mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED): rationale and study protocol for a pragmatic randomised controlled trial
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu protokol klinické studie, časopisecké články, práce podpořená grantem
PubMed
36997936
PubMed Central
PMC10064755
DOI
10.1186/s12889-023-15513-1
PII: 10.1186/s12889-023-15513-1
Knihovny.cz E-zdroje
- Klíčová slova
- Active control, Ecological Momentary Assessment (EMA), Fitbit, Just-in-time adaptive intervention (JITAI), Micro-randomisation, Phone counselling, Text messages, Primary care, Self-monitoring, Step-count,
- MeSH
- cvičení MeSH
- diabetes mellitus 2. typu * prevence a kontrola MeSH
- lidé MeSH
- multicentrické studie jako téma MeSH
- pragmatické klinické studie jako téma MeSH
- praktické lékařství * MeSH
- prediabetes * terapie MeSH
- randomizované kontrolované studie jako téma MeSH
- sedavý životní styl MeSH
- telemedicína * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- protokol klinické studie MeSH
BACKGROUND: The growing number of patients with type 2 diabetes and prediabetes is a major public health concern. Physical activity is a cornerstone of diabetes management and may prevent its onset in prediabetes patients. Despite this, many patients with (pre)diabetes remain physically inactive. Primary care physicians are well-situated to deliver interventions to increase their patients' physical activity levels. However, effective and sustainable physical activity interventions for (pre)diabetes patients that can be translated into routine primary care are lacking. METHODS: We describe the rationale and protocol for a 12-month pragmatic, multicentre, randomised, controlled trial assessing the effectiveness of an mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED). Twenty-one general practices will recruit 340 patients with (pre)diabetes during routine health check-ups. Patients allocated to the active control arm will receive a Fitbit activity tracker to self-monitor their daily steps and try to achieve the recommended step goal. Patients allocated to the intervention arm will additionally receive the mHealth intervention, including the delivery of several text messages per week, with some of them delivered just in time, based on data continuously collected by the Fitbit tracker. The trial consists of two phases, each lasting six months: the lead-in phase, when the mHealth intervention will be supported with human phone counselling, and the maintenance phase, when the intervention will be fully automated. The primary outcome, average ambulatory activity (steps/day) measured by a wrist-worn accelerometer, will be assessed at the end of the maintenance phase at 12 months. DISCUSSION: The trial has several strengths, such as the choice of active control to isolate the net effect of the intervention beyond simple self-monitoring with an activity tracker, broad eligibility criteria allowing for the inclusion of patients without a smartphone, procedures to minimise selection bias, and involvement of a relatively large number of general practices. These design choices contribute to the trial's pragmatic character and ensure that the intervention, if effective, can be translated into routine primary care practice, allowing important public health benefits. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05351359, 28/04/2022).
2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Human Movement Studies University of Ostrava Ostrava Czech Republic
Department of Movement and Sports Sciences Ghent University Ghent Belgium
Diabetes Research Centre University of Leicester Leicester UK
Faculty of Physical Education and Sport Charles University Prague Czech Republic
