First Expert Elicitation of Knowledge on Possible Drivers of Observed Increasing Human Cases of Tick-Borne Encephalitis in Europe

. 2023 Mar 20 ; 15 (3) : . [epub] 20230320

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36992499

Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.

Agroscope Risk Evaluation and Risk Mitigation Schwarzenburgstrasse 3003 Bern Liebefeld Switzerland

Animal Health Department INRAE 37380 Nouzilly France

Animal Welfare and Disease Control Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen 1870 Frederiksberg Denmark

ANSES INRAE Ecole Nationale Vétérinaire d'Alfort UMR BIPAR Laboratoire de Santé Animale 94700 Maisons Alfort France

ANSES INRAE Ecole Nationale Vétérinaire d'Alfort UMR VIROLOGIE Laboratoire de Santé Animale 94700 Maisons Alfort France

ANSES Nancy Laboratory for Rabies and Wildlife 54220 Malzéville France

ANSES Risk Assessment Department 94700 Maisons Alfort France

Centre for Infectious Disease Control National Institute for Public Health and the Environment 3720 MA Bilthoven The Netherlands

Competence Center Climate and Health Austrian National Institute of Public Health 1010 Vienna Austria

Department for Occupational Protection and Hygiene Unit Biosafety Biosecurity and Environmental Licences University of Liege 4000 Liege Belgium

Department of Epidemiology Regional Authority of Public Health in Banská Bystrica 497556 Banská Bystrica Slovakia

Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic

Department of Infectious Diseases and Preventive Medicine Veterinary Research Institute 62100 Brno Czech Republic

Department of Virology and Immunology National Institute for Health Development 11619 Tallinn Estonia

Deptartment of Animal Health Faculty of Veterinary Medicine 50013 Zaragoza Spain

Ecole Nationale Vétérinaire Agroalimentaire et de l'Alimentation Nantes Atlantique Oniris 44307 Nantes France

European Centre for Disease Prevention and Control 17183 Solna Sweden

Fundamental and Applied Research for Animal and Health Center University of Liege 4000 Liege Belgium

Health and Biotechnology CSIC UCLM JCCM 13071 Ciudad Real Spain

Hoogstraat 159 5 3665 As Belgium

Institute for Infectious Diseases University of Bern 3001 Bern Switzerland

Institute of Biomedicine Department of Infectious Diseases University of Gothenburg 41685 Gothenburg Sweden

Institute of Microbiology and Immunology Faculty of Medicine University of Ljubljana Zaloška cesta 4 1000 Ljubljana Slovenia

Institute of Parasitology Biology Centre of the Czech Academy of Sciences 37005 Ceske Budejovice Czech Republic

Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 60365 Brno Czech Republic

Laboratory for Food Safety ANSES University of Paris EST 94700 Maisons Alfort France

Lyme Center Apeldoorn Gelre Hospital 7300 DS Apeldoorn The Netherlands

Neurologische Klinik und Poliklinik Klinikum der Universität München LMU München Marchioninistraße 15 81377 München Germany

Oniris INRAE BIOEPAR 44300 Nantes France

Operational Direction Infectious Diseases in Animals Unit of Exotic and Vector borne Diseases Sciensano 1180 Brussels Belgium

Pôle Agroalimentaire Conservatoire National des Arts et Métiers 75003 Paris France

Reference Centre for Tick Borne Diseases Paris and Northern Region Department of Infectious Diseases General Hospital of Villeneuve Saint Georges 94100 Villeneuve Saint Georges France

Scientific Directorate of Epidemiology and Public Health Sciensano 1180 Brussels Belgium

UK Centre for Ecology and Hydrology Benson Lane Crowmarsh Gifford Oxfordshire OX10 8BB UK

UMI SOURCE Université Paris Saclay UVSQ 78000 Versailles France

UMR 2000 Institut Pasteur CNRS Université Paris Cité Ecology and Emergence of Arthropod borne Pathogens 75015 Paris France

Unité Mixte de Recherché Immunorhumathologie Moléculaire 1109 Université de Strasbourg INSERM 67000 Strasbourg France

Université Clermont Auvergne INRAE VetAgro Sup UMR EPIA Route de Theix 63122 Saint Genès Champanelle France

Université de Lyon VetAgro Sup UMR CNRS 5558 Marcy l'Etoile 69280 Lyon France

UR7290 VBP Borrelia Group France and French Reference Centre on Lyme Borreliosis CHRU Unversity of Strasbourg 67000 Strasbourg France

Zoonotic Water and Foodborne Infections The Norwegian Institute for Public Health 0213 Oslo Norway

Zobrazit více v PubMed

Michelitsch A., Wernike K., Klaus C., Dobler G., Beer M. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11:669. doi: 10.3390/v11070669. PubMed DOI PMC

Leutloff R., Nübling M., Neumann-Haefelin D., Rieger M.A. Cows as indicators for TBE endemic regions: Suitability of testing for antibodies in serum and milk. Int. J. Med. Microbiol. 2006;296:87–88.

