First Expert Elicitation of Knowledge on Possible Drivers of Observed Increasing Human Cases of Tick-Borne Encephalitis in Europe
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36992499
PubMed Central
PMC10054665
DOI
10.3390/v15030791
PII: v15030791
Knihovny.cz E-zdroje
- Klíčová slova
- Dermacentor reticulatus, TBEV, clustering analysis, drivers, expert elicitation, flavivirus, genus Ixodes, multi-criteria decision analysis (MCDA), sensitivity analysis, tick-borne encephalitis (TBE), ticks, uncertainty,
- MeSH
- Dermacentor * MeSH
- divoká zvířata MeSH
- klíště * MeSH
- klíšťová encefalitida * MeSH
- lidé MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.
Agroscope Risk Evaluation and Risk Mitigation Schwarzenburgstrasse 3003 Bern Liebefeld Switzerland
Animal Health Department INRAE 37380 Nouzilly France
ANSES Nancy Laboratory for Rabies and Wildlife 54220 Malzéville France
ANSES Risk Assessment Department 94700 Maisons Alfort France
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Deptartment of Animal Health Faculty of Veterinary Medicine 50013 Zaragoza Spain
European Centre for Disease Prevention and Control 17183 Solna Sweden
Fundamental and Applied Research for Animal and Health Center University of Liege 4000 Liege Belgium
Health and Biotechnology CSIC UCLM JCCM 13071 Ciudad Real Spain
Hoogstraat 159 5 3665 As Belgium
Institute for Infectious Diseases University of Bern 3001 Bern Switzerland
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 60365 Brno Czech Republic
Laboratory for Food Safety ANSES University of Paris EST 94700 Maisons Alfort France
Lyme Center Apeldoorn Gelre Hospital 7300 DS Apeldoorn The Netherlands
Oniris INRAE BIOEPAR 44300 Nantes France
Pôle Agroalimentaire Conservatoire National des Arts et Métiers 75003 Paris France
Scientific Directorate of Epidemiology and Public Health Sciensano 1180 Brussels Belgium
UK Centre for Ecology and Hydrology Benson Lane Crowmarsh Gifford Oxfordshire OX10 8BB UK
UMI SOURCE Université Paris Saclay UVSQ 78000 Versailles France
Université de Lyon VetAgro Sup UMR CNRS 5558 Marcy l'Etoile 69280 Lyon France
Zoonotic Water and Foodborne Infections The Norwegian Institute for Public Health 0213 Oslo Norway
Zobrazit více v PubMed
Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC
Leutloff R., Nübling M., Neumann-Haefelin D., Rieger M.A. Cows as indicators for TBE endemic regions: Suitability of testing for antibodies in serum and milk. Int. J. Med. Microbiol. 2006;296:87–88.
Hoogstraal H. Ticks in relation to human diseases caused by viruses. Annu. Rev. Entomol. 1966;11:261–308. doi: 10.1146/annurev.en.11.010166.001401. PubMed DOI
Elbaz M., Gadoth A., Shepshelovich D., Shasha D., Rudoler N., Paran Y. Systematic Review and Meta-analysis of Foodborne Tick-Borne Encephalitis, Europe, 1980–2021. Emerg. Infect. Dis. 2022;28:1945–1954. doi: 10.3201/eid2810.220498. PubMed DOI PMC
Martello E., Gillingham E.L., Phalkey R., Vardavas C., Nikitara K., Bakonyi T., Gossner C.M., Leonardi-Bee J. Systematic review on the non-vectorial transmission of tick-borne encephalitis virus (TBEv) Ticks Tick-Borne Dis. 2022;13:102028. doi: 10.1016/j.ttbdis.2022.102028. PubMed DOI