Faculty of Science University of Hradec Kralove Hradec Kralove Czech Republic
Institute for Social Marketing and Health University of Stirling Stirling UK
Institute of General Practice 1st Faculty of Medicine Charles University Prague Czech Republic
Population Health Research Institute St George's University of London London UK
Zobrazit více v PubMed
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pr. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. PubMed DOI PMC
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2019;37:S81–S69. PubMed
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–2079. doi: 10.2337/dc16-1728. PubMed DOI PMC
Geidl W, Schlesinger S, Mino E, Miranda L, Pfeifer K. Dose–response relationship between physical activity and mortality in adults with noncommunicable diseases: a systematic review and meta-analysis of prospective observational studies. Int J Behav Nutr Phy. 2020;17:109. doi: 10.1186/s12966-020-01007-5. PubMed DOI PMC
Cavallo FR, Golden C, Pearson-Stuttard J, Falconer C, Toumazou C. The association between sedentary behaviour, physical activity and type 2 diabetes markers: A systematic review of mixed analytic approaches. PLoS ONE. 2022;17:e0268289. doi: 10.1371/journal.pone.0268289. PubMed DOI PMC
Kemps H, Kränkel N, Dörr M, Moholdt T, Wilhelm M, Paneni F, et al. Exercise training for patients with type 2 diabetes and cardiovascular disease: What to pursue and how to do it. A Position Paper of the European Association of Preventive Cardiology (EAPC) Eur J Prev Cardiol. 2018;26:709–27. doi: 10.1177/2047487318820420. PubMed DOI
Marsden AM, Bower P, Howarth E, Soiland-Reyes C, Sutton M, Cotterill S. ‘Finishing the race’ – a cohort study of weight and blood glucose change among the first 36,000 patients in a large-scale diabetes prevention programme. Int J Behav Nutr Phy. 2022;19:7. doi: 10.1186/s12966-022-01249-5. PubMed DOI PMC
Jadhav RA, Hazari A, Monterio A, Kumar S, Maiya AG. Effect of Physical Activity Intervention in Prediabetes: A Systematic Review With Meta-analysis. J Phys Act Health. 2017;14:745–755. doi: 10.1123/jpah.2016-0632. PubMed DOI
Rossen J, Rosen PV, Johansson U-B, Brismar K, Hagströmer M. Associations of physical activity and sedentary behavior with cardiometabolic biomarkers in prediabetes and type 2 diabetes: a compositional data analysis. Phys Sportsmed. 2020;48:222–228. doi: 10.1080/00913847.2019.1684811. PubMed DOI
Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc. 2022;54:353–368. doi: 10.1249/MSS.0000000000002800. PubMed DOI PMC
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Brit J Sport Med. 2020;54:1451–1462. doi: 10.1136/bjsports-2020-102955. PubMed DOI PMC
Zhao G, Ford ES, Li C, Mokdad AH. Compliance with physical activity recommendations in US adults with diabetes. Diabet Med. 2008;25:221–227. doi: 10.1111/j.1464-5491.2007.02332.x. PubMed DOI
Barker J, Byrne KS, Doherty A, Foster C, Rahimi K, Ramakrishnan R, et al. Physical activity of UK adults with chronic disease: cross-sectional analysis of accelerometer-measured physical activity in 96 706 UK Biobank participants. Int J Epidemiol. 2019;48:1167–1174. doi: 10.1093/ije/dyz148. PubMed DOI PMC
Geerling R, Browne JL, Holmes-Truscott E, Furler J, Speight J, Mosely K. Positive reinforcement by general practitioners is associated with greater physical activity in adults with type 2 diabetes. Bmj Open Diabetes Res Care. 2019;7:e000701. doi: 10.1136/bmjdrc-2019-000701. PubMed DOI PMC
Král N, de Waard A-KM, Schellevis FG, Korevaar JC, Lionis C, Carlsson AC, et al. What should selective cardiometabolic prevention programmes in European primary care look like? A consensus-based design by the SPIMEU group. Eur J Gen Pract. 2019;25:1–8. doi: 10.1080/13814788.2019.1641195. PubMed DOI PMC