Hoogstraal H. Ticks in relation to human diseases caused by viruses. Annu. Rev. Entomol. 1966;11:261–308. doi: 10.1146/annurev.en.11.010166.001401. PubMed DOI

Elbaz M., Gadoth A., Shepshelovich D., Shasha D., Rudoler N., Paran Y. Systematic Review and Meta-analysis of Foodborne Tick-Borne Encephalitis, Europe, 1980–2021. Emerg. Infect. Dis. 2022;28:1945–1954. doi: 10.3201/eid2810.220498. PubMed DOI PMC

Martello E., Gillingham E.L., Phalkey R., Vardavas C., Nikitara K., Bakonyi T., Gossner C.M., Leonardi-Bee J. Systematic review on the non-vectorial transmission of tick-borne encephalitis virus (TBEv) Ticks Tick-Borne Dis. 2022;13:102028. doi: 10.1016/j.ttbdis.2022.102028. PubMed DOI

Kerlik J., Avdičová M., Štefkovičová M., Tarkovská V., Pántiková Valachová M., Molčányi T., Mezencev R. Slovakia reports highest occurrence of alimentary tick-borne encephalitis in Europe: Analysis of tick-borne encephalitis outbreaks in Slovakia during 2007–2016. Travel Med. Infect. Dis. 2018;26:37–42. doi: 10.1016/j.tmaid.2018.07.001. PubMed DOI

Pfeffer M., Dobler G. Emergence of zoonotic arboviruses by animal trade and migration. Parasites Vectors. 2010;3:35. doi: 10.1186/1756-3305-3-35. PubMed DOI PMC

Lommano E., Dvořák C., Vallotton L., Jenni L., Gern L. Tick-borne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks Tick Borne Dis. 2014;5:871–882. doi: 10.1016/j.ttbdis.2014.07.001. PubMed DOI

Süss J. Tick-borne encephalitis in Europe and beyond—The epidemiological situation as of 2007. Eurosurveillance. 2008;13:717–727. doi: 10.2807/ese.13.26.18916-en. PubMed DOI

Weaver S.C., Reisen W.K. Present and future arboviral threats. Antivir. Res. 2010;85:328–345. doi: 10.1016/j.antiviral.2009.10.008. PubMed DOI PMC

Gubler D.J. Human arbovirus infections worldwide. Ann. N. Y. Acad. Sci. 2001;951:13–24. doi: 10.1111/j.1749-6632.2001.tb02681.x. PubMed DOI

Randolph S.E. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda’s enduring paradigm. Ticks Tick-Borne Dis. 2011;2:179–182. doi: 10.1016/j.ttbdis.2011.07.004. PubMed DOI

Matser A., Hartemink N., Heesterbeek H., Galvani A., Davis S. Elasticity analysis in epidemiology: An application to tick-borne infections. Ecol. Lett. 2009;12:1298–1305. doi: 10.1111/j.1461-0248.2009.01378.x. PubMed DOI

Haydon D.T., Cleaveland S., Taylor L.H., Laurenson M.K. Identifying reservoirs of infection: A conceptual and practical challenge. Emerg. Infect. Dis. 2002;8:1468–1473. doi: 10.3201/eid0812.010317. PubMed DOI PMC

Taba P., Schmutzhard E., Forsberg P., Lutsar I., Ljøstad U., Mygland Å., Levchenko I., Strle F., Steiner I. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 2017;24:1214-e61. doi: 10.1111/ene.13356. PubMed DOI

Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC

Valarcher J.F., Hägglund S., Juremalm M., Blomqvist G., Renström L., Zohari S., Leijon M., Chirico J. Tick-borne encephalitis. Rev. Sci. Tech. 2015;34:453–466. doi: 10.20506/rst.34.2.2371. PubMed DOI

