SWIP mediates retromer-independent membrane recruitment of the WASH complex
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36995008
DOI
10.1111/tra.12884
Knihovny.cz E-zdroje
- Klíčová slova
- SWIP, VPS35, WASH complex, endosome, phosphatidylinositol-3,5-bisphosphate, retromer,
- MeSH
- aktiny * metabolismus MeSH
- endozomy metabolismus MeSH
- intracelulární signální peptidy a proteiny * metabolismus MeSH
- lidé MeSH
- mikrofilamentové proteiny metabolismus MeSH
- transport proteinů MeSH
- vezikulární transportní proteiny * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny * MeSH
- intracelulární signální peptidy a proteiny * MeSH
- mikrofilamentové proteiny MeSH
- vezikulární transportní proteiny * MeSH
The pentameric WASH complex facilitates endosomal protein sorting by activating Arp2/3, which in turn leads to the formation of F-actin patches specifically on the endosomal surface. It is generally accepted that WASH complex attaches to the endosomal membrane via the interaction of its subunit FAM21 with the retromer subunit VPS35. However, we observe the WASH complex and F-actin present on endosomes even in the absence of VPS35. We show that the WASH complex binds to the endosomal surface in both a retromer-dependent and a retromer-independent manner. The retromer-independent membrane anchor is directly mediated by the subunit SWIP. Furthermore, SWIP can interact with a number of phosphoinositide species. Of those, our data suggest that the interaction with phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2 ) is crucial to the endosomal binding of SWIP. Overall, this study reveals a new role of the WASH complex subunit SWIP and highlights the WASH complex as an independent, self-sufficient trafficking regulator.
Zobrazit více v PubMed
Durrbach A, Louvard D, Coudrier E. Actin filaments facilitate two steps of endocytosis. J Cell Sci. 1996;109:457-465.
Nakagawa H, Miyamoto S. Actin-filaments localize on the sorting endosomes of 3Y1 fibroblastic cells. Cell Struct Funct. 1998;23:283-290. doi:10.1247/csf.23.283
Puthenveedu MA, Lauffer B, Temkin P, et al. Sequence-dependent sorting of recycling proteins by Actin-stabilized endosomal microdomains. Cell. 2010;143:761-773. doi:10.1016/j.cell.2010.10.003
Simonetti B, Cullen PJ. Actin-dependent endosomal receptor recycling. Curr Opin Cell Biol. 2018;56:22-33. doi:10.1016/j.ceb.2018.08.006
Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell. 2009;17:712-723. doi:10.1016/j.devcel.2009.09.010
Gomez TS, Gorman JA, de Narvajas AA-M, Koenig AO, Billadeau DD. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol Biol Cell. 2012;23:3215-3228. doi:10.1091/mbc.E12-02-0101
Linardopoulou EV, Parghi SS, Friedman C, Osborn GE, Parkhurst SM, Trask BJ. Human subtelomeric WASH genes encode a new subclass of the WASP family. PLoS Genet. 2007;3:e237. doi:10.1371/journal.pgen.0030237
Gomez TS, Billadeau DD. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell. 2009;17:699-711. doi:10.1016/j.devcel.2009.09.009
Zech T, Calaminus SDJ, Caswell P, et al. The Arp2/3 activator WASH regulates α5β1-integrin-mediated invasive migration. J Cell Sci. 2011;124:3753-3759. doi:10.1242/jcs.080986
Piotrowski JT, Gomez TS, Schoon RA, Mangalam AK, Billadeau DD. WASH knockout T cells demonstrate defective receptor trafficking, proliferation, and effector function. Mol Cell Biol. 2013;33:958-973. doi:10.1128/MCB.01288-12
Graham DB, Osborne DG, Piotrowski JT, et al. Dendritic cells utilize the evolutionarily conserved WASH and retromer complexes to promote MHCII recycling and helper T cell priming. PloS One. 2014;9:e98606. doi:10.1371/journal.pone.0098606
Clemen CS, Tangavelou K, Strucksberg K-H, et al. Strumpellin is a novel valosin-containing protein binding partner linking hereditary spastic paraplegia to protein aggregation diseases. Brain J Neurol. 2010;133:2920-2941. doi:10.1093/brain/awq222
Ropers F, Derivery E, Hu H, et al. Identification of a novel candidate gene for non-syndromic autosomal recessive intellectual disability: the WASH complex member SWIP. Hum Mol Genet. 2011;20:2585-2590. doi:10.1093/hmg/ddr158
Harbour ME, Breusegem SY, Seaman MNJ. Recruitment of the endosomal WASH complex is mediated by the extended “tail” of Fam21 binding to the retromer protein Vps35. Biochem J. 2012;442:209-220. doi:10.1042/BJ20111761
Jia D, Gomez TS, Billadeau DD, Rosen MK. Multiple repeat elements within the FAM21 tail link the WASH Actin regulatory complex to the retromer. Mol Biol Cell. 2012;23:2352-2361. doi:10.1091/mbc.E11-12-1059