Persson G, Brorsson A, Hansson EE, Troein M, Strandberg EL. Physical activity on prescription (PAP) from the general practitioner’s perspective - a qualitative study. Bmc Fam Pract. 2013;14:128. doi: 10.1186/1471-2296-14-128. PubMed DOI PMC
Luoma KA, Leavitt IM, Marrs JC, Nederveld AL, Regensteiner JG, Dunn AL, et al. How can clinical practices pragmatically increase physical activity for patients with type 2 diabetes? A systematic review. Transl Behav Med. 2017;7:751–772. doi: 10.1007/s13142-017-0502-4. PubMed DOI PMC
Pears S, Bijker M, Morton K, Vasconcelos J, Parker RA, Westgate K, et al. A randomised controlled trial of three very brief interventions for physical activity in primary care. BMC Public Health. 2016;16:1033. doi: 10.1186/s12889-016-3684-7. PubMed DOI PMC
Hardeman W, Mitchell J, Pears S, Emmenis MV, Theil F, Gc VS, et al. Evaluation of a very brief pedometer-based physical activity intervention delivered in NHS Health Checks in England: The VBI randomised controlled trial. Plos Med. 2020;17:e1003046. doi: 10.1371/journal.pmed.1003046. PubMed DOI PMC
Yates T, Davies M, Gorely T, Bull F, Khunti K. Effectiveness of a Pragmatic Education Program Designed to Promote Walking Activity in Individuals With Impaired Glucose Tolerance: A randomized controlled trial. Diabetes Care. 2009;32:1404–1410. doi: 10.2337/dc09-0130. PubMed DOI PMC
Yates T, Edwardson CL, Henson J, Gray LJ, Ashra NB, Troughton J, et al. Walking Away from Type 2 diabetes: a cluster randomized controlled trial. Diabet Med. 2017;34:698–707. doi: 10.1111/dme.13254. PubMed DOI
Haseler T, Haseler C. Lack of physical activity is a global problem. BMJ. 2022;376:o348. doi: 10.1136/bmj.o348. PubMed DOI PMC
Orrow G, Kinmonth A-L, Sanderson S, Sutton S. Effectiveness of physical activity promotion based in primary care: systematic review and meta-analysis of randomised controlled trials. BMJ. 2012;344:e1389–e1389. doi: 10.1136/bmj.e1389. PubMed DOI PMC
de Waard A-KM, Hollander M, Korevaar JC, Nielen MMJ, Carlsson AC, Lionis C, et al. Selective prevention of cardiometabolic diseases: activities and attitudes of general practitioners across Europe. Eur J Public Health. 2019;29:88–93. doi: 10.1093/eurpub/cky112. PubMed DOI PMC
Patel A, Schofield GM, Kolt GS, Keogh JWL. Perceived barriers, benefits, and motives for physical activity: two primary-care physical activity prescription programs. J Aging Phys Act. 2013;21:85–99. doi: 10.1123/japa.21.1.85. PubMed DOI
Wändell PE, de Waard A-KM, Holzmann MJ, Gornitzki C, Lionis C, de Wit N, et al. Barriers and facilitators among health professionals in primary care to prevention of cardiometabolic diseases: A systematic review. Fam Pract. 2018;62:113–398. PubMed
Bondaronek P, Dicken SJ, Jennings SS, Mallion V, Stefanidou C. Barriers to and facilitators of the use of digital tools in primary care to deliver physical activity advice: semistructured interviews and thematic analysis. Jmir Hum Factors. 2022;9:e35070. doi: 10.2196/35070. PubMed DOI PMC
Hébert ET, Caughy MO, Shuval K. Primary care providers’ perceptions of physical activity counselling in a clinical setting: a systematic review. Brit J Sport Med. 2012;46:625. doi: 10.1136/bjsports-2011-090734. PubMed DOI
Poppe L, Plaete J, Huys N, Verloigne M, Deveugele M, Bourdeaudhuij ID, et al. Process evaluation of an eHealth intervention implemented into general practice: general practitioners’ and patients’ views. Int J Environ Res Public Health. 2018;15:1475. doi: 10.3390/ijerph15071475. PubMed DOI PMC
Rossen J, Lööf H, Yngve A, Hagströmer M, Brismar K, Johansson U-B. ‘This is why I’m doing a lot of exercise’ — a qualitative study of participant’s experiences of the Sophia Step Study. Int Diabetes Nurs. 2017;14:1–6.