Deviatkin A.A., Karganova G.G., Vakulenko Y.A., Lukashev A.N. TBEV Subtyping in Terms of Genetic Distance. Viruses. 2020;12:1240. doi: 10.3390/v12111240. PubMed DOI PMC

Kutschera L., Wolfinger M.T. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol. 2022;8:veac051. doi: 10.1093/ve/veac051. PubMed DOI PMC

Kunze M., Banović P., Bogovič P., Briciu V., Čivljak R., Dobler G., Hristea A., Kerlik J., Kuivanen S., Kynčl J., et al. Recommendations to Improve Tick-Borne Encephalitis Surveillance and Vaccine Uptake in Europe. Microorganisms. 2022;10:1283. doi: 10.3390/microorganisms10071283. PubMed DOI PMC

Lundkvist K., Vene S., Golovljova I., Mavtchoutko V., Forsgren M., Kalnina V., Plyusnin A. Characterization of tick-borne encephalitis virus from Latvia: Evidence for co-circulation of three distinct subtypes. J. Med. Virol. 2001;65:730–735. doi: 10.1002/jmv.2097. PubMed DOI

Kubinski M., Beicht J., Gerlach T., Volz A., Sutter G., Rimmelzwaan G.F. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines. 2020;8:451. doi: 10.3390/vaccines8030451. PubMed DOI PMC

Fafangel M., Cassini A., Colzani E., Klavs I., Grgič Vitek M., Učakar V., Muehlen M., Vudrag M., Kraigher A. Estimating the annual burden of tick-borne encephalitis to inform vaccination policy, Slovenia, 2009 to 2013. Eurosurveillance. 2017;22:pii=30509. doi: 10.2807/1560-7917.ES.2017.22.16.30509. PubMed DOI PMC

Slunge D., Boman A., Studahl M. Burden of Tick-Borne Encephalitis, Sweden. Emerg. Infect. Dis. 2022;28:314–322. doi: 10.3201/eid2802.204324. PubMed DOI PMC

Šmit R., Postma M.J. Review of tick-borne encephalitis and vaccines: Clinical and economical aspects. Expert Rev. Vaccines. 2015;14:737–747. doi: 10.1586/14760584.2015.985661. PubMed DOI

Steffen R., Erber W., Schmitt H.J. Can the booster interval for the tick-borne encephalitis (TBE) vaccine ‘FSME-IMMUN’ be prolonged? A systematic review. Ticks Tick-Borne Dis. 2021;12:101779. doi: 10.1016/j.ttbdis.2021.101779. PubMed DOI

Zimna M., Brzuska G., Salát J., Svoboda P., Baranska K., Szewczyk B., Růžek D., Krol E. Functional characterization and immunogenicity of a novel vaccine candidate against tick-borne encephalitis virus based on Leishmania-derived virus-like particles. Antivir. Res. 2022;26:105511. doi: 10.1016/j.antiviral.2022.105511. PubMed DOI

de Graaf J.A., Reimerink J.H., Voorn G.P., Bij de Vaate E.A., de Vries A., Rockx B., Schuitemaker A., Hira V. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Eurosurveillance. 2016;21:30318. doi: 10.2807/1560-7917.ES.2016.21.33.30318. PubMed DOI PMC

Lernout T., Van Esbroeck M. Surveillance Épidémiologique de L’encéphalite à Tiques TBEV—2018. Sciensano, 2018 (Disponible en Ligne à L’adresse Suivante. [(accessed on 15 March 2023)]. Available online: https://epidemio.wiv-isp.be/ID/diseases/Documents/Reports%202018/TBEV_2018_fr.pdf.

Stoefs A., Heyndrickx L., De Winter J., Coeckelbergh E., Willekens B., Alonso-Jiménez A., Tuttino A.-M., Geerts Y., Ariën K.K., Van Esbroeck M. Autochthonous Cases of Tick-Borne Encephalitis, Belgium, 2020. Emerg. Infect. Dis. 2021;27:2179–2182. doi: 10.3201/eid2708.211175. PubMed DOI PMC

Mansbridge C.T., Osborne J., Holding M., Dryden M., Aram M., Brown K., Sutton J. Autochthonous tick-borne encephalitis in the United Kingdom: A second probable human case and local eco-epidemiological findings. Ticks Tick Borne Dis. 2022;13:101853. doi: 10.1016/j.ttbdis.2021.101853. PubMed DOI

ECDC Tick-Borne Encephalitis—Annual Epidemiological Report for 2020. Surveillance Report, 28 Oct 2022, Annual Epidemiological Report on Communicable Diseases in Europe. European Centre for Disease Prevention and Control, Stockholm, Sweden. [(accessed on 15 March 2023)];2022 Available online: https://www.ecdc.europa.eu/en/publications-data/tick-borne-encephalitis-annual-epidemiological-report-2020.

