Fluid Therapy: Double-Edged Sword during Critical Care?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
26798642
PubMed Central
PMC4700172
DOI
10.1155/2015/729075
Knihovny.cz E-zdroje
- MeSH
- hemodynamika * MeSH
- kardiovaskulární nemoci * patofyziologie terapie MeSH
- lidé MeSH
- monitorování fyziologických funkcí * MeSH
- péče o pacienty v kritickém stavu metody MeSH
- šok * patofyziologie terapie MeSH
- tekutinová terapie * škodlivé účinky metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Fluid therapy is still the mainstay of acute care in patients with shock or cardiovascular compromise. However, our understanding of the critically ill pathophysiology has evolved significantly in recent years. The revelation of the glycocalyx layer and subsequent research has redefined the basics of fluids behavior in the circulation. Using less invasive hemodynamic monitoring tools enables us to assess the cardiovascular function in a dynamic perspective. This allows pinpointing even distinct changes induced by treatment, by postural changes, or by interorgan interactions in real time and enables individualized patient management. Regarding fluids as drugs of any other kind led to the need for precise indication, way of administration, and also assessment of side effects. We possess now the evidence that patient centered outcomes may be altered when incorrect time, dose, or type of fluids are administered. In this review, three major features of fluid therapy are discussed: the prediction of fluid responsiveness, potential harms induced by overzealous fluid administration, and finally the problem of protocol-led treatments and their timing.
Zobrazit více v PubMed
Monnet X., Teboul J.-L. Assessment of volume responsiveness during mechanical ventilation: recent advances. Critical Care. 2013;17(2, article 217) doi: 10.1186/cc12526. PubMed DOI PMC
Jozwiak M., Silva S., Persichini R., et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Critical Care Medicine. 2013;41(2):472–480. doi: 10.1097/ccm.0b013e31826ab377. PubMed DOI
Vincent J. L., Sakr Y., Sprung C. L., et al. Sepsis occurrence in acutely Ill patients investigators: sepsis in European intensive care units: results of the SOAP study. Critical Care Medicine. 2006;34(2):344–353. PubMed
Acheampong A., Vincent J. A positive fluid balance is an independent prognostic factor in patients with sepsis. Critical Care. 2015;19, article 251 doi: 10.1186/s13054-015-0970-1. PubMed DOI PMC
Cecconi M., Hofer C., Teboul J., et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Medicine. 2015;41(9):1529–1537. doi: 10.1007/s00134-015-3850-x. PubMed DOI PMC
Marik P. E., Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Critical Care Medicine. 2013;41(7):1774–1781. doi: 10.1097/CCM.0b013e31828a25fd. PubMed DOI
Marik P. E. Hemodynamic parameters to guide fluid therapy. Transfusion Alternatives in Transfusion Medicine. 2010;11(3):102–112. doi: 10.1111/j.1778-428X.2010.01133.x. DOI
Marik P. E., Baram M., Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–178. doi: 10.1378/chest.07-2331. PubMed DOI
Richard C., Monnet X., Teboul J.-L. Pulmonary artery catheter monitoring in 2011. Current Opinion in Critical Care. 2011;17(3):296–302. doi: 10.1097/MCC.0b013e3283466b85. PubMed DOI
Marik P. E., Monnet X., Teboul J.-L. Hemodynamic parameters to guide fluid therapy. Annals of Intensive Care. 2011;1(1, article 1) doi: 10.1186/2110-5820-1-1. PubMed DOI PMC
García X., Pinsky M. R. Clinical applicability of functional hemodynamic monitoring. Annals of Intensive Care. 2011;1, article 35 doi: 10.1186/2110-5820-1-35. PubMed DOI PMC