Lamming L, Pears S, Mason D, Morton K, Bijker M, Sutton S, et al. What do we know about brief interventions for physical activity that could be delivered in primary care consultations? A systematic review of reviews. Prev Med. 2017;99:152–163. doi: 10.1016/j.ypmed.2017.02.017. PubMed DOI
Chevance G, Baretta D, Golaszewski N, Takemoto M, Shrestha S, Jain S, et al. Goal setting and achievement for walking: A series of N-of-1 digital interventions. Health Psychol. 2021;40:30–39. doi: 10.1037/hea0001044. PubMed DOI PMC
Swann C, Rosenbaum S, Lawrence A, Vella SA, McEwan D, Ekkekakis P. Updating goal-setting theory in physical activity promotion: a critical conceptual review. Health Psychol Rev. 2020;15:1–17. PubMed
Chaudhry UAR, Wahlich C, Fortescue R, Cook DG, Knightly R, Harris T. The effects of step-count monitoring interventions on physical activity: systematic review and meta-analysis of community-based randomised controlled trials in adults. Int J Behav Nutr Phy. 2020;17:129. doi: 10.1186/s12966-020-01020-8. PubMed DOI PMC
Compernolle S, DeSmet A, Poppe L, Crombez G, Bourdeaudhuij ID, Cardon G, et al. Effectiveness of interventions using self-monitoring to reduce sedentary behavior in adults: a systematic review and meta-analysis. Int J Behav Nutr Phy. 2019;16:63. doi: 10.1186/s12966-019-0824-3. PubMed DOI PMC
Larsen RT, Wagner V, Korfitsen CB, Keller C, Juhl CB, Langberg H, et al. Effectiveness of physical activity monitors in adults: systematic review and meta-analysis. BMJ. 2022;376:e068047. doi: 10.1136/bmj-2021-068047. PubMed DOI PMC
Kettle VE, Madigan CD, Coombe A, Graham H, Thomas JJC, Chalkley AE, et al. Effectiveness of physical activity interventions delivered or prompted by health professionals in primary care settings: systematic review and meta-analysis of randomised controlled trials. BMJ. 2022;376:e068465. doi: 10.1136/bmj-2021-068465. PubMed DOI PMC
Vetrovsky T, Borowiec A, Juřík R, Wahlich C, Śmigielski W, Steffl M, et al. Do physical activity interventions combining self-monitoring with other components provide an additional benefit compared with self-monitoring alone? A systematic review and meta-analysis. Brit J Sport Med. 2022;56:1366–1374. doi: 10.1136/bjsports-2021-105198. PubMed DOI PMC
Wahlich C, Chaudhry UAR, Fortescue R, Cook DG, Hirani S, Knightly R, et al. Effectiveness of adult community-based physical activity interventions with objective physical activity measurements and long-term follow-up: a systematic review and meta-analysis. BMJ Open. 2020;10:e034541. doi: 10.1136/bmjopen-2019-034541. PubMed DOI PMC
Rossen J, Larsson K, Hagströmer M, Yngve A, Brismar K, Ainsworth B, et al. Effects of a three-armed randomised controlled trial using self-monitoring of daily steps with and without counselling in prediabetes and type 2 diabetes—the Sophia Step Study. Int J Behav Nutr Phy. 2021;18:121. doi: 10.1186/s12966-021-01193-w. PubMed DOI PMC
Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, et al. Effect of a primary care walking intervention with and without nurse support on physical activity levels in 45- to 75-year-olds: the Pedometer And Consultation Evaluation (PACE-UP) cluster randomised clinical trial. Plos Med. 2017;14:e1002210. doi: 10.1371/journal.pmed.1002210. PubMed DOI PMC
van der Weegen S, Verwey R, Spreeuwenberg M, Tange H, van der Weijden T, de Witte L. It’s LiFe! Mobile and Web-Based Monitoring and Feedback Tool Embedded in Primary Care Increases Physical Activity: A Cluster Randomized Controlled Trial. J Med Internet Res. 2015;17:e184. doi: 10.2196/jmir.4579. PubMed DOI PMC