Kerlik J., Avdičová M., Štefkovičová M., Tarkovská V., Pántiková Valachová M., Molčányi T., Mezencev R. Slovakia reports highest occurrence of alimentary tick-borne encephalitis in Europe: Analysis of tick-borne encephalitis outbreaks in Slovakia during 2007–2016. Travel Med. Infect. Dis. 2018;26:37–42. doi: 10.1016/j.tmaid.2018.07.001. PubMed DOI
Pfeffer M., Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasites Vectors. 2010;3:35. doi: 10.1186/1756-3305-3-35. PubMed DOI PMC
Lommano E., Dvořák C., Vallotton L., Jenni L., Gern L. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis. 2014;5:871–882. doi: 10.1016/j.ttbdis.2014.07.001. PubMed DOI
Süss J. Tick-borne encephalitis in Europe and beyond—The epidemiological situation as of 2007. Eurosurveillance. 2008;13:717–727. doi: 10.2807/ese.13.26.18916-en. PubMed DOI
Weaver S.C., Reisen W.K. Present and future arboviral threats. Antivir. Res. 2010;85:328–345. doi: 10.1016/j.antiviral.2009.10.008. PubMed DOI PMC
Gubler D.J. Human arbovirus infections worldwide. Ann. N. Y. Acad. Sci. 2001;951:13–24. doi: 10.1111/j.1749-6632.2001.tb02681.x. PubMed DOI
Randolph S.E. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda’s enduring paradigm. Ticks Tick-Borne Dis. 2011;2:179–182. doi: 10.1016/j.ttbdis.2011.07.004. PubMed DOI
Matser A., Hartemink N., Heesterbeek H., Galvani A., Davis S. Elasticity analysis in epidemiology: An application to tick-borne infections. Ecol. Lett. 2009;12:1298–1305. doi: 10.1111/j.1461-0248.2009.01378.x. PubMed DOI
Haydon D.T., Cleaveland S., Taylor L.H., Laurenson M.K. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg. Infect. Dis. 2002;8:1468–1473. doi: 10.3201/eid0812.010317. PubMed DOI PMC
Taba P., Schmutzhard E., Forsberg P., Lutsar I., Ljøstad U., Mygland Å., Levchenko I., Strle F., Steiner I. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 2017;24:1214-e61. doi: 10.1111/ene.13356. PubMed DOI
Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Valarcher J.F., Hägglund S., Juremalm M., Blomqvist G., Renström L., Zohari S., Leijon M., Chirico J. Tick-borne encephalitis. Rev. Sci. Tech. 2015;34:453–466. doi: 10.20506/rst.34.2.2371. PubMed DOI
Deviatkin A.A., Karganova G.G., Vakulenko Y.A., Lukashev A.N. TBEV Subtyping in Terms of Genetic Distance. Viruses. 2020;12:1240. doi: 10.3390/v12111240. PubMed DOI PMC
Kutschera L., Wolfinger M.T. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol. 2022;8:veac051. doi: 10.1093/ve/veac051. PubMed DOI PMC
Kunze M., Banović P., Bogovič P., Briciu V., Čivljak R., Dobler G., Hristea A., Kerlik J., Kuivanen S., Kynčl J., et al. Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe. Microorganisms. 2022;10:1283. doi: 10.3390/microorganisms10071283. PubMed DOI PMC
Lundkvist K., Vene S., Golovljova I., Mavtchoutko V., Forsgren M., Kalnina V., Plyusnin A. Characterization of tick-borne encephalitis virus from Latvia: Evidence for co-circulation of three distinct subtypes. J. Med. Virol. 2001;65:730–735. doi: 10.1002/jmv.2097. PubMed DOI
Kubinski M., Beicht J., Gerlach T., Volz A., Sutter G., Rimmelzwaan G.F. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines. 2020;8:451. doi: 10.3390/vaccines8030451. PubMed DOI PMC