Michard F., Boussat S., Chemla D., et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. American Journal of Respiratory and Critical Care Medicine. 2000;162(1):134–138. doi: 10.1164/ajrccm.162.1.9903035. PubMed DOI
Marik P. E., Cavallazzi R., Vasu T., Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine. 2009;37(9):2642–2647. doi: 10.1097/ccm.0b013e3181a590da. PubMed DOI
Heenen S., De Backer D., Vincent J.-L. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Critical Care. 2006;10(4, article R102) doi: 10.1186/cc4970. PubMed DOI PMC
De Backer D., Heenen S., Piagnerelli M., Koch M., Vincent J.-L. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Medicine. 2005;31(4):517–523. doi: 10.1007/s00134-005-2586-4. PubMed DOI
Monnet X., Bleibtreu A., Ferré A., et al. Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in Patients with low respiratory system compliance. Critical Care Medicine. 2012;40(1):152–157. doi: 10.1097/CCM.0b013e31822f08d7. PubMed DOI
De Backer D., Taccone F. S., Holsten R., Ibrahimi F., Vincent J.-L. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110(5):1092–1097. doi: 10.1097/aln.0b013e31819db2a1. PubMed DOI
Renner J., Gruenewald M., Quaden R., et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Critical Care Medicine. 2009;37(2):650–658. doi: 10.1097/CCM.0b013e3181959864. PubMed DOI
Mahjoub Y., Lejeune V., Muller L., et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. British Journal of Anaesthesia. 2014;112(4):681–685. doi: 10.1093/bja/aet442. PubMed DOI
Benes J., Zatloukal J., Kletecka J., Simanova A., Haidingerova L., Pradl R. Respiratory induced dynamic variations of stroke volume and its surrogates as predictors of fluid responsiveness: applicability in the early stages of specific critical states. Journal of Clinical Monitoring and Computing. 2014;28(3):225–231. doi: 10.1007/s10877-013-9524-8. PubMed DOI
Feissel M., Michard F., Faller J.-P., Teboul J.-L. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Medicine. 2004;30(9):1834–1837. doi: 10.1007/s00134-004-2233-5. PubMed DOI
Vieillard-Baron A., Chergui K., Rabiller A., et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Medicine. 2004;30(9):1734–1739. doi: 10.1007/s00134-004-2361-y. PubMed DOI
Airapetian N., Maizel J., Alyamani O., et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Critical Care. 2015;19(1, article 400) doi: 10.1186/s13054-015-1100-9. PubMed DOI PMC
Monnet X., Osman D., Ridel C., Lamia B., Richard C., Teboul J.-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Critical Care Medicine. 2009;37(3):951–956. doi: 10.1097/CCM.0b013e3181968fe1. PubMed DOI
Silva S., Jozwiak M., Teboul J.-L., Persichini R., Richard C., Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Critical Care Medicine. 2013;41(7):1692–1701. doi: 10.1097/ccm.0b013e31828a2323. PubMed DOI
Vincent J.-L., Weil M. H. Fluid challenge revisited. Critical Care Medicine. 2006;34(5):1333–1337. doi: 10.1097/01.CCM.0000214677.76535.A5. PubMed DOI
Muller L., Toumi M., Bousquet P.-J., et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115(3):541–547. doi: 10.1097/aln.0b013e318229a500. PubMed DOI
Monnet X., Teboul J.-L. Passive leg raising. Intensive Care Medicine. 2008;34(4):659–663. doi: 10.1007/s00134-008-0994-y. PubMed DOI
Monnet X., Rienzo M., Osman D., et al. Passive leg raising predicts fluid responsiveness in the critically ill. Critical Care Medicine. 2006;34(5):1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06. PubMed DOI
Cavallaro F., Sandroni C., Marano C., et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Medicine. 2010;36(9):1475–1483. doi: 10.1007/s00134-010-1929-y. PubMed DOI