Laranjo L, Ding D, Heleno B, Kocaballi B, Quiroz JC, Tong HL, et al. Do smartphone applications and activity trackers increase physical activity in adults? Systematic review, meta-analysis and metaregression. Brit J Sport Med. 2021;55:422–432. doi: 10.1136/bjsports-2020-102892. PubMed DOI
Degroote L, Paepe AD, Bourdeaudhuij ID, Dyck DV, Crombez G. Effectiveness of the mHealth intervention ‘MyDayPlan’ to increase physical activity: an aggregated single case approach. Int J Behav Nutr Phy. 2021;18:92. doi: 10.1186/s12966-021-01163-2. PubMed DOI PMC
Hendrick P, Zihao H, Mönninghoff A, Kramer JN, Hess AJ, Ismailova K, et al. Long-term Effectiveness of mHealth Physical Activity Interventions: Systematic Review and Meta-analysis of Randomized Controlled Trials. J Med Internet Res. 2021;23:e26699. doi: 10.2196/26699. PubMed DOI PMC
Khunti K, Griffin S, Brennan A, Dallosso H, Davies MJ, Eborall HC, et al. Promoting physical activity in a multi-ethnic population at high risk of diabetes: the 48-month PROPELS randomised controlled trial. BMC Med. 2021;19:130. doi: 10.1186/s12916-021-01997-4. PubMed DOI PMC
Smith DM, Duque L, Huffman JC, Healy BC, Celano CM. Text Message Interventions for Physical Activity: A Systematic Review and Meta-Analysis. Am J Prev Med. 2019;58:142–151. doi: 10.1016/j.amepre.2019.08.014. PubMed DOI PMC
ten Broeke P, Gardner B, Beckers DGJ, Geurts SAE, Bijleveld E. Why do people sit? A framework for targeted behavior change. Health Psychol Rev. 2022 doi: 10.1080/17437199.2022.2143851. PubMed DOI
Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, et al. Just-in-Time Adaptive Interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2016;52:1–17. PubMed PMC
Schroé H, Crombez G, Bourdeaudhuij ID, Dyck DV. Investigating when, which, and why users stop using a digital health intervention to promote an active lifestyle: secondary analysis with a focus on health action process approach-based psychological determinants. JMIR Mhealth Uhealth. 2022;10:e30583. doi: 10.2196/30583. PubMed DOI PMC
Müller AM, Blandford A, Yardley L. The conceptualization of a Just-In-Time Adaptive Intervention (JITAI) for the reduction of sedentary behavior in older adults. Mhealth. 2017;3:37. doi: 10.21037/mhealth.2017.08.05. PubMed DOI PMC
Wang L, Miller LC. Just-in-the-Moment Adaptive Interventions (JITAI): A Meta-Analytical Review. Health Commun. 2019;35:1–14. PubMed
Hardeman W, Houghton J, Lane K, Jones A, Naughton F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int J Behav Nutr Phy. 2019;16:31. doi: 10.1186/s12966-019-0792-7. PubMed DOI PMC
Pawson R. Pragmatic trials and implementation science: grounds for divorce? Bmc Med Res Methodol. 2019;19:176. doi: 10.1186/s12874-019-0814-9. PubMed DOI PMC
Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586–e7586. doi: 10.1136/bmj.e7586. PubMed DOI PMC
Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687. doi: 10.1136/bmj.g1687. PubMed DOI
Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ. 2015;350:h2147. doi: 10.1136/bmj.h2147. PubMed DOI
Harris T, Kerry SM, Victor CR, Ekelund U, Woodcock A, Iliffe S, et al. A Primary Care Nurse-Delivered Walking Intervention in Older Adults: PACE (Pedometer Accelerometer Consultation Evaluation)-Lift Cluster Randomised Controlled Trial. Plos Med. 2015;12:e1001783. doi: 10.1371/journal.pmed.1001783. PubMed DOI PMC
Karen I, Svacina S. Diabetes mellitus. Prague: Czech Society of General Practice; 2020.
Karen I, Svacina S. Prediabetes. Prague: Czech Society of General Practice; 2016.
