• This record comes from PubMed

Enhancement of zebrafish sperm production via a large body-sized surrogate with germ cell transplantation

. 2023 Apr 14 ; 6 (1) : 412. [epub] 20230414

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37059808
PubMed Central PMC10104805
DOI 10.1038/s42003-023-04800-7
PII: 10.1038/s42003-023-04800-7
Knihovny.cz E-resources

Zebrafish (Danio rerio) is a commonly-used vertebrate model species for many research areas. However, its low milt volume limits effective cryopreservation of sperm from a single individual and often precludes dividing a single semen sample to conduct multiple downstream procedures such as genomic DNA/RNA extraction and in-vitro fertilization. Here, we apply germ stem cell transplantation to increase zebrafish sperm production in a closely related larger species from the same subfamily, giant danio Devario aequipinnatus. The endogenous germ cell of the host is depleted by dead-end morpholino antisense oligonucleotide. Histology of the sterile gonad and quantitative PCR of gonadal tissue reveals all sterile giant danio develop the male phenotype. Spermatogonial cells of Tg(ddx4:egfp) transgenic zebrafish are transplanted into sterile giant danio larvae, and 22% of recipients (germline chimera) produce donor-derived sperm at sexual maturation. The germline chimera produce approximately three-fold the volume of sperm and 10-fold the spermatozoon concentration of the donor. The donor-derived sperm is functional and gives rise to viable progeny upon fertilization of donor oocytes. We show that the issue of low milt volume can be effectively addressed by employing a larger surrogate parent.

See more in PubMed

Lele Z, Krone PH. The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnol. Adv. 1996;14:57–72. doi: 10.1016/0734-9750(96)00004-3. PubMed DOI

Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 2007;8:353–367. doi: 10.1038/nrg2091. PubMed DOI

Briggs, J. P. The zebrafish: a new model organism for integrative physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, (2002). PubMed

Veldman MB, Lin S. Zebrafish as a developmental model organism for pediatric research. Pediatr. Res. 2008;64:470–476. doi: 10.1203/PDR.0b013e318186e609. PubMed DOI

Hagedorn M, Carter VL. Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success. PLoS ONE. 2011;6:e21059. doi: 10.1371/journal.pone.0021059. PubMed DOI PMC

Morris JP, IV, et al. Zebrafish sperm cryopreservation with N,N-dimethylacetamide. Biotechniques. 2003;35:956–968. doi: 10.2144/03355st03. PubMed DOI

Harvey, B., Kelley, R. N. & Ashwood-Smith, M. J. Cryopreservation of zebra fish spermatozoa using methanol. Can. J. Zool. 10.1139/z82-242 (2011).

Yang H, Carmichael C, Varga ZM, Tiersch TR. Development of a simplified and standardized protocol with potential for high-throughput for sperm cryopreservation in zebrafish Danio rerio. Theriogenology. 2007;68:128–136. doi: 10.1016/j.theriogenology.2007.02.015. PubMed DOI PMC

Berghmans S, Morris JP, IV, Kanki JP, Look AT. Zebrafish sperm cryopreservation. Methods Cell Biol. 2004;77:645–659. doi: 10.1016/S0091-679X(04)77034-X. PubMed DOI

Biga PR, Goetz FW. Zebrafish and giant danio as models for muscle growth: determinate vs. indeterminate growth as determined by morphometric analysis. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 2006;291:1327–1337. doi: 10.1152/ajpregu.00905.2005. PubMed DOI

Goto R, Saito T. A state-of-the-art review of surrogate propagation in fish. Theriogenology. 2019;133:216–227. doi: 10.1016/j.theriogenology.2019.03.032. PubMed DOI

Bar I, et al. Assessment of yellowtail kingfish (Seriola lalandi) as a surrogate host for the production of southern bluefin tuna (Thunnus maccoyii) seed via spermatogonial germ cell transplantation. Reprod. Fertil. Dev. 2016;28:2051–2064. doi: 10.1071/RD15136. PubMed DOI

Franěk R, et al. Who is the best surrogate for germ stem cell transplantation in fish? Aquaculture. 2022;549:737759. doi: 10.1016/j.aquaculture.2021.737759. DOI

Octavera A, Yoshizaki G. Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling. Biol. Reprod. 2019;100:1108–1117. doi: 10.1093/biolre/ioy236. PubMed DOI

Seki S, et al. Production of the medaka derived from vitrified whole testes by germ cell transplantation. Sci. Rep. 2017;7:1–11. doi: 10.1038/srep43185. PubMed DOI PMC

