mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED): statistical analysis plan
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, protokol klinické studie
Grantová podpora
NU21-09-00007
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
40394706
PubMed Central
PMC12093599
DOI
10.1186/s13063-025-08865-z
PII: 10.1186/s13063-025-08865-z
Knihovny.cz E-zdroje
- Klíčová slova
- Accelerometer, Adherence, Estimand framework, Fitbit, GGIR, Just-in-time adaptive intervention (JITAI), Pragmatic trial, Primary care, Text messages, Wearables,
- MeSH
- akcelerometrie MeSH
- cvičení * MeSH
- diabetes mellitus 2. typu * terapie psychologie diagnóza MeSH
- fitness náramky MeSH
- lidé MeSH
- multicentrické studie jako téma MeSH
- nositelná elektronika MeSH
- pragmatické klinické studie jako téma MeSH
- praktické lékařství * metody MeSH
- prediabetes * terapie psychologie diagnóza MeSH
- sedavý životní styl * MeSH
- telemedicína * statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- protokol klinické studie MeSH
BACKGROUND: Type 2 diabetes and prediabetes represent significant global health challenges, with physical activity (PA) being essential for disease management and prevention. Despite the well-documented benefits, many individuals with (pre)diabetes remain insufficiently active. General practitioners (GP) provide an accessible platform for delivering interventions; however, integrating PA interventions into routine care is hindered by resource constraints. OBJECTIVES: The ENERGISED trial aims to address these barriers through an innovative GP-initiated mHealth intervention combining wearable technology and just-in-time adaptive interventions. METHODS: The ENERGISED trial is a pragmatic, 12-month, multicentre, randomised controlled trial, assessing a GP-initiated mHealth intervention to increase PA and reduce sedentary behaviour in patients with type 2 diabetes and prediabetes. The primary outcome is daily step count, assessed via wrist-worn accelerometry. The primary analysis follows the intention-to-treat principle, using mixed models for repeated measures. Missing data will be handled under the missing-at-random assumption, with sensitivity analyses exploring robustness through reference-based multiple imputation. The trial incorporates the estimand framework to provide transparent and structured treatment effect estimation. DISCUSSION: This statistical analysis plan outlines a robust approach to addressing participant non-adherence, protocol violations, and missing data. By adopting the estimand framework and pre-specified sensitivity analyses, the plan ensures methodological rigour while enhancing the interpretability and applicability of results. CONCLUSIONS: The ENERGISED trial leverages innovative mHealth strategies within primary care to promote PA in individuals with (pre)diabetes. The pre-specified statistical framework provides a comprehensive guide for analysing trial data and contributes to advancing best practices in behavioural intervention trials for public health. TRIAL REGISTRATION: ClinicalTrials.gov NCT05351359 . Registered on April 28, 2022.