Tudor-Locke C, Ducharme SW, Aguiar EJ, Schuna JM, Barreira TV, Moore CC, et al. Walking cadence (steps/min) and intensity in 41 to 60-year-old adults: the CADENCE-adults study. Int J Behav Nutr Phy. 2020;17:137. doi: 10.1186/s12966-020-01045-z. PubMed DOI PMC
Yates T, Haffner SM, Schulte PJ, Thomas L, Huffman KM, Bales CW, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet. 2014;383:1059–1066. doi: 10.1016/S0140-6736(13)62061-9. PubMed DOI
Vetrovsky T, Cupka J, Dudek M, Kuthanova B, Vetrovska K, Capek V, et al. A pedometer-based walking intervention with and without email counseling in general practice: a pilot randomized controlled trial. BMC Public Health. 2018;18:635. doi: 10.1186/s12889-018-5520-8. PubMed DOI PMC
Warren FC, Stych K, Thorogood M, Sharp DJ, Murphy M, Turner KM, et al. Evaluation of different recruitment and randomisation methods in a trial of general practitioner-led interventions to increase physical activity: a randomised controlled feasibility study with factorial design. Trials. 2014;15:134. doi: 10.1186/1745-6215-15-134. PubMed DOI PMC
Vetrovsky T, Siranec M, Marencakova J, Tufano JJ, Capek V, Bunc V, et al. Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure. PLoS ONE. 2019;14:e0222569. doi: 10.1371/journal.pone.0222569. PubMed DOI PMC
Fuller D, Colwell E, Low J, Orychock K, Tobin MA, Simango B, et al. Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: systematic review. JMIR Mhealth Uhealth. 2020;8:e18694. doi: 10.2196/18694. PubMed DOI PMC
Yates T, Edwardson CL, Celis-Morales C, Biddle SJH, Bodicoat D, Davies MJ, et al. Metabolic effects of breaking prolonged sitting with standing or light walking in older South Asians and White Europeans: a randomized acute study. J Gerontol A Biol Sci. 2018;36:2286–2288. PubMed PMC
Buffey AJ, Herring MP, Langley CK, Donnelly AE, Carson BP. The Acute Effects of Interrupting Prolonged Sitting Time in Adults with Standing and Light-Intensity Walking on Biomarkers of Cardiometabolic Health in Adults: A Systematic Review and Meta-analysis. Sports Med. 2022;52:1765–1787. doi: 10.1007/s40279-022-01649-4. PubMed DOI PMC
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J Biomed Inform. 2019;95:103208. doi: 10.1016/j.jbi.2019.103208. PubMed DOI PMC
Whittaker R, Whittaker R, Merry S, Merry S, Dorey E, Dorey E, et al. A development and evaluation process for mHealth interventions: examples from New Zealand. J Health Commun. 2012;17:11–21. doi: 10.1080/10810730.2011.649103. PubMed DOI
Morton K, Sutton S, Hardeman W, Troughton J, Yates T, Griffin S, et al. A text-messaging and pedometer program to promote physical activity in people at high risk of type 2 diabetes: the development of the PROPELS follow-on support program. JMIR Mhealth Uhealth. 2015;3:e105. doi: 10.2196/mhealth.5026. PubMed DOI PMC
Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46:81–95. doi: 10.1007/s12160-013-9486-6. PubMed DOI
Elavsky S, Klocek A, Knapova L, Smahelova M, Smahel D, Cimler R, et al. Feasibility of real-time behavior monitoring via mobile technology in Czech adults aged 50 years and above: 12-week study with ecological momentary assessment. JMIR Aging. 2021;4:e15220. doi: 10.2196/15220. PubMed DOI PMC
Huisman S, Maes S, Gucht VJD, Chatrou M, Haak HR. Low Goal Ownership Predicts Drop-out from a Weight Intervention Study in Overweight Patients with Type 2 Diabetes. Int J Behav Med. 2010;17:176–181. doi: 10.1007/s12529-009-9071-3. PubMed DOI PMC