Šmit R., Postma M.J. The Burden of Tick-Borne Encephalitis in Disability-Adjusted Life Years (DALYs) for Slovenia. PLoS ONE. 2015;10:e0144988. doi: 10.1371/journal.pone.0144988. PubMed DOI PMC

Mailles A., Argemi X., Biron C., Fillatre P., De Broucker T., Buzelé R., Gagneux-Brunon A., Gueit I., Henry C., Patrat-Delon S., et al. Changing profile of encephalitis: Results of a 4-year study in France. Infect Dis. Now. 2022;52:1–6. doi: 10.1016/j.idnow.2021.11.007. PubMed DOI

WHO . Chapter 6—Vaccine-Preventable Diseases and Vaccines. International Travel and Health, WHO; Geneva, Switzerland: 2019. 53p.

Sumilo D., Asokliene L., Bormane A., Vasilenko V., Golovljova I., Randolph S.E. Climate Change Cannot Explain the Upsurge of Tick-Borne Encephalitis in the Baltics. PLoS ONE. 2007;2:e500. doi: 10.1371/journal.pone.0000500. PubMed DOI PMC

Cox R., Sánchez J., Revie C.W. Multi-Criteria Decision Analysis Tools for Prioritising Emerging or Re-Emerging Infectious Diseases Associated with Climate Change in Canada. PLoS ONE. 2013;8:e68338. doi: 10.1371/journal.pone.0068338. PubMed DOI PMC

ECDC Best Practices in Ranking Emerging Infectious Disease Threats. A Literature Review. European Centre for Disease Prevention and Control. [(accessed on 1 December 2022)];2015 Available online: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/emerging-infectious-disease-threats-best-practices-ranking.pdf.

Bianchini J., Humblet M.F., Cargnel M., Van der Stede Y., Koenen F., de Clercq K., Saegerman C. Prioritization of livestock transboundary diseases in Belgium using a multicriteria decision analysis tool based on drivers of emergence. Transbound. Emerg. Dis. 2020;67:344–376. doi: 10.1111/tbed.13356. PubMed DOI PMC

Saegerman C., Bianchini J., Snoeck C.J., Moreno A., Chiapponi C., Zohari S., Ducatez M.F. First expert elicitation of knowledge on drivers of emergence of influenza D in Europe. Transbound. Emerg. Dis. 2021;68:3349–3359. doi: 10.1111/tbed.13938. PubMed DOI

Saegerman C., Evrard J., Houtain J.-Y., Alzieu J.-P., Bianchini J., Mpouam S.E., Schares G., Liénard E., Jacquiet P., Villa L., et al. First Expert Elicitation of Knowledge on Drivers of Emergence of Bovine Besnoitiosis in Europe. Pathogens. 2022;11:753. doi: 10.3390/pathogens11070753. PubMed DOI PMC

Gore S.M. Biostatistics and the Medical Research Council. MRC News. 1987;35:19–20.

Vanwambeke S.O., Sumilo D., Bormane A., Lambin E.F., Randolph S.E. Landscape predictors of tick-borne encephalitis in Latvia: Land cover, land use, and land ownership. Vector Borne Zoonotic Dis. 2010;10:497–506. doi: 10.1089/vbz.2009.0116. PubMed DOI

Petit K., Dunoyer C., Fischer C., Hars J., Baubet E., Ramón López-Olvera J., Rossi S., Collin E., Le Potier M.-F., Belloc C., et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 2020;67:1164–1176. doi: 10.1111/tbed.13447. PubMed DOI

Asaaga F.A., Rahman M., Kalegowda S.D., Mathapati J., Savanur I., Srinivas P.N., Seshadri T., Narayanswamy D., Kiran S.K., Oommen M.A., et al. ‘None of my ancestors ever discussed this disease before!’ How disease information shapes adaptive capacity of marginalised rural populations in India. PLoS Negl. Trop. Dis. 2021;15:e0009265. doi: 10.1371/journal.pntd.0009265. PubMed DOI PMC