Fafangel M., Cassini A., Colzani E., Klavs I., Grgič Vitek M., Učakar V., Muehlen M., Vudrag M., Kraigher A. Estimating the annual burden of tick-borne encephalitis to inform vaccination policy, Slovenia, 2009 to 2013. Eurosurveillance. 2017;22:pii=30509. doi: 10.2807/1560-7917.ES.2017.22.16.30509. PubMed DOI PMC
Slunge D., Boman A., Studahl M. Burden of Tick-Borne Encephalitis, Sweden. Emerg. Infect. Dis. 2022;28:314–322. doi: 10.3201/eid2802.204324. PubMed DOI PMC
Šmit R., Postma M.J. Review of tick-borne encephalitis and vaccines: Clinical and economical aspects. Expert Rev. Vaccines. 2015;14:737–747. doi: 10.1586/14760584.2015.985661. PubMed DOI
Steffen R., Erber W., Schmitt H.J. Can the booster interval for the tick-borne encephalitis (TBE) vaccine ‘FSME-IMMUN’ be prolonged? A systematic review. Ticks Tick-Borne Dis. 2021;12:101779. doi: 10.1016/j.ttbdis.2021.101779. PubMed DOI
Zimna M., Brzuska G., Salát J., Svoboda P., Baranska K., Szewczyk B., Růžek D., Krol E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antivir. Res. 2022;26:105511. doi: 10.1016/j.antiviral.2022.105511. PubMed DOI
de Graaf J.A., Reimerink J.H., Voorn G.P., Bij de Vaate E.A., de Vries A., Rockx B., Schuitemaker A., Hira V. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Eurosurveillance. 2016;21:30318. doi: 10.2807/1560-7917.ES.2016.21.33.30318. PubMed DOI PMC
Lernout T., Van Esbroeck M. Surveillance Épidémiologique de L’encéphalite à Tiques TBEV—2018. Sciensano, 2018 (Disponible en Ligne à L’adresse Suivante. [(accessed on 15 March 2023)]. Available online: https://epidemio.wiv-isp.be/ID/diseases/Documents/Reports%202018/TBEV_2018_fr.pdf.
Stoefs A., Heyndrickx L., De Winter J., Coeckelbergh E., Willekens B., Alonso-Jiménez A., Tuttino A.-M., Geerts Y., Ariën K.K., Van Esbroeck M. Autochthonous Cases of Tick-Borne Encephalitis, Belgium, 2020. Emerg. Infect. Dis. 2021;27:2179–2182. doi: 10.3201/eid2708.211175. PubMed DOI PMC
Mansbridge C.T., Osborne J., Holding M., Dryden M., Aram M., Brown K., Sutton J. Autochthonous tick-borne encephalitis in the United Kingdom: A second probable human case and local eco-epidemiological findings. Ticks Tick Borne Dis. 2022;13:101853. doi: 10.1016/j.ttbdis.2021.101853. PubMed DOI
ECDC Tick-Borne Encephalitis—Annual Epidemiological Report for 2020. Surveillance Report, 28 Oct 2022, Annual Epidemiological Report on Communicable Diseases in Europe. European Centre for Disease Prevention and Control, Stockholm, Sweden. [(accessed on 15 March 2023)];2022 Available online: https://www.ecdc.europa.eu/en/publications-data/tick-borne-encephalitis-annual-epidemiological-report-2020.
Šmit R., Postma M.J. The Burden of Tick-Borne Encephalitis in Disability-Adjusted Life Years (DALYs) for Slovenia. PLoS ONE. 2015;10:e0144988. doi: 10.1371/journal.pone.0144988. PubMed DOI PMC
Mailles A., Argemi X., Biron C., Fillatre P., De Broucker T., Buzelé R., Gagneux-Brunon A., Gueit I., Henry C., Patrat-Delon S., et al. Changing profile of encephalitis: Results of a 4-year study in France. Infect Dis. Now. 2022;52:1–6. doi: 10.1016/j.idnow.2021.11.007. PubMed DOI
WHO . Chapter 6—Vaccine-Preventable Diseases and Vaccines. International Travel and Health, WHO; Geneva, Switzerland: 2019. 53p.