Vetrovsky T, Vetrovska K, Bunc V. A qualitative exploration of the experiences of primary care patients engaged in email counseling meant to increase physical activity. Acta Gymnica. 2019;49:75–82. doi: 10.5507/ag.2019.005. DOI
van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva ICM, et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117:738–44. doi: 10.1152/japplphysiol.00421.2014. PubMed DOI PMC
van Hees VT, Gorzelniak L, León ECD, Eder M, Pias M, Taherian S, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. Müller M, editor. Plos One. 2013;8:e61691–10. doi: 10.1371/journal.pone.0061691. PubMed DOI PMC
Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: a research community-driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J Meas Phys Behav. 2019;2:188–196. doi: 10.1123/jmpb.2018-0063. DOI
Rowlands AV, Edwardson CL, Davies MJ, Khunti K, Harrington DM, Yates T. Beyond Cut Points. Med Sci Sports Exerc. 2018;50:1323–1332. doi: 10.1249/MSS.0000000000001561. PubMed DOI
Rowlands AV, Sherar LB, Fairclough SJ, Yates T, Edwardson CL, Harrington DM, et al. A data-driven, meaningful, easy to interpret, standardised accelerometer outcome variable for global surveillance. J Sci Med Sport. 2019;22:1132–1138. doi: 10.1016/j.jsams.2019.06.016. PubMed DOI
van Hees VT, Sabia S, Jones SE, Wood AR, Anderson KN, Kivimäki M, et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. 2018;8:12975. doi: 10.1038/s41598-018-31266-z. PubMed DOI PMC
Plekhanova T, Rowlands AV, Yates T, Hall A, Brady EM, Davies M, et al. Equivalency of sleep estimates: comparison of three research-grade accelerometers. J Meas Phys Behav. 2020;3:294–303. doi: 10.1123/jmpb.2019-0047. DOI
Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70:113–119. doi: 10.1080/02701367.1999.10608028. PubMed DOI
Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x. PubMed DOI
Ware JE, Kosinski M, Keller SD. A 12-Item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34:220–233. doi: 10.1097/00005650-199603000-00003. PubMed DOI
Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiology. 1976;4:97–110. PubMed
Finbråten HS, Wilde-Larsson B, Nordström G, Pettersen KS, Trollvik A, Guttersrud Ø. Establishing the HLS-Q12 short version of the European Health Literacy Survey Questionnaire: latent trait analyses applying Rasch modelling and confirmatory factor analysis. BMC Health Serv Res. 2018;18:506. doi: 10.1186/s12913-018-3275-7. PubMed DOI PMC
Klasnja P, Hekler EB, Shiffman S, Boruvka A, Almirall D, Tewari A, et al. Microrandomized trials: an experimental design for developing just-in-time adaptive interventions. Health Psychol. 2015;34:1220–1228. doi: 10.1037/hea0000305. PubMed DOI PMC
Chow S-C, Corey R, Lin M. On the independence of data monitoring committee in adaptive design clinical trials. J Biopharm Stat. 2012;22:853–867. doi: 10.1080/10543406.2012.676536. PubMed DOI
DeMets D, Califf R, Dixon D, Ellenberg S, Fleming T, Held P, et al. Issues in regulatory guidelines for data monitoring committees. Clin Trials. 2004;1:162–169. doi: 10.1191/1740774504cn019xx. PubMed DOI
Kahan BC, Jairath V, Doré CJ, Morris TP. The risks and rewards of covariate adjustment in randomized trials: an assessment of 12 outcomes from 8 studies. Trials. 2014;15:139. doi: 10.1186/1745-6215-15-139. PubMed DOI PMC
Schafer JL. Multiple imputation: a primer. Stat Methods Med Res. 1999;8:3–15. doi: 10.1177/096228029900800102. PubMed DOI