Boyd J. H., Forbes J., Nakada T.-A., Walley K. R., Russell J. A. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Critical Care Medicine. 2011;39(2):259–265. doi: 10.1097/ccm.0b013e3181feeb15. PubMed DOI
Vellinga N. A. R., Ince C., Boerma E. C. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis. BMC Anesthesiology. 2013;13, article 17 doi: 10.1186/1471-2253-13-17. PubMed DOI PMC
Monnet X., Teboul J. Passive leg raising: five rules, not a drop of fluid! Critical Care. 2015;19, article 18 doi: 10.1186/s13054-014-0708-5. PubMed DOI PMC
Jabot J., Teboul J.-L., Richard C., Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Medicine. 2009;35(1):85–90. doi: 10.1007/s00134-008-1293-3. PubMed DOI
Monge García M. I., Gil Cano A., Gracia Romero M., Monterroso Pintado R., Pérez Madueño V., Díaz Monrové J. C. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Annals of Intensive Care. 2012;2, article 9 doi: 10.1186/2110-5820-2-9. PubMed DOI PMC
Monnet X., Bataille A., Magalhaes E., et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Medicine. 2013;39(1):93–100. doi: 10.1007/s00134-012-2693-y. PubMed DOI
Malbrain M. L. N. G., Reuter D. A. Assessing fluid responsiveness with the passive leg raising maneuver in patients with increased intra-abdominal pressure: be aware that not all blood returns! Critical Care Medicine. 2010;38(9):1912–1915. doi: 10.1097/ccm.0b013e3181f1b6a2. PubMed DOI
Mahjoub Y., Touzeau J., Airapetian N., et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Critical Care Medicine. 2010;38(9):1824–1829. doi: 10.1097/ccm.0b013e3181eb3c21. PubMed DOI
Benes J., Giglio M., Brienza N., Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Critical Care. 2014;18(5, article 584) doi: 10.1186/s13054-014-0584-z. PubMed DOI PMC
Cecconi M., Corredor C., Arulkumaran N., et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Critical Care. 2013;17(2, article 209) doi: 10.1186/cc11823. PubMed DOI PMC
Hamilton M. A., Cecconi M., Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesthesia & Analgesia. 2011;112(6):1392–1402. doi: 10.1213/ane.0b013e3181eeaae5. PubMed DOI
Teboul J.-L., Monnet X. Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Critical Care. 2009;13(4, article 175) doi: 10.1186/cc7979. PubMed DOI PMC
Day R. E., Kitchen P., Owen D. S., et al. Human aquaporins: regulators of transcellular water flow. Biochimica et Biophysica Acta. 2014;1840(5):1492–1506. doi: 10.1016/j.bbagen.2013.09.033. PubMed DOI
Weinbaum S., Tarbell J. M., Damiano E. R. The structure and function of the endothelial glycocalyx layer. Annual Review of Biomedical Engineering. 2007;9:121–167. doi: 10.1146/annurev.bioeng.9.060906.151959. PubMed DOI
Woodcock T. E., Woodcock T. M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. British Journal of Anaesthesia. 2012;108(3):384–394. doi: 10.1093/bja/aer515. PubMed DOI
Levick J. R., Michel C. C. Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research. 2010;87(2):198–210. doi: 10.1093/cvr/cvq062. PubMed DOI
Dellinger R. P., Levy M. M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine. 2013;41(2):580–637. doi: 10.1097/ccm.0b013e31827e83af. PubMed DOI
Kozek-Langenecker S. A., Afshari A., Albaladejo P., et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. European Journal of Anaesthesiology. 2013;30(6):270–382. doi: 10.1097/eja.0b013e32835f4d5b. PubMed DOI
Tenner S., Baillie J., DeWitt J., Vege S. S. American college of gastroenterology guideline: management of acute pancreatitis. The American Journal of Gastroenterology. 2013;108(9):1400–1415. doi: 10.1038/ajg.2013.218. PubMed DOI
Malbrain M. L. N. G., Roberts D. J., Sugrue M., et al. The polycompartment syndrome: a concise state-of-the-art review. Anaesthesiology Intensive Therapy. 2014;46(5):433–450. doi: 10.5603/ait.2014.0064. PubMed DOI