Sumilo D., Asokliene L., Bormane A., Vasilenko V., Golovljova I., Randolph S.E. Climate Change Cannot Explain the Upsurge of Tick-Borne Encephalitis in the Baltics. PLoS ONE. 2007;2:e500. doi: 10.1371/journal.pone.0000500. PubMed DOI PMC
Cox R., Sánchez J., Revie C.W. Multi-Criteria Decision Analysis Tools for Prioritising Emerging or Re-Emerging Infectious Diseases Associated with Climate Change in Canada. PLoS ONE. 2013;8:e68338. doi: 10.1371/journal.pone.0068338. PubMed DOI PMC
ECDC Best Practices in Ranking Emerging Infectious Disease Threats. A Literature Review. European Centre for Disease Prevention and Control. [(accessed on 1 December 2022)];2015 Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/emerging-infectious-disease-threats-best-practices-ranking.pdf.
Bianchini J., Humblet M.F., Cargnel M., Van der Stede Y., Koenen F., de Clercq K., Saegerman C. Prioritization of livestock transboundary diseases in Belgium using a multicriteria decision analysis tool based on drivers of emergence. Transbound. Emerg. Dis. 2020;67:344–376. doi: 10.1111/tbed.13356. PubMed DOI PMC
Saegerman C., Bianchini J., Snoeck C.J., Moreno A., Chiapponi C., Zohari S., Ducatez M.F. First expert elicitation of knowledge on drivers of emergence of influenza D in Europe. Transbound. Emerg. Dis. 2021;68:3349–3359. doi: 10.1111/tbed.13938. PubMed DOI
Saegerman C., Evrard J., Houtain J.-Y., Alzieu J.-P., Bianchini J., Mpouam S.E., Schares G., Liénard E., Jacquiet P., Villa L., et al. First Expert Elicitation of Knowledge on Drivers of Emergence of Bovine Besnoitiosis in Europe. Pathogens. 2022;11:753. doi: 10.3390/pathogens11070753. PubMed DOI PMC
Gore S.M. Biostatistics and the Medical Research Council. MRC News. 1987;35:19–20.
Vanwambeke S.O., Sumilo D., Bormane A., Lambin E.F., Randolph S.E. Landscape predictors of tick-borne encephalitis in Latvia: Land cover, land use, and land ownership. Vector Borne Zoonotic Dis. 2010;10:497–506. doi: 10.1089/vbz.2009.0116. PubMed DOI
Petit K., Dunoyer C., Fischer C., Hars J., Baubet E., Ramón López-Olvera J., Rossi S., Collin E., Le Potier M.-F., Belloc C., et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 2020;67:1164–1176. doi: 10.1111/tbed.13447. PubMed DOI
Asaaga F.A., Rahman M., Kalegowda S.D., Mathapati J., Savanur I., Srinivas P.N., Seshadri T., Narayanswamy D., Kiran S.K., Oommen M.A., et al. ‘None of my ancestors ever discussed this disease before!’ How disease information shapes adaptive capacity of marginalised rural populations in India. PLoS Negl. Trop. Dis. 2021;15:e0009265. doi: 10.1371/journal.pntd.0009265. PubMed DOI PMC
Colonna A., Durham C., Meunier-Goddik L. Factors affecting consumers’ preferences for and purchasing decisions regarding pasteurized and raw milk specialty cheeses. J. Dairy Sci. 2011;94:5217–5226. doi: 10.3168/jds.2011-4456. PubMed DOI
Lengard Almli V., Naes T., Enderli G., Sulmont-Rossé C., Issanchou S., Hersleth M. Consumers’ acceptance of innovations in traditional cheese. A comparative study in France and Norway. Appetite. 2011;57:110–120. doi: 10.1016/j.appet.2011.04.009. PubMed DOI
Bachmann H.P., Fröhlich M.T., Bisig W. Raw Milk and Raw-Milk Products Affect our Health [English/French abstract on website, Rohmilch und Rohmilchprodukte beeinflussen unsere Gesundheit] Swiss Agr. Res. 2020;11:124–130. doi: 10.34776/afs11-124. DOI