Department of Human Movement Studies University of Ostrava Ostrava Czech Republic
Diabetes Research Centre University of Leicester Leicester UK
Faculty of Physical Culture Palacky University Olomouc Olomouc Czech Republic
Faculty of Physical Education and Sport Charles University Prague Czech Republic
Faculty of Science University of Hradec Kralove Hradec Kralove Czech Republic
Institute for Social Marketing and Health University of Stirling Stirling UK
Institute of General Practice 1st Faculty of Medicine Charles University Prague Czech Republic
School of Health and Medical Sciences City St George's University of London London UK
Zobrazit více v PubMed
Rooney MR, Fang M, Ogurtsova K, Ozkan B, Echouffo-Tcheugui JB, Boyko EJ, et al. Global prevalence of prediabetes. Diabetes Care. 2023;46:1388–94. 10.2337/dc22-2376. PubMed PMC
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79. 10.2337/dc16-1728. PubMed PMC
Gallardo-Gómez D, Salazar-Martínez E, Alfonso-Rosa RM, Ramos-Munell J, Pozo-Cruz JD, Cruz BDP, et al. Optimal dose and type of physical activity to improve glycemic control in people diagnosed with type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2024;47:295–303. 10.2337/dc23-0800. PubMed
Yates T, Edwardson CL, Celis-Morales C, Biddle SJH, Bodicoat D, Davies MJ, et al. Metabolic effects of breaking prolonged sitting with standing or light walking in older South Asians and White Europeans: a randomized acute study. J Gerontol A Biol Sci. 2018;36:2286–8. 10.1093/gerona/gly252. PubMed PMC
Cartagena MV, Tort-Nasarre G, Arnaldo ER. Barriers and facilitators for physical activity in adults with type 2 diabetes mellitus: a scoping review. Int J Environ Res Public Heal. 2021;18:5359. 10.3390/ijerph18105359. PubMed PMC
Barker J, Byrne KS, Doherty A, Foster C, Rahimi K, Ramakrishnan R, et al. Physical activity of UK adults with chronic disease: cross-sectional analysis of accelerometer-measured physical activity in 96 706 UK Biobank participants. Int J Epidemiol. 2019;48:1167–74. 10.1093/ije/dyy294. PubMed PMC
Mortensen SR, Skou ST, Brønd JC, Ried-Larsen M, Petersen TL, Jørgensen LB, et al. Detailed descriptions of physical activity patterns among individuals with diabetes and prediabetes: the Lolland-Falster Health Study. BMJ Open Diabetes Res Care. 2023;11:e003493. 10.1136/bmjdrc-2023-003493. PubMed PMC
Kettle VE, Madigan CD, Coombe A, Graham H, Thomas JJC, Chalkley AE, et al. Effectiveness of physical activity interventions delivered or prompted by health professionals in primary care settings: systematic review and meta-analysis of randomised controlled trials. BMJ. 2022;376:e068465. 10.1136/bmj-2021-068465. PubMed PMC
Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, et al. Effect of a primary care walking intervention with and without nurse support on physical activity levels in 45- to 75-year-olds: the Pedometer And Consultation Evaluation (PACE-UP) cluster randomised clinical trial. Plos Med. 2017;14:e1002210. 10.1371/journal.pmed.1002210. PubMed PMC
Wändell PE, de Waard AKM, Holzmann MJ, Gornitzki C, Lionis C, de Wit N, et al. Barriers and facilitators among health professionals in primary care to prevention of cardiometabolic diseases: a systematic review. Fam Pract. 2018;62:113–398. 10.1093/fampra/cmx137. PubMed
Vetrovsky T, Cupka J, Dudek M, Kuthanova B, Vetrovska K, Capek V, et al. A pedometer-based walking intervention with and without email counseling in general practice: a pilot randomized controlled trial. BMC Public Health. 2018;18:635. 10.1186/s12889-018-5520-8. PubMed PMC
Vetrovsky T, Kral N, Pfeiferova M, Kuhnova J, Novak J, Wahlich C, et al. mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED): rationale and study protocol for a pragmatic randomised controlled trial. BMC Public Health. 2023;23:613. 10.1186/s12889-023-15513-1. PubMed PMC
Novak J, Jurkova K, Lojkaskova A, Jaklova A, Kuhnova J, Pfeiferova M, et al. Participatory development of an mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED). BMC Public Health. 2024;24:927. 10.1186/s12889-024-18384-2. PubMed PMC
Hemming K, Kearney A, Gamble C, Li T, Jüni P, Chan A-W, et al. Prospective reporting of statistical analysis plans for randomised controlled trials. Trials. 2020;21:898. 10.1186/s13063-020-04828-8. PubMed PMC
Kahan BC, Hindley J, Edwards M, Cro S, Morris TP. The estimands framework: a primer on the ICH E9(R1) addendum. BMJ. 2024;384:e076316. 10.1136/bmj-2023-076316. PubMed PMC