Helfer E, Harbour ME, Henriot V, et al. Endosomal recruitment of the WASH complex: active sequences and mutations impairing interaction with the retromer. Biol Cell Auspices Eur Cell Biol Organ. 2013;105:191-207. doi:10.1111/boc.201200038
Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89:168-175. doi:10.1016/j.ajhg.2011.06.008
Zavodszky E, Seaman MNJ, Moreau K, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828. doi:10.1038/ncomms4828
McGough IJ, Steinberg F, Jia D, et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol. 2014;24:1670-1676. doi:10.1016/j.cub.2014.06.024
McNally KE, Faulkner R, Steinberg F, et al. Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol. 2017;19:1214-1225. doi:10.1038/ncb3610
Freeman CL, Hesketh G, Seaman MNJ. RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci. 2014;127:2053-2070. doi:10.1242/jcs.144659
Ryder PV, Vistein R, Gokhale A, Seaman MN, Puthenveedu MA, Faundez V. The WASH complex, an endosomal Arp2/3 activator, interacts with the Hermansky-Pudlak syndrome complex BLOC-1 and its cargo phosphatidylinositol-4-kinase type IIα. Mol Biol Cell. 2013;24:2269-2284. doi:10.1091/mbc.E13-02-0088
Visweshwaran SP, Thomason PA, Guerois R, et al. The trimeric coiled-coil HSBP1 protein promotes WASH complex assembly at centrosomes. EMBO J. 2018;37:e97706. doi:10.15252/embj.201797706
MacDonald E, Brown L, Selvais A, et al. HRS-WASH axis governs Actin-mediated endosomal recycling and cell invasion. J Cell Biol. 2018;217:2549-2564. doi:10.1083/jcb.201710051
Phillips-Krawczak CA, Singla A, Starokadomskyy P, et al. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A. Mol Biol Cell. 2015;26:91-103. doi:10.1091/mbc.E14-06-1073
Jia D, Gomez TS, Metlagel Z, et al. Wash and WAVE Actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes. Proc Natl Acad Sci. 2010;107:10442-10447. doi:10.1073/pnas.0913293107
Seaman MNJ, Gautreau A, Billadeau DD. Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol. 2013;23:522-528. doi:10.1016/j.tcb.2013.04.010
Steinberg F, Gallon M, Winfield M, et al. A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol. 2013;15:461-471. doi:10.1038/ncb2721
Zhang Y, Zolov SN, Chow CY, et al. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci. 2007;104:17518-17523. doi:10.1073/pnas.0702275104
Tyrrell BJ, Woodham EF, Spence HJ, Strathdee D, Insall RH, Machesky LM. Loss of strumpellin in the melanocytic lineage impairs the WASH complex but does not affect coat colour. Pigment Cell Melanoma Res. 2016;29:559-571. doi:10.1111/pcmr.12506
Cui Y, Yang Z, Flores-Rodriguez N, et al. Formation of retromer transport carriers is disrupted by the Parkinson disease-linked Vps35 D620N variant. Traffic. 2021;22:123-136. doi:10.1111/tra.12779
Courtland JL, Bradshaw TW, Waitt G, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. eLife. 2021;10:e61590. doi:10.7554/eLife.61590
Abekhoukh S, Bardoni B. CYFIP family proteins between autism and intellectual disability: links with fragile X syndrome. Front Cell Neurosci. 2014;8:81. doi:10.3389/fncel.2014.00081
Kurisu S, Takenawa T. The WASP and WAVE family proteins. Genome Biol. 2009;10:226. doi:10.1186/gb-2009-10-6-226
Schaks M, Singh SP, Kage F, et al. Distinct interaction sites of Rac GTPase with WAVE regulatory complex have non-redundant functions in vivo. Curr Biol. 2018;28:3674-3684.e6. doi:10.1016/j.cub.2018.10.002
Tsujita K, Itoh T, Kondo A, et al. Proteome of acidic phospholipid-binding proteins. J Biol Chem. 2010;285:6781-6789. doi:10.1074/jbc.M109.057018
Park L, Thomason PA, Zech T, et al. Cyclical action of the WASH complex: FAM21 and capping protein drive WASH recycling, not initial recruitment. Dev Cell. 2013;24:169-181. doi:10.1016/j.devcel.2012.12.014
Giridharan SSP, Luo G, Rivero-Rios P, et al. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate retriever-mediated recycling on endosomes. eLife. 2022;11:e69709. doi:10.7554/eLife.69709
Boal F, Mansour R, Gayral M, et al. TOM1 is a PI5P effector involved in the regulation of endosomal maturation. J Cell Sci. 2015;128:815-827. doi:10.1242/jcs.166314
Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P. Endosome-ER contacts control Actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell. 2016;166:408-423. doi:10.1016/j.cell.2016.06.037
Feng Z, Yu C. PI(3,4)P2-mediated membrane tubulation promotes integrin trafficking and invasive cell migration. Proc Natl Acad Sci. 2021;118:e2017645118. doi:10.1073/pnas.2017645118
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281-2308. doi:10.1038/nprot.2013.143
Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783-784. doi:10.1038/nmeth.3047
The retromer and retriever systems are conserved and differentially expanded in parabasalids