Colonna A., Durham C., Meunier-Goddik L. Factors affecting consumers’ preferences for and purchasing decisions regarding pasteurized and raw milk specialty cheeses. J. Dairy Sci. 2011;94:5217–5226. doi: 10.3168/jds.2011-4456. PubMed DOI

Lengard Almli V., Naes T., Enderli G., Sulmont-Rossé C., Issanchou S., Hersleth M. Consumers’ acceptance of innovations in traditional cheese. A comparative study in France and Norway. Appetite. 2011;57:110–120. doi: 10.1016/j.appet.2011.04.009. PubMed DOI

Bachmann H.P., Fröhlich M.T., Bisig W. Raw Milk and Raw-Milk Products Affect our Health [English/French abstract on website, Rohmilch und Rohmilchprodukte beeinflussen unsere Gesundheit] Swiss Agr. Res. 2020;11:124–130. doi: 10.34776/afs11-124. DOI

Mutius E., Schmid S., The PASTURE Study Group The PASTURE project: EU support for the improvement of knowledge about risk factors and preventive factors for atopy in Europe. Allergy. 2006;61:407–413. doi: 10.1111/j.1398-9995.2006.01009.x. PubMed DOI

Nicolau M., Esquivel L., Schmidt I., Fedato C., Leimann L., Samoggia A., Monticone F., Prete D.M., Ghelfi R., Saviolidis M.N., et al. Food consumption behaviours in Europe. Mapping drivers, trends and pathways towards sustainability. VALUMICS Proj. 2021 doi: 10.5281/zenodo.5011691. “Understanding Food Value Chains and Network Dynamics”, funded by European Union’s Horizon 2020 research and innovation programme GA No 727243. Deliverable: D6.1, CSCP, Germany, 87 pages. DOI

Zeimes C.B., Olsson G.E., Hjertqvist M., Vanwambeke S.O. Shaping zoonosis risk: Landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasites Vectors. 2014;7:370. doi: 10.1186/1756-3305-7-370. PubMed DOI PMC

Uusitalo R., Siljander M., Lindén A., Sormunen J.J., Aalto J., Hendrickx G., Kallio E., Vajda A., Gregow H., Henttonen H., et al. Predicting habitat suitability for Ixodes ricinus and Ixodes persulcatus ticks in Finland. Parasit Vectors. 2022;15:310. doi: 10.1186/s13071-022-05410-8. PubMed DOI PMC

Requena-García F., Cabrero-Sañudo F., Olmeda-García S., González J., Valcárcel F. Influence of environmental temperature and humidity on questing ticks in central Spain. Exp. Appl. Acarol. 2017;71:277–290. doi: 10.1007/s10493-017-0117-y. PubMed DOI

Stafford K.C. Survival of immature Ixodes scapularis (Acari, Ixodidae) at different relative humidities. J. Med. Entomol. 1994;31:310–314. doi: 10.1093/jmedent/31.2.310. PubMed DOI

Vail S.G., Smith G. Vertical movement and posture of blacklegged tick (Acari: Ixodidae) nymphs as a function of temperature and relative humidity in laboratory experiments. J. Med. Entomol. 2002;39:842–846. doi: 10.1603/0022-2585-39.6.842. PubMed DOI

Ogden N.H., Lindsay L.R., Beauchamp G., Charron D., Maarouf A., O’Callaghan C.J., Waltner-Toews D., Barker I.K. Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J. Med. Entomol. 2004;41:622–633. doi: 10.1603/0022-2585-41.4.622. PubMed DOI

Gray J.S. The ecology of ticks transmitting Lyme borreliosis. Exp. Appl. Acarol. 1998;22:249–258. doi: 10.1023/A:1006070416135. DOI

Kahl O., Gray J.S. The biology of Ixodes ricinus with emphasis on its ecology. Ticks Tick Borne Dis. 2023;14:102114. doi: 10.1016/j.ttbdis.2022.102114. PubMed DOI

Tabachnick W.J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 2010;213:946–954. doi: 10.1242/jeb.037564. PubMed DOI

Haider N., Kirkeby C., Kristensen B., Kjær L.J., Sørensen J.H., Bødker R. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate. Sci. Rep. 2017;7:8175. doi: 10.1038/s41598-017-08514-9. PubMed DOI PMC

Borde J.P., Glaser R., Braun K., Riach N., Hologa R., Kaier K., Chitimia-Dobler L., Dobler G. Decoding the Geography of Natural TBEV Microfoci in Germany: A Geostatistical Approach Based on Land-Use Patterns and Climatological Conditions. Int. J. Environ. Res. Public Health. 2022;19:11830. doi: 10.3390/ijerph191811830. PubMed DOI PMC