Mutius E., Schmid S., The PASTURE Study Group The PASTURE project: EU support for the improvement of knowledge about risk factors and preventive factors for atopy in Europe. Allergy. 2006;61:407–413. doi: 10.1111/j.1398-9995.2006.01009.x. PubMed DOI
Nicolau M., Esquivel L., Schmidt I., Fedato C., Leimann L., Samoggia A., Monticone F., Prete D.M., Ghelfi R., Saviolidis M.N., et al. Food consumption behaviours in Europe. Mapping drivers, trends and pathways towards sustainability. VALUMICS Proj. 2021 doi: 10.5281/zenodo.5011691. “Understanding Food Value Chains and Network Dynamics”, funded by European Union’s Horizon 2020 research and innovation programme GA No 727243. Deliverable: D6.1, CSCP, Germany, 87 pages. DOI
Zeimes C.B., Olsson G.E., Hjertqvist M., Vanwambeke S.O. Shaping zoonosis risk: Landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasites Vectors. 2014;7:370. doi: 10.1186/1756-3305-7-370. PubMed DOI PMC
Uusitalo R., Siljander M., Lindén A., Sormunen J.J., Aalto J., Hendrickx G., Kallio E., Vajda A., Gregow H., Henttonen H., et al. Predicting habitat suitability for Ixodes ricinus and Ixodes persulcatus ticks in Finland. Parasit Vectors. 2022;15:310. doi: 10.1186/s13071-022-05410-8. PubMed DOI PMC
Requena-García F., Cabrero-Sañudo F., Olmeda-García S., González J., Valcárcel F. Influence of environmental temperature and humidity on questing ticks in central Spain. Exp. Appl. Acarol. 2017;71:277–290. doi: 10.1007/s10493-017-0117-y. PubMed DOI
Stafford K.C. Survival of immature Ixodes scapularis (Acari, Ixodidae) at different relative humidities. J. Med. Entomol. 1994;31:310–314. doi: 10.1093/jmedent/31.2.310. PubMed DOI
Vail S.G., Smith G. Vertical movement and posture of blacklegged tick (Acari: Ixodidae) nymphs as a function of temperature and relative humidity in laboratory experiments. J. Med. Entomol. 2002;39:842–846. doi: 10.1603/0022-2585-39.6.842. PubMed DOI
Ogden N.H., Lindsay L.R., Beauchamp G., Charron D., Maarouf A., O’Callaghan C.J., Waltner-Toews D., Barker I.K. Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J. Med. Entomol. 2004;41:622–633. doi: 10.1603/0022-2585-41.4.622. PubMed DOI
Gray J.S. The ecology of ticks transmitting Lyme borreliosis. Exp. Appl. Acarol. 1998;22:249–258. doi: 10.1023/A:1006070416135. DOI
Kahl O., Gray J.S. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis. 2023;14:102114. doi: 10.1016/j.ttbdis.2022.102114. PubMed DOI
Tabachnick W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010;213:946–954. doi: 10.1242/jeb.037564. PubMed DOI
Haider N., Kirkeby C., Kristensen B., Kjær L.J., Sørensen J.H., Bødker R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci. Rep. 2017;7:8175. doi: 10.1038/s41598-017-08514-9. PubMed DOI PMC
Borde J.P., Glaser R., Braun K., Riach N., Hologa R., Kaier K., Chitimia-Dobler L., Dobler G. Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions. Int. J. Environ. Res. Public Health. 2022;19:11830. doi: 10.3390/ijerph191811830. PubMed DOI PMC
Nah K., Bede-Fazekas Á., János Trájer A., Wu J. The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect. Dis. 2020;20:34. doi: 10.1186/s12879-019-4734-4. PubMed DOI PMC
Chávez-Larrea M.A., Cholota-Iza C., Medina-Naranjo V., Yugcha-Díaz M., Ron-Román J., Martin-Solano S., Gómez-Mendoza G., Saegerman C., Reyna-Bello A. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens. 2021;10:1593. doi: 10.3390/pathogens10121593. PubMed DOI PMC