Lin S, Long W, Chen J, Hopkins N. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos. Proc. Natl Acad. Sci. USA. 1992;89:4519–4523. doi: 10.1073/pnas.89.10.4519. PubMed DOI PMC

Morita T, et al. Functional sperm of the Yellowtail (Seriola quinqueradiata) were produced in the small-bodied surrogate, Jack Mackerel (Trachurus japonicus) Mar. Biotechnol. 2015;17:644–654. doi: 10.1007/s10126-015-9657-5. PubMed DOI

Hamasaki M, et al. Production of tiger puffer takifugu rubripes offspring from triploid grass puffer Takifugu niphobles parents. Mar. Biotechnol. 2017;19:579–591. doi: 10.1007/s10126-017-9777-1. PubMed DOI

Hattori RS, et al. Surrogate production of Salmo salar oocytes and sperm in triploid Oncorhynchus mykiss by germ cell transplantation technology. Aquaculture. 2019;506:238–245. doi: 10.1016/j.aquaculture.2019.03.037. DOI

Franěk, R., Kašpar, V., Shah, M. A., Gela, D. & Pšenička, M. Production of common carp donor-derived offspring from goldfish surrogate broodstock. Aquaculture534, (2021).

Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology. 2016;72:119–122. doi: 10.1016/j.cryobiol.2016.02.005. PubMed DOI

Truett GE, et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT) Biotechniques. 2000;29:52–54. doi: 10.2144/00291bm09. PubMed DOI

Slanchev K, Stebler J, De La Cueva-Méndez G, Raz E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc. Natl Acad. Sci. USA. 2005;102:4074–4079. doi: 10.1073/pnas.0407475102. PubMed DOI PMC

Siegfried KR, Nüsslein-Volhard C. Germ line control of female sex determination in zebrafish. Dev. Biol. 2008;324:277–287. doi: 10.1016/j.ydbio.2008.09.025. PubMed DOI

Tzung KW, et al. Early depletion of primordial germ cells in Zebrafish promotes testis formation. Stem Cell Rep. 2015;4:61–73. doi: 10.1016/j.stemcr.2014.10.011. PubMed DOI PMC

Kondracki S, Bonaszewska D, Mielnicka C. The effect of age on the morphometric sperm traits of domestic pigs (Sus scrofa domestica) Cell. Mol. Biol. Lett. 2005;10:3–13. PubMed

Yamaha E, et al. Primordial germ cell in teleost fish with special references to its specification and migration. J. Appl. Ichthyol. 2010;26:816–822. doi: 10.1111/j.1439-0426.2010.01548.x. DOI

Raz E. Primordial germ-cell development: the zebrafish perspective. Nat. Rev. Genet. 2003;4:690–700. doi: 10.1038/nrg1154. PubMed DOI

Yoshizaki G, Takeuchi Y, Kobayashi T, Takeuchi T. Primordial germ cell: a novel tool for fish bioengineering. Fish. Physiol. Biochem. 2003;28:453–457. doi: 10.1023/B:FISH.0000030628.91607.2d. DOI

Yoshizaki G, Takeuchi Y, Kobayashi T, Ihara S, Takeuchi T. Primordial germ cells: the blueprint for a piscine life. Fish. Physiol. Biochem. 2002;26:3–12. doi: 10.1023/A:1023388317621. DOI

Krøvel AV, Olsen LC. Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech. Dev. 2002;116:141–150. doi: 10.1016/S0925-4773(02)00154-5. PubMed DOI

Franěk R, Tichopád T, Fučíková M, Steinbach C, Pšenička M. Production and use of triploid zebrafish for surrogate reproduction. Theriogenology. 2019;140:33–43. doi: 10.1016/j.theriogenology.2019.08.016. PubMed DOI

Clelland E, Peng C. Endocrine/paracrine control of zebrafish ovarian development. Mol. Cell. Endocrinol. 2009;312:42–52. doi: 10.1016/j.mce.2009.04.009. PubMed DOI

He W, Dai X, Chen X, He J, Yin Z. Zebrafish pituitary gene expression before and after sexual maturation. J. Endocrinol. 2014;221:429–440. doi: 10.1530/JOE-13-0488. PubMed DOI

Wong TT, Saito T, Crodian J, Collodi P. Zebrafish germline chimeras produced by transplantation of ovarian germ cells into sterile host larvae. Biol. Reprod. 2011;84:1190–1197. doi: 10.1095/biolreprod.110.088427. PubMed DOI PMC

Marinović Z, et al. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci. Rep. 2019;9:13861. doi: 10.1038/s41598-019-50169-1. PubMed DOI PMC

Ichida K, et al. Enrichment of transplantable germ cells in salmonids using a novel monoclonal antibody by magnetic-activated cell sorting. Mol. Reprod. Dev. 2019;86:1810–1821. doi: 10.1002/mrd.23275. PubMed DOI

Yazawa R, Takeuchi Y, Morita T, Ishida M, Yoshizaki G. The Pacific bluefin tuna (Thunnus orientalis) dead end gene is suitable as a specific molecular marker of type A spermatogonia. Mol. Reprod. Dev. 2013;80:871–880. doi: 10.1002/mrd.22224. PubMed DOI

Yano A, Suzuki K, Yoshizaki G. Flow-cytometric isolation of testicular germ cells from rainbow Trout (Oncorhynchus mykiss) carrying the green fluorescent protein gene driven by Trout vasa regulatory regions. Biol. Reprod. 2008;78:151–158. doi: 10.1095/biolreprod.107.064667. PubMed DOI

Goto-Kazeto R, Kight KE, Zohar Y, Place AR, Trant JM. Localization and expression of aromatase mRNA in adult zebrafish. Gen. Comp. Endocrinol. 2004;139:72–84. doi: 10.1016/j.ygcen.2004.07.003. PubMed DOI

Guiguen Y, Fostier A, Piferrer F, Chang CF. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen. Comp. Endocrinol. 2010;165:352–366. doi: 10.1016/j.ygcen.2009.03.002. PubMed DOI

Baroiller JF, D’Cotta H. Environment and sex determination in farmed fish. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 2001;130:399–409. doi: 10.1016/S1532-0456(01)00267-8. PubMed DOI

Matson C, et al. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011;476:101–104. doi: 10.1038/nature10239. PubMed DOI PMC

Chiang EFL, et al. Two Sox9 genes on duplicated Zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 2001;231:149–163. doi: 10.1006/dbio.2000.0129. PubMed DOI

Kurokawa H, et al. Germ cells are essential for sexual dimorphism in the medaka gonad. Proc. Natl Acad. Sci. USA. 2007;104:16958–16963. doi: 10.1073/pnas.0609932104. PubMed DOI PMC

Ye D, et al. Abundance of early embryonic primordial germ cells promotes Zebrafish female differentiation as revealed by lifetime labeling of germline. Mar. Biotechnol. 2019;21:217–228. doi: 10.1007/s10126-019-09874-1. PubMed DOI PMC

Saito T, Goto-Kazeto R, Arai K, Yamaha E. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol. Reprod. 2008;78:159–166. doi: 10.1095/biolreprod.107.060038. PubMed DOI

Zhang F, et al. Surrogate production of genome-edited sperm from a different subfamily by spermatogonial stem cell transplantation. Sci. China Life Sci. 2022;65:969–987. doi: 10.1007/s11427-021-1989-9. PubMed DOI

Barneche DR, Ross Robertson D, White CR, Marshall DJ. Fish reproductive-energy output increases disproportionately with body size. Science. 2018;360:642–645. doi: 10.1126/science.aao6868. PubMed DOI

Hayward A, Gillooly JF. The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS ONE. 2011;6:16557. doi: 10.1371/journal.pone.0016557. PubMed DOI PMC

Yang H, Tiersch TR. Current status of sperm cryopreservation in biomedical research fish models: Zebrafish, medaka, and Xiphophorus. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 2009;149:224–232. doi: 10.1016/j.cbpc.2008.07.005. PubMed DOI PMC

Howe K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nat. 2013;496:498–503. doi: 10.1038/nature12111. PubMed DOI PMC

Marinović Z, et al. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Sci. Rep. 2019;9:1–10. doi: 10.1038/s41598-019-50169-1. PubMed DOI PMC

Majhi SK. Generation of surrogate goldfish Carassius auratus progeny from common carp Cyprinus carpio parents. 3 Biotech. 2023;13:1–14. doi: 10.1007/s13205-022-03424-8. PubMed DOI PMC

Ren Y, et al. Production of donor-derived offsprings by allogeneic transplantation of oogonia in the adult Japanese flounder (Paralichthys olivaceus) Aquaculture. 2021;543:736977. doi: 10.1016/j.aquaculture.2021.736977. DOI

Maegawa S, et al. Visualization of primordial germ cells in vivo using GFP-nos1 3’UTR mRNA. Int. J. Dev. Biol. 2002;50:691–700. PubMed

Panda RP, Barman HK, Mohapatra C. Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology. 2011;76:241–251. doi: 10.1016/j.theriogenology.2011.01.031. PubMed DOI

Sullivan-Brown J, Bisher M, Burdine R. Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat. Protoc. 2011;6:46–55. doi: 10.1038/nprot.2010.165. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...