Nah K., Bede-Fazekas Á., János Trájer A., Wu J. The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect. Dis. 2020;20:34. doi: 10.1186/s12879-019-4734-4. PubMed DOI PMC

Chávez-Larrea M.A., Cholota-Iza C., Medina-Naranjo V., Yugcha-Díaz M., Ron-Román J., Martin-Solano S., Gómez-Mendoza G., Saegerman C., Reyna-Bello A. Detection of Babesia spp. in High Altitude Cattle in Ecuador, Possible Evidence of the Adaptation of Vectors and Diseases to New Climatic Conditions. Pathogens. 2021;10:1593. doi: 10.3390/pathogens10121593. PubMed DOI PMC

Cunze S., Glock G., Kochmann J., Klimpel S. Ticks on the move-climate change- induced range shifts of three tick species in Europe: Current and future habitat suitability for Ixodes ricinus in comparison with Dermacentor reticulatus and Dermacentor marginatus. Parasitol Res. 2013;121:2241–2252. doi: 10.1007/s00436-022-07556-x. PubMed DOI PMC

Randolph S.E., Asokliene L., Avsic-Zupanc T., Bormane A., Burri C., Gern L., Golovljova I., Hubalek Z., Knap N., Kondrusik M., et al. Variable spikes in tick-borne encephalitis incidence in 2006 independent of variable tick abundance but related to weather. Parasit Vectors. 2008;1:44. doi: 10.1186/1756-3305-1-44. PubMed DOI PMC

Voyiatzaki C., Papailia S.I., Venetikou M.S., Pouris J., Tsoumani M.E., Papageorgiou E.G. Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe-How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. Int. J. Environ. Res. Public Health. 2022;19:6516. doi: 10.3390/ijerph19116516. PubMed DOI PMC

Zannou O.M., Ouedraogo A.S., Biguezoton A.S., Lempereur L., Yao K.P., Abatih E., Zoungrana S., Lenaert M., Toe P., Farougou S., et al. First digital characterization of the transhumance corridors through Benin used by cattle herds from Burkina Faso and associated risk scoring regarding the invasion of Rhipicephalus (Boophilus) microplus. Transbound. Emerg. Dis. 2021;68:2079–2093. doi: 10.1111/tbed.13855. PubMed DOI

Zannou O.M., Ouedraogo A.S., Biguezoton A.S., Abatih E., Coral-Almeida M., Farougou S., Yao K.P., Lempereur L., Saegerman C. Models for studying the distribution of ticks and tick-borne diseases in animals: A systematic review and a meta-Analysis with a Focus on Africa. Pathogens. 2021;10:893. doi: 10.3390/pathogens10070893. PubMed DOI PMC

Lippi C.A., Ryan S.J., White A.L., Gaff H.D., Carlson C.J. Trends and opportunities in tick-borne disease geography. J. Med. Entomol. 2021;58:2021–2029. doi: 10.1093/jme/tjab086. PubMed DOI PMC

Tischhauser W., Gründer J. Prévention Contre les Tiques: Nouvelle Application Mobile. [(accessed on 15 March 2023)];Bulletin OFSP. 2015 12:207. Available online: www.bag.admin.ch/dam/bag/fr/dokumente/mt/infektionskrankheiten/fsme/zecken-app.pdf.download.pdf/zeckenapp-f.pdf.

Süss J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine. 2003;21((Suppl. 1)):S19–S35. doi: 10.1016/S0264-410X(02)00812-5. PubMed DOI

Bakhvalova V.N., Dobrotvorsky A.K., Panov V.V., Matveeva V.A., Tkachev S.E., Morozova O.V. Natural tick-borne encephalitis virus infection among wild small mammals in the southeastern part of western Siberia, Russia. Vector Borne Zoonotic Dis. 2006;6:32–41. doi: 10.1089/vbz.2006.6.32. PubMed DOI

Bakhvalova V.N., Potapova O.F., Panov V.V., Morozova O.V. Vertical transmission of tick-borne encephalitis virus between generations of adapted reservoir small rodents. Virus Res. 2009;140:172–178. doi: 10.1016/j.virusres.2008.12.001. PubMed DOI

Tonteri E., Kipar A., Voutilainen L., Vene S., Vaheri A., Vapalahti O., Lundkvist A. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus) PLoS ONE. 2013;8:e81214. doi: 10.1371/journal.pone.0081214. PubMed DOI PMC

Tonteri E., Jaaskelainen A.E., Tikkakoski T., Voutilainen L., Niemimaa J., Henttonen H., Vaheri A., Vapalahti O. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008–2009. Emerg. Infect. Dis. 2011;17:72–75. doi: 10.3201/eid1701.100051. PubMed DOI PMC

Radda A. Die Zeckenenzephalitis in Europa. Z. Fuer Angew. Zool. 1973;60:409–461.