Cunze S., Glock G., Kochmann J., Klimpel S. Ticks on the move-climate change- induced range shifts of three tick species in Europe: Current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res. 2013;121:2241–2252. doi: 10.1007/s00436-022-07556-x. PubMed DOI PMC
Randolph S.E., Asokliene L., Avsic-Zupanc T., Bormane A., Burri C., Gern L., Golovljova I., Hubalek Z., Knap N., Kondrusik M., et al. Variable spikes in tick-borne encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasit Vectors. 2008;1:44. doi: 10.1186/1756-3305-1-44. PubMed DOI PMC
Voyiatzaki C., Papailia S.I., Venetikou M.S., Pouris J., Tsoumani M.E., Papageorgiou E.G. Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe-How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. Int. J. Environ. Res. Public Health. 2022;19:6516. doi: 10.3390/ijerph19116516. PubMed DOI PMC
Zannou O.M., Ouedraogo A.S., Biguezoton A.S., Lempereur L., Yao K.P., Abatih E., Zoungrana S., Lenaert M., Toe P., Farougou S., et al. First digital characterization of the transhumance corridors through Benin used by cattle herds from Burkina Faso and associated risk scoring regarding the invasion of Rhipicephalus (Boophilus) microplus. Transbound. Emerg. Dis. 2021;68:2079–2093. doi: 10.1111/tbed.13855. PubMed DOI
Zannou O.M., Ouedraogo A.S., Biguezoton A.S., Abatih E., Coral-Almeida M., Farougou S., Yao K.P., Lempereur L., Saegerman C. Models for studying the distribution of ticks and tick-borne diseases in animals: A systematic review and a meta-Analysis with a Focus on Africa. Pathogens. 2021;10:893. doi: 10.3390/pathogens10070893. PubMed DOI PMC
Lippi C.A., Ryan S.J., White A.L., Gaff H.D., Carlson C.J. Trends and opportunities in tick-borne disease geography. J. Med. Entomol. 2021;58:2021–2029. doi: 10.1093/jme/tjab086. PubMed DOI PMC
Tischhauser W., Gründer J. Prévention Contre les Tiques: Nouvelle Application Mobile. [(accessed on 15 March 2023)];Bulletin OFSP. 2015 12:207. Available online: www.bag.admin.ch/dam/bag/fr/dokumente/mt/infektionskrankheiten/fsme/zecken-app.pdf.download.pdf/zeckenapp-f.pdf.
Süss J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine. 2003;21((Suppl. 1)):S19–S35. doi: 10.1016/S0264-410X(02)00812-5. PubMed DOI
Bakhvalova V.N., Dobrotvorsky A.K., Panov V.V., Matveeva V.A., Tkachev S.E., Morozova O.V. Natural tick-borne encephalitis virus infection among wild small mammals in the southeastern part of western Siberia, Russia. Vector Borne Zoonotic Dis. 2006;6:32–41. doi: 10.1089/vbz.2006.6.32. PubMed DOI
Bakhvalova V.N., Potapova O.F., Panov V.V., Morozova O.V. Vertical transmission of tick-borne encephalitis virus between generations of adapted reservoir small rodents. Virus Res. 2009;140:172–178. doi: 10.1016/j.virusres.2008.12.001. PubMed DOI
Tonteri E., Kipar A., Voutilainen L., Vene S., Vaheri A., Vapalahti O., Lundkvist A. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus) PLoS ONE. 2013;8:e81214. doi: 10.1371/journal.pone.0081214. PubMed DOI PMC
Tonteri E., Jaaskelainen A.E., Tikkakoski T., Voutilainen L., Niemimaa J., Henttonen H., Vaheri A., Vapalahti O. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 2011;17:72–75. doi: 10.3201/eid1701.100051. PubMed DOI PMC
Radda A. Die Zeckenenzephalitis in Europa. Z. Fuer Angew. Zool. 1973;60:409–461.