Skivington K, Matthews L, Simpson SA, Craig P, Baird J, Blazeby JM, et al. A new framework for developing and evaluating complex interventions: update of Medical Research Council guidance. BMJ. 2021;374:n2061. doi: 10.1136/bmj.n2061. PubMed DOI PMC
Nam SN, Griggs S, Ash GI, Dunton GF, Huang S, Batten J, et al. Ecological momentary assessment for health behaviors and contextual factors in persons with diabetes: A systematic review. Diabetes Res Clin Pr. 2021;174:108745. doi: 10.1016/j.diabres.2021.108745. PubMed DOI
Poppe L, Paepe ALD, Ryckeghem DMLV, Dyck DV, Maes I, Crombez G. The impact of mental and somatic stressors on physical activity and sedentary behaviour in adults with type 2 diabetes mellitus: a diary study. PeerJ. 2021;9:e11579. doi: 10.7717/peerj.11579. PubMed DOI PMC
Maes I, Mertens L, Poppe L, Crombez G, Vetrovsky T, Dyck DV. The variability of emotions, physical complaints, intention, and self-efficacy: an ecological momentary assessment study in older adults. PeerJ. 2022;10:e13234. doi: 10.7717/peerj.13234. PubMed DOI PMC
van Heuvelen MJG, Hochstenbach JBM, Brouwer WH, de Greef MHG, Zijlstra GAR, van Jaarsveld E, et al. Differences between participants and non-participants in an RCT on physical activity and psychological interventions for older persons. Aging Clin Exp Res. 2005;17:236–245. doi: 10.1007/BF03324603. PubMed DOI
Foster CE, Brennan G, Matthews A, McAdam C, Fitzsimons C, Mutrie N. Recruiting participants to walking intervention studies: a systematic review. Int J Behav Nutr Phy. 2011;8:137. doi: 10.1186/1479-5868-8-137. PubMed DOI PMC
Normansell R, Holmes R, Victor C, Cook DG, Kerry S, Iliffe S, et al. Exploring non-participation in primary care physical activity interventions: PACE-UP trial interview findings. Trials. 2016;17:1–14. doi: 10.1186/s13063-016-1299-z. PubMed DOI PMC
Garduno AC, LaCroix AZ, LaMonte MJ, Dunstan DW, Evenson KR, Wang G, et al. Associations of Daily Steps and Step Intensity With Incident Diabetes in a Prospective Cohort Study of Older Women: The OPACH Study. Diabetes Care. 2022;45:339–347. doi: 10.2337/dc21-1202. PubMed DOI PMC
Cuthbertson CC, Moore CC, Sotres-Alvarez D, Heiss G, Isasi CR, Mossavar-Rahmani Y, et al. Associations of steps per day and step intensity with the risk of diabetes: the Hispanic Community Health Study / Study of Latinos (HCHS/SOL) Int J Behav Nutr Phy. 2022;19:46. doi: 10.1186/s12966-022-01284-2. PubMed DOI PMC
Hadgraft NT, Winkler E, Climie RE, Grace MS, Romero L, Owen N, et al. Effects of sedentary behaviour interventions on biomarkers of cardiometabolic risk in adults: systematic review with meta-analyses. Brit J Sport Med. 2021;55:144–154. doi: 10.1136/bjsports-2019-101154. PubMed DOI PMC
Aguilera A, Figueroa CA, Hernandez-Ramos R, Sarkar U, Cemballi A, Gomez-Pathak L, et al. mHealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the DIAMANTE Study. BMJ Open. 2020;10:e034723. doi: 10.1136/bmjopen-2019-034723. PubMed DOI PMC
Yom-Tov E, Feraru G, Kozdoba M, Mannor S, Tennenholtz M, Hochberg I. Encouraging Physical Activity in Patients With Diabetes: Intervention Using a Reinforcement Learning System. J Med Internet Res. 2017;19:e338. doi: 10.2196/jmir.7994. PubMed DOI PMC
Moghetti P, Balducci S, Guidetti L, Mazzuca P, Rossi E, Schena F, et al. Walking for subjects with type 2 diabetes: A systematic review and joint AMD/SID/SISMES evidence-based practical guideline. Nutr Metab Cardiovasc Dis. 2020;30:1882–1898. doi: 10.1016/j.numecd.2020.08.021. PubMed DOI
ClinicalTrials.gov
NCT05351359