Hinaidy H.K. Die Parasitenfauna des Rotfuchses, Vulpes vulpes (L.), in Österreich. Zent. Vet. B. 1971;18:21–32. doi: 10.1111/j.1439-0450.1971.tb00340.x. PubMed DOI

Jemeršić L., Dežđek D., Brnić D., Prpić J., Janicki Z., Keros T., Roić B., Slavica A., Terzić S., Konjević D., et al. Detection and genetic characterization of tick-borne encephalitis virus (TBEV) derived from ticks removed from red foxes (Vulpes vulpes) and isolated from spleen samples of red deer (Cervus elaphus) in Croatia. Ticks Tick Borne Dis. 2014;5:7–13. doi: 10.1016/j.ttbdis.2012.11.016. PubMed DOI

Da Rold G., Obber F., Monne I., Milani A., Ravagnan S., Toniolo F., Sgubin S., Zamperin G., Foiani G., Vascellari M., et al. Clinical Tick-Borne Encephalitis in a Roe Deer (Capreolus capreolus L.) Viruses. 2022;14:300. doi: 10.3390/v14020300. PubMed DOI PMC

Fouché N., Oesch S., Ziegler U., Gerber V. Clinical presentation and laboratory diagnostic work-up of a horse with tick-borne encephalitis in Switzerland. Viruses. 2021;13:1474. doi: 10.3390/v13081474. PubMed DOI PMC

Eisen L., Stafford K.C. Barriers to Effective Tick Management and Tick-Bite Prevention in the United States (Acari: Ixodidae) J. Med. Entomol. 2021;58:1588–1600. doi: 10.1093/jme/tjaa079. PubMed DOI PMC

Wilhelmsson P., Jaenson T.G.T., Olsen B., Waldenström J., Lindgren P.E. Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: A seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasit Vectors. 2020;13:607. doi: 10.1186/s13071-020-04493-5. PubMed DOI PMC

Deinet S., Ieronymidou C., McRae L., Burfield I.J., Foppen R.P., Collen B., Böhm M. Final Report to Rewilding Europe by ZSL, BirdLife International and the European Bird Census Council. ZSL; London, UK: 2013. Wildlife comeback in Europe: The recovery of selected mammal and bird species.

Ledger S.E.H., Rutherford C.A., Benham C., Burfield I.J., Deinet S., Eaton M., Freeman R., Gray C., Herrando S., Puleston H., et al. Final Report to Rewilding Europe by the Zoological Society of London, BirdLife International and the European Bird Census Council. ZSL; London, UK: 2022. Wildlife Comeback in Europe: Opportunities and challenges for species recovery.

Hofmeester T.R., Sprong H., Jansen P.A., Prins H.H.T., van Wieren S.E. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasites Vectors. 2017;10:433. doi: 10.1186/s13071-017-2370-7. PubMed DOI PMC

Knap N., Avšič-Županc T. Correlation of TBE incidence with red deer and roe deer abundance in Slovenia. PLoS ONE. 2013;8:e66380. doi: 10.1371/journal.pone.0066380. PubMed DOI PMC

Haemig P.D., Lithner S., Sjöstedt de Luna S., Lundqvist A., Waldenström J., Hansson L., Arneborn M., Olsen B. Red fox tick-borne encephalitis (TBE) in humans: Can predators influence public health? Scand. J. Infect. Dis. 2008;40:527–532. doi: 10.1080/00365540701805446. PubMed DOI

Jaenson T.G.T., Hjertqvist M., Bergström T., Lundkvist A. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit Vectors. 2012;5:184. doi: 10.1186/1756-3305-5-184. PubMed DOI PMC

Jaenson T.G.T., Petersson E.H., Jaenson D.G.E., Kindberg J., Pettersson J.H., Hjertqvist M., Medlock J.M., Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasites Vectors. 2018;11:477. doi: 10.1186/s13071-018-3057-4. PubMed DOI PMC