Hinaidy H.K. Die Parasitenfauna des Rotfuchses, Vulpes vulpes (L.), in Österreich. Zent. Vet. B. 1971;18:21–32. doi: 10.1111/j.1439-0450.1971.tb00340.x. PubMed DOI
Jemeršić L., Dežđek D., Brnić D., Prpić J., Janicki Z., Keros T., Roić B., Slavica A., Terzić S., Konjević D., et al. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia. Ticks Tick Borne Dis. 2014;5:7–13. doi: 10.1016/j.ttbdis.2012.11.016. PubMed DOI
Da Rold G., Obber F., Monne I., Milani A., Ravagnan S., Toniolo F., Sgubin S., Zamperin G., Foiani G., Vascellari M., et al. Clinical Tick-Borne Encephalitis in a Roe Deer (Capreolus capreolus L.) Viruses. 2022;14:300. doi: 10.3390/v14020300. PubMed DOI PMC
Fouché N., Oesch S., Ziegler U., Gerber V. Clinical presentation and laboratory diagnostic work-up of a horse with tick-borne encephalitis in Switzerland. Viruses. 2021;13:1474. doi: 10.3390/v13081474. PubMed DOI PMC
Eisen L., Stafford K.C. Barriers to Effective Tick Management and Tick-Bite Prevention in the United States (Acari: Ixodidae) J. Med. Entomol. 2021;58:1588–1600. doi: 10.1093/jme/tjaa079. PubMed DOI PMC
Wilhelmsson P., Jaenson T.G.T., Olsen B., Waldenström J., Lindgren P.E. Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: A seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasit Vectors. 2020;13:607. doi: 10.1186/s13071-020-04493-5. PubMed DOI PMC
Deinet S., Ieronymidou C., McRae L., Burfield I.J., Foppen R.P., Collen B., Böhm M. Final Report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council. ZSL; London, UK: 2013. Wildlife comeback in Europe: The recovery of selected mammal and bird species.
Ledger S.E.H., Rutherford C.A., Benham C., Burfield I.J., Deinet S., Eaton M., Freeman R., Gray C., Herrando S., Puleston H., et al. Final Report to Rewilding Europe by the Zoological Society of London, BirdLife International and the European Bird Census Council. ZSL; London, UK: 2022. Wildlife Comeback in Europe: Opportunities and challenges for species recovery.
Hofmeester T.R., Sprong H., Jansen P.A., Prins H.H.T., van Wieren S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasites Vectors. 2017;10:433. doi: 10.1186/s13071-017-2370-7. PubMed DOI PMC
Knap N., Avšič-Županc T. Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. PLoS ONE. 2013;8:e66380. doi: 10.1371/journal.pone.0066380. PubMed DOI PMC
Haemig P.D., Lithner S., Sjöstedt de Luna S., Lundqvist A., Waldenström J., Hansson L., Arneborn M., Olsen B. Red fox tick-borne encephalitis (TBE) in humans: Can predators influence public health? Scand. J. Infect. Dis. 2008;40:527–532. doi: 10.1080/00365540701805446. PubMed DOI
Jaenson T.G.T., Hjertqvist M., Bergström T., Lundkvist A. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit Vectors. 2012;5:184. doi: 10.1186/1756-3305-5-184. PubMed DOI PMC
Jaenson T.G.T., Petersson E.H., Jaenson D.G.E., Kindberg J., Pettersson J.H., Hjertqvist M., Medlock J.M., Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasites Vectors. 2018;11:477. doi: 10.1186/s13071-018-3057-4. PubMed DOI PMC
Kiffner C., Zucchini W., Schomaker P., Vor T., Hagedorn P., Niedrig M., Rühe F. Determinants of tick-borne encephalitis in counties of southern Germany, 2001–2008. Int. J. Health Geogr. 2010;9:42. doi: 10.1186/1476-072X-9-42. PubMed DOI PMC