Hoste E. A., Maitland K., Brudney C. S., et al. Four phases of intravenous fluid therapy: a conceptual model. British Journal of Anaesthesia. 2014;113(5):740–747. PubMed PMC
Malbrain M. L. N. G., Marik P. E., Witters I., et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiology Intensive Therapy. 2014;46(5):361–380. doi: 10.5603/ait.2014.0060. PubMed DOI
Kirov M. Y. Pulmonary edema in hypovolemic patients: how can we predict it in clinical practice? Critical Care Medicine. 2012;40(3):994–995. doi: 10.1097/ccm.0b013e31823b8937. PubMed DOI
Bundgaard-Nielsen M., Secher N. H., Kehlet H. ‘Liberal’ vs. ‘restrictive’ perioperative fluid therapy—a critical assessment of the evidence. Acta Anaesthesiologica Scandinavica. 2009;53(7):843–851. doi: 10.1111/j.1399-6576.2009.02029.x. PubMed DOI
RENAL Replacement Therapy Study Investigators, Bellomo R., Cass A., et al. An observational study fluid balance and patient outcomes in the randomized evaluation of normal vs. Augmented level of replacement therapy trial. Critical Care Medicine. 2012;40(6):1753–1760. doi: 10.1097/CCM.0b013e318246b9c6. PubMed DOI
De Laet I., Deeren D., Schoonheydt K., Van Regenmortel N., Dits H., Malbrain M. L. Renal replacement therapy with net fluid removal lowers intra-abdominal pressure and volumetric indices in critically ill patients. Annals of Intensive Care. 2012;2(supplement 1, article S20) PubMed PMC
Doherty M., Buggy D. J. Intraoperative fluids: how much is too much? British Journal of Anaesthesia. 2012;109(1):69–79. doi: 10.1093/bja/aes171. PubMed DOI
Jacob M., Chappell D., Conzen P., Finsterer U., Rehm M. Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiologica Scandinavica. 2008;52(4):522–529. doi: 10.1111/j.1399-6576.2008.01587.x. PubMed DOI
Jackson R., Reid J. A., Thorburn J. Volume preloading is not essential to prevent spinal-induced hypotension at caesarean section. British Journal of Anaesthesia. 1995;75(3):262–265. doi: 10.1093/bja/75.3.262. PubMed DOI
Marik P. E. Iatrogenic salt water drowning and the hazards of a high central venous pressure. Annals of Intensive Care. 2014;4, article 21 doi: 10.1186/s13613-014-0021-0. PubMed DOI PMC
Chappell D., Jacob M., Becker B. F., Hofmann-Kiefer K., Conzen P., Rehm M. Expedition glycocalyx: a newly discovered ‘Great Barrier Reef’. Anaesthesist. 2008;57(10):959–969. doi: 10.1007/s00101-008-1445-4. PubMed DOI
Brandstrup B., Tønnesen H., Beier-Holgersen R., et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Annals of Surgery. 2003;238(5):641–648. doi: 10.1097/01.sla.0000094387.50865.23. PubMed DOI PMC
Finfer S., Bellomo R., Boyce N., French J., Myburgh J., Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. The New England Journal of Medicine. 2004;350(22):2247–2256. doi: 10.1056/nejmoa040232. PubMed DOI
Myburgh J. A., Finfer S., Bellomo R., et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. The New England Journal of Medicine. 2012;367(20):1901–1911. doi: 10.1056/nejmoa1209759. PubMed DOI
Shaw A. D., Bagshaw S. M., Goldstein S. L., et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-lyte. Annals of Surgery. 2012;255(5):821–829. doi: 10.1097/SLA.0b013e31825074f5. PubMed DOI
Yunos N. M., Bellomo R., Hegarty F. C., Story D., Ho L., Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. Journal of the American Medical Association. 2012;308(15):1566–1572. doi: 10.1001/jama.2012.13356. PubMed DOI
Boulain T., Boisrame-Helms J., Ehrmann S., et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Medicine. 2015;41(2):248–256. doi: 10.1007/s00134-014-3576-1. PubMed DOI
Cannesson M., Pestel G., Ricks C., Hoeft A., Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Critical Care. 2011;15(4, article R197) doi: 10.1186/cc10364. PubMed DOI PMC
Srinivasa S., Kahokehr A., Soop M., Taylor M., Hill A. G. Goal-directed fluid therapy—a survey of anaesthetists in the UK, USA, Australia and New Zealand. BMC Anesthesiology. 2013;13, article 5 doi: 10.1186/1471-2253-13-5. PubMed DOI PMC
ARISE Investigators, ANZICS Clinical Trials, Peake S. L., et al. Goal-directed resuscitation for patients with early septic shock. The New England Journal of Medicine. 2014;371(16):1496–1506. doi: 10.1056/nejmoa1404380. PubMed DOI
Yealy D. M., Kellum J. A., Huang D. T., et al. A randomized trial of protocol-based care for early septic shock. The New England Journal of Medicine. 2014;370(18):1683–1693. PubMed PMC
Rivers E., Nguyen B., Havstad S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. The New England Journal of Medicine. 2001;345(19):1368–1377. doi: 10.1056/nejmoa010307. PubMed DOI
Sandham J. D., Hull R. D., Brant R. F., et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. The New England Journal of Medicine. 2003;348(1):5–14. doi: 10.1056/nejmoa021108. PubMed DOI
Takala J., Ruokonen E., Tenhunen J. J., Parviainen I., Jakob S. M. Early non-invasive cardiac output monitoring in hemodynamically unstable intensive care patients: a multi-center randomized controlled trial. Critical Care. 2011;15(3, article R148) doi: 10.1186/cc10273. PubMed DOI PMC
Zhang Z., Ni H., Qian Z. Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Medicine. 2015;41(3):444–451. doi: 10.1007/s00134-014-3638-4. PubMed DOI
Boulain T., Cecconi M. Can one size fit all? The fine line between fluid overload and hypovolemia. Intensive Care Medicine. 2015;41(3):544–546. doi: 10.1007/s00134-015-3683-7. PubMed DOI
Huber W., Henschel B., Schmid R. M., et al. Comments on Zhang et al.: Effectiveness of treatment based on PiCCO parameters in critically ill patients with septic shock and/or acute respiratory distress syndrome: a randomized controlled trial. Intensive Care Medicine. 2015;41(7):1389–1390. doi: 10.1007/s00134-015-3819-9. PubMed DOI
Pearse R. M., Harrison D. A., MacDonald N., et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. The Journal of the American Medical Association. 2014;311(21):2181–2190. doi: 10.1001/jama.2014.5305. PubMed DOI
Hoste E. A., Maitland K., Brudney C. S., et al. Four phases of intravenous fluid therapy: a conceptual model. British Journal of Anaesthesia. 2014;113(5):740–747. doi: 10.1093/bja/aeu300. PubMed DOI PMC
Vincent J.-L., De Backer D. Circulatory shock. The New England Journal of Medicine. 2013;369(18):1726–1734. doi: 10.1056/nejmra1208943. PubMed DOI
Morrison C. A., Carrick M. M., Norman M. A., et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. Journal of Trauma. 2011;70(3):652–663. doi: 10.1097/ta.0b013e31820e77ea. PubMed DOI
Maitland K., Kiguli S., Opoka R. O., et al. Mortality after fluid bolus in African children with severe infection. The New England Journal of Medicine. 2011;364(26):2483–2495. doi: 10.1056/nejmoa1101549. PubMed DOI
Shoemaker W. C., Appel P. L., Kram H. B., Waxman K., Lee T.-S. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94(6):1176–1186. doi: 10.1378/chest.94.6.1176. PubMed DOI
Kern J. W., Shoemaker W. C. Meta-analysis of hemodynamic optimization in high-risk patients. Critical Care Medicine. 2002;30(8):1686–1692. doi: 10.1097/00003246-200208000-00002. PubMed DOI
Alía I., Esteban A., Gordo F., et al. A randomized and controlled trial of the effect of treatment aimed at maximizing oxygen delivery in patients with severe sepsis or septic shock. Chest. 1999;115(2):453–461. doi: 10.1378/chest.115.2.453. PubMed DOI
Gattinoni L., Brazzi L., Pelosi P., et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. The New England Journal of Medicine. 1995;333(16):1025–1032. doi: 10.1056/nejm199510193331601. PubMed DOI
Bai X., Yu W., Ji W., et al. Early versus delayed administration of norepinephrine in patients with septic shock. Critical Care. 2014;18(5, article 532) doi: 10.1186/s13054-014-0532-y. PubMed DOI PMC
Chytra I., Pradl R., Bosman R., Pelnář P., Kasal E., Židková A. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Critical Care. 2007;11(1, article R24) doi: 10.1186/cc5703. PubMed DOI PMC
Velmahos G. C., Demetriades D., Shoemaker W. C., et al. Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Annals of Surgery. 2000;232(3):409–418. doi: 10.1097/00000658-200009000-00013. PubMed DOI PMC
Grocott M. P. W., Dushianthan A., Hamilton M. A., et al. Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a cochrane systematic review. British Journal of Anaesthesia. 2013;111(4):535–548. doi: 10.1093/bja/aet155. PubMed DOI
Challand C., Struthers R., Sneyd J. R., et al. Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. British Journal of Anaesthesia. 2012;108(1):53–62. doi: 10.1093/bja/aer273. PubMed DOI
Ackland G. L., Iqbal S., Paredes L. G., et al. Individualised oxygen delivery targeted haemodynamic therapy in high-risk surgical patients: a multicentre, randomised, double-blind, controlled, mechanistic trial. The Lancet Respiratory Medicine. 2015;3(1):33–41. doi: 10.1016/s2213-2600(14)70205-x. PubMed DOI
Salzwedel C., Puig J., Carstens A., et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Critical Care. 2013;17(5, article R191) doi: 10.1186/cc12885. PubMed DOI PMC
Cannesson M., Le Manach Y., Hofer C. K., et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a ‘gray zone’ approach. Anesthesiology. 2011;115(2):231–241. doi: 10.1097/aln.0b013e318225b80a. PubMed DOI
Murphy C. V., Schramm G. E., Doherty J. A., et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–109. doi: 10.1378/chest.08-2706. PubMed DOI
Wiedemann H. P., Wheeler A. P., Bernard G. R., et al. Comparison of two fluid-management strategies in acute lung injury. The New England Journal of Medicine. 2006;354(24):2564–2575. doi: 10.1056/nejmoa062200. PubMed DOI
Grissom C. K., Hirshberg E. L., Dickerson J. B., et al. Fluid management with a simplified conservative protocol for the acute respiratory distress syndrome. Critical Care Medicine. 2015;43(2):288–295. doi: 10.1097/ccm.0000000000000715. PubMed DOI PMC
Chawla L. S., Davison D. L., Brasha-Mitchell E., et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Critical Care. 2013;17(5, article R207) doi: 10.1186/cc13015. PubMed DOI PMC
Martin G. S., Moss M., Wheeler A. P., Mealer M., Morris J. A., Bernard G. R. A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Critical Care Medicine. 2005;33(8):1681–1687. doi: 10.1097/01.CCM.0000171539.47006.02. PubMed DOI
Cordemans C., De Laet I., Van Regenmortel N., et al. Aiming for a negative fluid balance in patients with acute lung injury and increased intra-abdominal pressure: a pilot study looking at the effects of PAL-treatment. Annals of Intensive Care. 2012;2(supplement 1, article S15) doi: 10.1186/2110-5820-2-s1-s15. PubMed DOI PMC
Rosner M. H., Ostermann M., Murugan R., et al. Indications and management of mechanical fluid removal in critical illness. British Journal of Anaesthesia. 2014;113(5):764–771. doi: 10.1093/bja/aeu297. PubMed DOI
Vincent J.-L., Hall J. B., Slutsky A. S. Ten big mistakes in intensive care medicine. Intensive Care Medicine. 2015;41(3):505–507. doi: 10.1007/s00134-014-3570-7. PubMed DOI