Little RJ, Lewis RJ. Estimands, estimators, and estimates. JAMA. 2021;326:967–8. 10.1001/jama.2021.2886. PubMed
Gamble C, Krishan A, Stocken D, Lewis S, Juszczak E, Doré C, et al. Guidelines for the content of statistical analysis plans in clinical trials. JAMA. 2017;318:2337–43. 10.1001/jama.2017.18556. PubMed
Lynggaard H, Bell J, Lösch C, Besseghir A, Rantell K, Schoder V, et al. Principles and recommendations for incorporating estimands into clinical study protocol templates. Trials. 2022;23:685. 10.1186/s13063-022-06515-2. PubMed PMC
Luoma KA, Leavitt IM, Marrs JC, Nederveld AL, Regensteiner JG, Dunn AL, et al. How can clinical practices pragmatically increase physical activity for patients with type 2 diabetes? A systematic review Transl Behav Med. 2017;7:751–72. 10.1007/s13142-017-0502-4. PubMed PMC
Bell J, Drury T, Mütze T, Pipper CB, Guizzaro L, Mitroiu M, et al. Estimation methods for estimands using the treatment policy strategy; a simulation study based on the PIONEER 1 trial. arXiv. 2024. 10.48550/arxiv.2402.12850. PubMed
Aroda VR, Saugstrup T, Buse JB, Donsmark M, Zacho J, Davies MJ. Incorporating and interpreting regulatory guidance on estimands in diabetes clinical trials: the PIONEER 1 randomized clinical trial as an example. Diabetes Obes Metab. 2019;21:2203–10. 10.1111/dom.13804. PubMed PMC
Karen I, Svacina S. Diabetes mellitus. Prague: Czech Society of General Practice; 2020.
Karen I, Svacina S. Prediabetes. Prague: Czech Society of General Practice; 2022.
Khunti K, Griffin S, Brennan A, Dallosso H, Davies MJ, Eborall HC, et al. Promoting physical activity in a multi-ethnic population at high risk of diabetes: the 48-month PROPELS randomised controlled trial. Bmc Med. 2021;19:130. 10.1186/s12916-021-01997-4. PubMed PMC
Yates T, Edwardson CL, Henson J, Gray LJ, Ashra NB, Troughton J, et al. Walking away from type 2 diabetes: a cluster randomized controlled trial. Diabet Med. 2017;34:698–707. 10.1111/dme.13254. PubMed
Rossen J, Larsson K, Hagströmer M, Yngve A, Brismar K, Ainsworth B, et al. Effects of a three-armed randomised controlled trial using self-monitoring of daily steps with and without counselling in prediabetes and type 2 diabetes—the Sophia Step Study. Int J Behav Nutr Phy Act. 2021;18:121. 10.1186/s12966-021-01193-w. PubMed PMC
Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208. 10.1016/j.jbi.2019.103208. PubMed PMC
Delobelle J, Lebuf E, Dyck DV, Compernolle S, Janek M, Backere FD, et al. Fitbit’s accuracy to measure short bouts of stepping and sedentary behaviour: validation, sensitivity and specificity study. Digit Health. 2024;10:20552076241262710. 10.1177/20552076241262710. PubMed PMC
Vetrovsky T, Siranec M, Frybova T, Gant I, Svobodova I, Linhart A, et al. Lifestyle walking intervention for patients with heart failure with reduced ejection fraction: the WATCHFUL trial. Circulation. 2024;149:177–88. 10.1161/circulationaha.123.067395. PubMed PMC
Buffey AJ, Herring MP, Langley CK, Donnelly AE, Carson BP. The acute effects of interrupting prolonged sitting time in adults with standing and light-intensity walking on biomarkers of cardiometabolic health in adults: a systematic review and meta-analysis. Sports Med. 2022;52:1765–87. 10.1007/s40279-022-01649-4. PubMed PMC
Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2016;52:1–17. 10.1007/s12160-016-9830-8. PubMed PMC
Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152:726. 10.7326/0003-4819-152-11-201006010-00232. PubMed
Zigmond AS, Snaith RP. The Hospital Anxiety and Depression Scale. Acta Psychiatr Scand. 1983;67:361–70. 10.1111/j.1600-0447.1983.tb09716.x. PubMed
Ware JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34:220–33. 10.1097/00005650-199603000-00003. PubMed
Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiology. 1976;4:97–110. PubMed
Finbråten HS, Wilde-Larsson B, Nordström G, Pettersen KS, Trollvik A, Guttersrud Ø. Establishing the HLS-Q12 short version of the European Health Literacy Survey Questionnaire: latent trait analyses applying Rasch modelling and confirmatory factor analysis. Bmc Health Serv Res. 2018;18:506. 10.1186/s12913-018-3275-7. PubMed PMC
Wei L, Ahmadi MN, Blodgett JM, Aguiar EJ, Biswas RK, Cruz B del B, et al. Does the choice of stepping intensity metric influence dose-response associations with mortality? A UK population cohort study of 70,174 adults. medRxiv. 2024; 2024.09.10.24313453. 10.1101/2024.09.10.24313453.