Johnsen K., Boonstra R., Boutin S., Devineau O., Krebs C.J., Andreassen H.P. Surviving winter: Food, but not habitat structure, prevents crashes in cyclic vole populations. Ecol. Evol. 2017;7:115–124. doi: 10.1002/ece3.2635. PubMed DOI PMC
Heyman P., Cochez C., Simons L., Smets L., Saegerman C. Breeding success of barn owls reflects risk of hantavirus infection. Vet. Rec. 2013;172:290. doi: 10.1136/vr.101212. PubMed DOI
Dumpis U., Crook D., Oksi J. Tick-borne encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI
Ličková M., Fumačová Havlíková S., Sláviková M., Mirko Slovák L., Drexler J.F., Klempa B. Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis. 2020;11:101414. doi: 10.1016/j.ttbdis.2020.101414. PubMed DOI
Chitimia-Dobler L., Lemhöfer G., Król N., Bestehorn M., Dobler G., Pfeffer M. Repeated isolation of tick-borne encephalitis virus from adult Dermacentor reticulatus ticks in an endemic area in Germany. Parasit Vectors. 2019;12:90. doi: 10.1186/s13071-019-3346-6. PubMed DOI PMC
Claerebout E., Losson B., Cochez C., Casaert S., Dalemans A.-C., De Cat A., Madder M., Saegerman C., Heyman P., Lempereur L. Ticks and associated pathogens collected from dogs and cats in Belgium. Parasit Vectors. 2013;6:183. doi: 10.1186/1756-3305-6-183. PubMed DOI PMC
Springer A., Lindau A., Probst J., Drehmann M., Fachet K., Thoma D., Vineer H.R., Noll M., Dobler G., Mackenstedt U., et al. Update and prognosis of Dermacentor distribution in Germany: Nationwide occurrence of Dermacentor reticulatus. Front. Vet. Sci. 2022;9:1044597. doi: 10.3389/fvets.2022.1044597. PubMed DOI PMC
Kooyman F.N.J., Zweerus H., Nijsse E.R., Jongejan F., Wagenaar J.A., Broens E.M. Monitoring of ticks and their pathogens from companion animals obtained by the "tekenscanner" application in The Netherlands. Parasitol Res. 2022;121:1887–1893. doi: 10.1007/s00436-022-07518-3. PubMed DOI PMC
Kiewra D., Szymanowski M., Czułowska A., Kolanek A. The local-scale expansion of Dermacentor reticulatus ticks in Lower Silesia, SW Poland. Ticks Tick Borne Dis. 2021;12:101599. doi: 10.1016/j.ttbdis.2020.101599. PubMed DOI
Drehmann M., Springer A., Lindau A., Fachet K., Mai S., Thoma D., Schneider C.R., Chitimia-Dobler L., Bröker M., Dobler G., et al. The Spatial Distribution of Dermacentor Ticks (Ixodidae) in Germany-Evidence of a Continuing Spread of Dermacentor reticulatus. Front. Vet. Sci. 2020;7:578220. doi: 10.3389/fvets.2020.578220. PubMed DOI PMC
Mierzejewska E.J., Estrada-Peña A., Alsarraf M., Kowalec M., Bajer A. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 2016;7:94–106. doi: 10.1016/j.ttbdis.2015.09.003. PubMed DOI
Földvári G., Široký P., Szekeres S., Majoros G., Sprong H. Dermacentor reticulatus: A vector on the rise. Parasit Vectors. 2016;9:314. doi: 10.1186/s13071-016-1599-x. PubMed DOI PMC
ECDC-EFSA Tick Maps [Internet]. Stockholm: ECDC. 2022. [(accessed on 15 March 2023)]. Available online: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps.
Estrada-Peña A., de la Fuente J. Species interactions in occurrence data for a community of tick-transmitted pathogens. Sci. Data. 2016;3:160056. doi: 10.1038/sdata.2016.56. PubMed DOI PMC
Morgan M.G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl. Acad. Sci. USA. 2014;111:7176–7184. doi: 10.1073/pnas.1319946111. PubMed DOI PMC