromb Haemost. 2018;47(04):676–687. doi: 10.1055/s-0038-1636528. PubMed DOI PMC
Schouten M, Wiersinga WJ, Levi M, van der Poll T. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol. 2008;83(3):536–545. doi: 10.1189/jlb.0607373. PubMed DOI
Geyer G, Halbhuber KJ, Stibenz D, et al. Alteration by procaine of spectrin cross-links, deformability, and fluidity related properties of the erythrocyte membrane. Folia Haematol Int Mag Klin Morphol Blutforsch. 1980;107(3):472–486. PubMed
Nwafor A, Terence CW. Drug-induced shape change in erythrocytes correlates with membrane potential change and is independent of glycocalyx charge. Biochem Pharmacol. 1985;34(18):3329–3336. doi: 10.1016/0006-2952(85)90354-5. PubMed DOI
Annecke T, Chappell D, Chen C, et al. Sevoflurane preserves the endothelial glycocalyx against ischaemia-reperfusion injury. Br J Anaesth. 2010;104(4):414–421. doi: 10.1093/bja/aeq019. PubMed DOI
Annecke T, Rehm M, Bruegger D, et al. Ischemia-reperfusion-induced unmeasured anion generation and glycocalyx shedding: sevoflurane versus propofol anesthesia. J Investig Surg. 2012;25(3):162–168. doi: 10.3109/08941939.2011.618524. PubMed DOI
Casanova J, Simon C, Vara E, et al. Sevoflurane anesthetic preconditioning protects the lung endothelial glycocalyx from ischemia reperfusion injury in an experimental lung autotransplant model. J Anesth. 2016;30(5):755–762. doi: 10.1007/s00540-016-2195-0. PubMed DOI
Kim HJ, Kim E, Baek SH, et al. Sevoflurane did not show better protective effect on endothelial glycocalyx layer compared to propofol during lung resection surgery with one lung ventilation. J Thorac Dis. 2018;10(3):1468–1475. doi: 10.21037/jtd.2018.03.44. PubMed DOI PMC
Lin MC, Lin CF, Li CF, Sun DP, Wang LY, Hsing CH. Anesthetic propofol overdose causes vascular hyperpermeability by reducing endothelial glycocalyx and ATP production. Int J Mol Sci. 2015;16(6):12092–12107. doi: 10.3390/ijms160612092. PubMed DOI PMC
Astapenko David, Pouska Jiri, Benes Jan, Skulec Roman, Lehmann Christian, Vink Hans, Cerny Vladimir. Neuraxial anesthesia is less harmful to the endothelial glycocalyx during elective joint surgery compared to general anesthesia. Clinical Hemorheology and Microcirculation. 2019;72(1):11–21. doi: 10.3233/CH-180428. PubMed DOI
Kee VR. Hemodynamic pharmacology of intravenous vasopressors. Crit Care Nurse. 2003;23(4):79–82. PubMed
Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth. 2012;109(1):69–79. doi: 10.1093/bja/aes171. PubMed DOI
Byrne L, Obonyo NG, Diab SD, et al. Unintended consequences: fluid resuscitation worsens shock in an ovine model of Endotoxemia. Am J Respir Crit Care Med. 2018;198(8):1043–1054. doi: 10.1164/rccm.201801-0064OC. PubMed DOI PMC
Martin JV, Liberati DM, Diebel LN. Disparate effects of catecholamines under stress conditions on endothelial glycocalyx injury: an in vitro model. Am J Surg. 2017;214(6):1166–1172. doi: 10.1016/j.amjsurg.2017.09.018. PubMed DOI
Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol. 2005;99(4):1471–1476. doi: 10.1152/japplphysiol.00436.2005. PubMed DOI
Nieuwdorp M, van Haeften TW, Gouverneur MCLG, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55(2):480–486. doi: 10.2337/diabetes.55.02.06.db05-1103. PubMed DOI
Nieuwdorp M, Mooij HL, Kroon J, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55(4):1127–1132. doi: 10.2337/diabetes.55.04.06.db05-1619. PubMed DOI
Lemkes BA, Nieuwdorp M, Hoekstra JBL, Holleman F. The Glycocalyx and Cardiovascular Disease in Diabetes: Should We Judge the Endothelium by Its Cover? Diabetes Technol Ther. 2012;14(S1):S-3–S-10. doi: 10.1089/dia.2012.0011. PubMed DOI
O’Hora TR, Markos F, Wiernsperger NF, Noble MIM. Metformin causes nitric oxide-mediated dilatation in a shorter time than insulin in the iliac artery of the anesthetized pig. J Cardiovasc Pharmacol. 2012;59(2):182–187. doi: 10.1097/FJC.0b013e31823b4b94. PubMed DOI
Wang J. Bo, guan J, Shen J, et al. insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2009;86(2):83–88. doi: 10.1016/j.diabres.2009.08.002. PubMed DOI
Chappell D, Hofmann-Kiefer K, Jacob M, et al. TNF-α induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol. 2008;104(1):78–89. doi: 10.1007/s00395-008-0749-5. PubMed DOI
Carden DL, D.N. G. Pathophysiology of ischemia-reperfusion injury. J Pathol. 2000;190(3):255–266. doi: 10.1016/j.transproceed.2006.02.152. PubMed DOI
Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255. PubMed DOI
Enzler MJ, Berbari E, Osmon DR. Mayo Clinic Proceedings. 2011. Antimicrobial prophylaxis in adults; pp. 686–701. PubMed PMC
Gristina AG, Costerton JW. Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am. 1984;15(3):517–535. PubMed
Dall L, Keilhofner M, Herndon B, Barnes W, Lane J. Clindamycin effect on glycocalyx production in experimental viridans streptococcal endocarditis. J Infect Dis. 1990;161(6):1221–1224. doi: 10.1093/infdis/161.6.1221. PubMed DOI
Lipowsky HH, Lescanic A. The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res. 2013;90:80–85. doi: 10.1016/j.mvr.2013.07.004. PubMed DOI PMC
Carden D, Xiao F, Moak C, Willis BH, Robinson-Jackson S, Alexander S. Neutrophil elastase promotes lung microvascular injury and proteolysis of endothelial cadherins. Am J Phys. 1998;275(2 Pt 2):H385–H392. doi: 10.1901/jaba.2010.43-601. PubMed DOI
Selmi V, Loriga B, Vitali L, et al. Changes in ceftriaxone pharmacokinetics/pharmacodynamics during the early phase of sepsis: a prospective, experimental study in the rat. J Transl Med. 2016;14(1):316. doi: 10.1186/s12967-016-1072-9. PubMed DOI PMC
Broekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53(12):2646–2655. doi: 10.1007/s00125-010-1910-x. PubMed DOI PMC
Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217–1223. doi: 10.1038/nm.2843. PubMed DOI PMC