Rowlands AV, Edwardson CL, Davies MJ, Khunti K, Harrington DM, Yates T. Beyond cut points. Med Sci Sports Exerc. 2018;50:1323–32. 10.1249/mss.0000000000001561. PubMed
van Hees VT, Sabia S, Jones SE, Wood AR, Anderson KN, Kivimäki M, et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. 2018;8:12975. 10.1038/s41598-018-31266-z. PubMed PMC
van Hees VT, Gorzelniak L, León ECD, Eder M, Pias M, Taherian S, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. Müller M, editor. Plos One. 2013;8:e61691-10. 10.1371/journal.pone.0061691. PubMed PMC
van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva ICM, et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117:738–44. 10.1152/japplphysiol.00421.2014. PubMed PMC
Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: a research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J Meas Phys Behav. 2019;2:188–96. 10.1123/jmpb.2018-0063.
Koffman L, Muschelli J. Evaluating step counting algorithms on subsecond wrist-worn accelerometry: a comparison using publicly available data sets. J Meas Phys Behav. 2024;7. 10.1123/jmpb.2024-0008.
Rowlands AV, Maylor B, Dawkins NP, Dempsey PC, Edwardson CL, Soczawa-Stronczyk AA, et al. Stepping up with GGIR: validity of step cadence derived from wrist-worn research-grade accelerometers using the verisense step count algorithm. J Sport Sci. 2022;40(19):2182–90. 10.1080/02640414.2022.2147134. PubMed
Hildebrand M, van Hees VT, Hansen BH, Ekelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46:1816–24. 10.1249/mss.0000000000000289. PubMed
Cassidy S, Fuller H, Chau J, Catt M, Bauman A, Trenell MI. Accelerometer-derived physical activity in those with cardio-metabolic disease compared to healthy adults: a UK Biobank study of 52,556 participants. Acta Diabetol. 2018;55:975–9. 10.1007/s00592-018-1161-8. PubMed PMC
Menai M, van Hees VT, Elbaz A, Kivimaki M, Singh-Manoux A, Sabia S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci Rep. 2017;7:45772. 10.1038/srep45772. PubMed PMC
Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand J Med Sci Sports. 2016;27:1814–23. 10.1111/sms.12795. PubMed
Schafer JL. Multiple imputation: a primer. Stat Methods Med Res. 1999;8(1):3–15. PubMed
Adams B, Fidler K, Demoes N, Aguiar EJ, Ducharme SW, McCullough AK, et al. Cardiometabolic thresholds for peak 30-min cadence and steps/day. PLoS ONE. 2019;14:e0219933. 10.1371/journal.pone.0219933. PubMed PMC
Cro S, Phillips R. All I want for Christmas…is a precisely defined research question. Trials. 2024;25:784. 10.1186/s13063-024-08604-w. PubMed PMC
Siddiqui O. MMRM versus MI in dealing with missing data—a comparison based on 25 NDA data sets. J Biopharm Stat. 2011;21:423–36. 10.1080/10543401003777995. PubMed
ClinicalTrials.gov
NCT05351359