Kiffner C., Zucchini W., Schomaker P., Vor T., Hagedorn P., Niedrig M., Rühe F. Determinants of tick-borne encephalitis in counties of southern Germany, 2001–2008. Int. J. Health Geogr. 2010;9:42. doi: 10.1186/1476-072X-9-42. PubMed DOI PMC

Johnsen K., Boonstra R., Boutin S., Devineau O., Krebs C.J., Andreassen H.P. Surviving winter: Food, but not habitat structure, prevents crashes in cyclic vole populations. Ecol. Evol. 2017;7:115–124. doi: 10.1002/ece3.2635. PubMed DOI PMC

Heyman P., Cochez C., Simons L., Smets L., Saegerman C. Breeding success of barn owls reflects risk of hantavirus infection. Vet. Rec. 2013;172:290. doi: 10.1136/vr.101212. PubMed DOI

Dumpis U., Crook D., Oksi J. Tick-borne encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI

Ličková M., Fumačová Havlíková S., Sláviková M., Mirko Slovák L., Drexler J.F., Klempa B. Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis. 2020;11:101414. doi: 10.1016/j.ttbdis.2020.101414. PubMed DOI

Chitimia-Dobler L., Lemhöfer G., Król N., Bestehorn M., Dobler G., Pfeffer M. Repeated isolation of tick-borne encephalitis virus from adult Dermacentor reticulatus ticks in an endemic area in Germany. Parasit Vectors. 2019;12:90. doi: 10.1186/s13071-019-3346-6. PubMed DOI PMC

Claerebout E., Losson B., Cochez C., Casaert S., Dalemans A.-C., De Cat A., Madder M., Saegerman C., Heyman P., Lempereur L. Ticks and associated pathogens collected from dogs and cats in Belgium. Parasit Vectors. 2013;6:183. doi: 10.1186/1756-3305-6-183. PubMed DOI PMC

Springer A., Lindau A., Probst J., Drehmann M., Fachet K., Thoma D., Vineer H.R., Noll M., Dobler G., Mackenstedt U., et al. Update and prognosis of Dermacentor distribution in Germany: Nationwide occurrence of Dermacentor reticulatus. Front. Vet. Sci. 2022;9:1044597. doi: 10.3389/fvets.2022.1044597. PubMed DOI PMC

Kooyman F.N.J., Zweerus H., Nijsse E.R., Jongejan F., Wagenaar J.A., Broens E.M. Monitoring of ticks and their pathogens from companion animals obtained by the "tekenscanner" application in The Netherlands. Parasitol Res. 2022;121:1887–1893. doi: 10.1007/s00436-022-07518-3. PubMed DOI PMC

Kiewra D., Szymanowski M., Czułowska A., Kolanek A. The local-scale expansion of Dermacentor reticulatus ticks in Lower Silesia, SW Poland. Ticks Tick Borne Dis. 2021;12:101599. doi: 10.1016/j.ttbdis.2020.101599. PubMed DOI

Drehmann M., Springer A., Lindau A., Fachet K., Mai S., Thoma D., Schneider C.R., Chitimia-Dobler L., Bröker M., Dobler G., et al. The Spatial Distribution of Dermacentor Ticks (Ixodidae) in Germany-Evidence of a Continuing Spread of Dermacentor reticulatus. Front. Vet. Sci. 2020;7:578220. doi: 10.3389/fvets.2020.578220. PubMed DOI PMC

Mierzejewska E.J., Estrada-Peña A., Alsarraf M., Kowalec M., Bajer A. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 2016;7:94–106. doi: 10.1016/j.ttbdis.2015.09.003. PubMed DOI

Földvári G., Široký P., Szekeres S., Majoros G., Sprong H. Dermacentor reticulatus: A vector on the rise. Parasit Vectors. 2016;9:314. doi: 10.1186/s13071-016-1599-x. PubMed DOI PMC

ECDC-EFSA Tick Maps [Internet]. Stockholm: ECDC. 2022. [(accessed on 15 March 2023)]. Available online: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps.

Estrada-Peña A., de la Fuente J. Species interactions in occurrence data for a community of tick-transmitted pathogens. Sci. Data. 2016;3:160056. doi: 10.1038/sdata.2016.56. PubMed DOI PMC

Morgan M.G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl. Acad. Sci. USA. 2014;111:7176–7184. doi: 10.1073/pnas.1319946111. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace