POLR1A variants underlie phenotypic heterogeneity in craniofacial, neural, and cardiac anomalies

. 2023 May 04 ; 110 (5) : 809-825. [epub] 20230418

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37075751

Grantová podpora
K08 HL143177 NHLBI NIH HHS - United States
K12 HD028827 NICHD NIH HHS - United States
R01 DE027091 NIDCR NIH HHS - United States

Odkazy

PubMed 37075751
PubMed Central PMC10183370
DOI 10.1016/j.ajhg.2023.03.014
PII: S0002-9297(23)00098-8
Knihovny.cz E-zdroje

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.

Atrium Health's Levine Children's Hospital Charlotte NC USA

CCA AHU de génétique clinique et de neurogénétique Service de Génétique et de Neurologie CHU de Caen Caen France

Department of Clinical Genetics Erasmus MC Rotterdam the Netherlands

Department of Neurology Charles University 1st Faculty of Medicine and General University Hospital Prague Prague Czech Republic

Department of Neurology Comprehensive Epilepsy Center New York University Grossman School of Medicine New York NY USA

Department of Neurology P J Safarik University Kosice Slovak Republic; Department of Neurology University Hospital of L Pasteur Kosice Slovak Republic

Department of Pathology and Laboratory Medicine Children's Mercy Kansas City 2401 Gillham Road Kansas City MO USA; Genomic Medicine Center Children's Mercy Research Institute 2401 Gillham Road Kansas City MO USA; School of Medicine University of Missouri Kansas City 2411 Holmes Street Kansas City MO USA

Department of Pediatrics Penn State Health Children's Hospital Hershey PA USA

Department of Pediatrics University of Washington Seattle WA USA

Department of Women's Health University of Texas Austin Dell Medical Center Austin TX USA

Division of Clinical Genetics Department of Pediatrics Children's Mercy Kansas City 2401 Gillham Road Kansas City MO USA

Division of Human Genetics Cincinnati Children's Hospital Medical Center Cincinnati OH USA

Division of Human Genetics Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA

Division of Medical Genetics Department of Pediatrics University of California San Francisco San Francisco CA USA

GeneDx LLC Gaithersburg MD USA

Genetic Department APHP Sorbonne Université Pitié Salpêtrière Hospital 47 83 Boulevard de l'Hôpital 75013 Paris France

Genome Dynamics Laboratory National Institute of Genetics Mishima Shizuoka Japan; Department of Genetics School of Life Science Sokendai Mishima Shizuoka Japan

Institute of Neurogenomics Helmholtz Zentrum München Munich Germany; Institute of Human Genetics School of Medicine Technical University of Munich Munich Germany

Institute of Neurogenomics Helmholtz Zentrum München Munich Germany; Institute of Human Genetics School of Medicine Technical University of Munich Munich Germany; Lehrstuhl für Neurogenetik Technische Universität München Munich Germany; Munich Cluster for Systems Neurology SyNergy Munich Germany

Paediatric Neuroscience Research Group Royal Hospital for Children Glasgow G667AB UK

Sibley Heart Center Atlanta GA USA

Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH USA; Department of Pediatrics The Ohio State University School of Medicine Columbus OH USA

Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH USA; Division of Developmental Biology Cincinnati Children's Hospital Medical Center Cincinnati OH USA

Stowers Institute for Medical Research Kansas City MO USA

Stowers Institute for Medical Research Kansas City MO USA; Department of Anatomy and Cell Biology University of Kansas Medical Center Kansas City KS USA

The Cancer Institute of JFCR Tokyo Japan

University of São Paulo São Paulo Brazil

Victorian Clinical Genetics Services Murdoch Children's Research Institute Flemington Road Melbourne VIC Australia

Victorian Clinical Genetics Services Murdoch Children's Research Institute Flemington Road Melbourne VIC Australia; University of Melbourne Melbourne VIC Australia

Victorian Clinical Genetics Services Murdoch Children's Research Institute Flemington Road Melbourne VIC Australia; University of Melbourne Melbourne VIC Australia; Australian Genomics Melbourne VIC Australia

Zobrazit více v PubMed

Misiaszek A.D., Girbig M., Grötsch H., Baudin F., Murciano B., Lafita A., Müller C.W. Cryo-EM structures of human RNA polymerase I. Nat. Struct. Mol. Biol. 2021;28:997–1008. PubMed PMC

Vincent M., Geneviève D., Ostertag A., Marlin S., Lacombe D., Martin-Coignard D., Coubes C., David A., Lyonnet S., Vilain C., et al. Treacher Collins syndrome: a clinical and molecular study based on a large series of patients. Genet. Med. 2016;18:49–56. PubMed

Dauwerse J.G., Dixon J., Seland S., Ruivenkamp C.A.L., van Haeringen A., Hoefsloot L.H., Peters D.J.M., Boers A.C.d., Daumer-Haas C., Maiwald R., et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat. Genet. 2011;43:20–22. PubMed

Schaefer E., Collet C., Genevieve D., Vincent M., Lohmann D.R., Sanchez E., Bolender C., Eliot M.M., Nürnberg G., Passos-Bueno M.R., et al. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome. Genet. Med. 2014;16:720–724. PubMed

Thiffault I., Wolf N.I., Forget D., Guerrero K., Tran L.T., Choquet K., Lavallée-Adam M., Poitras C., Brais B., Yoon G., et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat. Commun. 2015;6:7623. PubMed PMC

Sanchez E., Laplace-Builhé B., Mau-Them F.T., Richard E., Goldenberg A., Toler T.L., Guignard T., Gatinois V., Vincent M., Blanchet C., et al. POLR1B and neural crest cell anomalies in Treacher Collins syndrome type 4. Genet. Med. 2020;22:547–556. PubMed PMC

Weaver K.N., Watt K.E.N., Hufnagel R.B., Navajas Acedo J., Linscott L.L., Sund K.L., Bender P.L., König R., Lourenco C.M., Hehr U., et al. Acrofacial Dysostosis, Cincinnati Type, a Mandibulofacial Dysostosis Syndrome with Limb Anomalies, Is Caused by POLR1A Dysfunction. Am. J. Hum. Genet. 2015;96:765–774. PubMed PMC

Falcon K.T., Watt K.E.N., Dash S., Zhao R., Sakai D., Moore E.L., Fitriasari S., Childers M., Sardiu M.E., Swanson S., et al. Dynamic regulation and requirement for ribosomal RNA transcription during mammalian development. Proc. Natl. Acad. Sci. USA. 2022;119 e2116974119. PubMed PMC

Shenoy R.D., Shetty V., Dheedene A., Menten B., Pandyanda Nanjappa D., Chakraborty G., Sips P., de Paepe A., Callewaert B., Chakraborty A. Phenotypic and Molecular Heterogeneity in Mandibulofacial Dysostoses: A Case Series From India. Cleft Palate Craniofac J. 2021;59:1346–1351. PubMed

da Rocha L.A., Pires L.V.L., Yamamoto G.L., Magliocco Ceroni J.R., Honjo R.S., de Novaes França Bisneto E., Oliveira L.A.N., Rosenberg C., Krepischi A.C.V., Passos-Bueno M.R., et al. Congenital limb deficiency: Genetic investigation of 44 individuals presenting mainly longitudinal defects in isolated or syndromic forms. Clin. Genet. 2021;100:615–623. PubMed

Kara B., Köroğlu Ç., Peltonen K., Steinberg R.C., Maraş Genç H., Hölttä-Vuori M., Güven A., Kanerva K., Kotil T., Solakoğlu S., et al. Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A. Eur. J. Hum. Genet. 2017;25:315–323. PubMed PMC

Edvardson S., Nicolae C.M., Agrawal P.B., Mignot C., Payne K., Prasad A.N., Prasad C., Sadler L., Nava C., Mullen T.E., et al. Heterozygous De Novo UBTF Gain-of-Function Variant Is Associated with Neurodegeneration in Childhood. Am. J. Hum. Genet. 2017;101:267–273. PubMed PMC

Gazda H.T., Sheen M.R., Vlachos A., Choesmel V., O'Donohue M.F., Schneider H., Darras N., Hasman C., Sieff C.A., Newburger P.E., et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am. J. Hum. Genet. 2008;83:769–780. PubMed PMC

Sobreira N., Schiettecatte F., Valle D., Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015;36:928–930. PubMed PMC

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. PubMed PMC

Ide S., Imai R., Ochi H., Maeshima K. Transcriptional suppression of ribosomal DNA with phase separation. Sci. Adv. 2020;6:eabb5953. PubMed PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. PubMed PMC

Shamir L., Orlov N., Eckley D.M., Macura T., Johnston J., Goldberg I.G. Wndchrm - an open source utility for biological image analysis. Source Code Biol. Med. 2008;3:13. PubMed PMC

Matsumori H., Watanabe K., Tachiwana H., Fujita T., Ito Y., Tokunaga M., Sakata-Sogawa K., Osakada H., Haraguchi T., Awazu A., et al. Ribosomal protein L5 facilitates rDNA-bundled condensate and nucleolar assembly. Life Sci. Alliance. 2022;5:e202101045. PubMed PMC

Felsenstein J. PHYLIP: Phylogeny Inference Package (Version 3.2) Cladistics. 1989;5:164–166.

Skarnes W.C., Rosen B., West A.P., Koutsourakis M., Bushell W., Iyer V., Mujica A.O., Thomas M., Harrow J., Cox T., et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–342. PubMed PMC

Yuan C.L., Hu Y.C. A Transgenic Core Facility's Experience in Genome Editing Revolution. Adv. Exp. Med. Biol. 2017;1016:75–90. PubMed

Haeussler M., Schönig K., Eckert H., Eschstruth A., Mianné J., Renaud J.B., Schneider-Maunoury S., Shkumatava A., Teboul L., Kent J., et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17:148. PubMed PMC

Scott M.A., Hu Y.C. Generation of CRISPR-Edited Rodents Using a Piezo-Driven Zygote Injection Technique. Methods Mol. Biol. 2019;1874:169–178. PubMed

Danielian P.S., Muccino D., Rowitch D.H., Michael S.K., McMahon A.P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 1998;8:1323–1326. PubMed

Matsuoka T., Ahlberg P.E., Kessaris N., Iannarelli P., Dennehy U., Richardson W.D., McMahon A.P., Koentges G. Neural crest origins of the neck and shoulder. Nature. 2005;436:347–355. PubMed PMC

Verzi M.P., McCulley D.J., De Val S., Dodou E., Black B.L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 2005;287:134–145. PubMed

Kawaguchi D., Sahara S., Zembrzycki A., O'Leary D.D.M. Generation and analysis of an improved Foxg1-IRES-Cre driver mouse line. Dev. Biol. 2016;412:139–147. PubMed PMC

Muzumdar M.D., Tasic B., Miyamichi K., Li L., Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45:593–605. PubMed

Takase Y., Tadokoro R., Takahashi Y. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos. Dev. Growth Differ. 2013;55:792–801. PubMed

Ide S., Tamura S., Maeshima K. Chromatin behavior in living cells: Lessons from single-nucleosome imaging and tracking. Bioessays. 2022;44:e2200043. PubMed

Trainor K., Watt K. In: Neural Crest Cells: Evolution, Development and Disease. Trainor P.A., editor. Elsevier; 2014. Neurocristopathies; pp. 361–394.

Gandhi S., Bronner M.E. Insights into neural crest development from studies of avian embryos. Int. J. Dev. Biol. 2018;62:183–194. PubMed

Watt K.E.N., Neben C.L., Hall S., Merrill A.E., Trainor P.A. tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis-Cincinnati type. Hum. Mol. Genet. 2018;27:2628–2643. PubMed PMC

Conway S.J., Kruzynska-Frejtag A., Kneer P.L., Machnicki M., Koushik S.V. What cardiovascular defect does my prenatal mouse mutant have, and why? Genesis. 2003;35:1–21. PubMed

Yelbuz T.M., Waldo K.L., Kumiski D.H., Stadt H.A., Wolfe R.R., Leatherbury L., Kirby M.L. Shortened outflow tract leads to altered cardiac looping after neural crest ablation. Circulation. 2002;106:504–510. PubMed

Stottmann R.W., Choi M., Mishina Y., Meyers E.N., Klingensmith J. BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium. Development. 2004;131:2205–2218. PubMed PMC

Waldo K.L., Hutson M.R., Ward C.C., Zdanowicz M., Stadt H.A., Kumiski D., Abu-Issa R., Kirby M.L. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev. Biol. 2005;281:78–90. PubMed

Kimberly E., Inman M.E., Bronner-Fraser B., Trainor P.A. In: Heart Development and Regeneration. Rosenthal N., Harvey R., editors. Elsevier; 2010. Role of Cardiac Neural Crest Cells in Morphogenesis of the Heart and Great Vessels; pp. 417–439.

Edmondson D.G., Lyons G.E., Martin J.F., Olson E.N. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development. 1994;120:1251–1263. PubMed

Ariani F., Hayek G., Rondinella D., Artuso R., Mencarelli M.A., Spanhol-Rosseto A., Pollazzon M., Buoni S., Spiga O., Ricciardi S., et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am. J. Hum. Genet. 2008;83:89–93. PubMed PMC

Gauquelin L., Cayami F.K., Sztriha L., Yoon G., Tran L.T., Guerrero K., Hocke F., van Spaendonk R.M.L., Fung E.L., D'Arrigo S., et al. Clinical spectrum of POLR3-related leukodystrophy caused by biallelic POLR1C pathogenic variants. Neurol. Genet. 2019;5:e369. PubMed PMC

Gripp K.W., Curry C., Olney A.H., Sandoval C., Fisher J., Chong J.X.L., UW Center for Mendelian Genomics. Pilchman L., Sahraoui R., Stabley D.L., Sol-Church K. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. 2014;164A:2240–2249. PubMed PMC

Landowski M., O'Donohue M.F., Buros C., Ghazvinian R., Montel-Lehry N., Vlachos A., Sieff C.A., Newburger P.E., Niewiadomska E., Matysiak M., et al. Novel deletion of RPL15 identified by array-comparative genomic hybridization in Diamond-Blackfan anemia. Hum. Genet. 2013;132:1265–1274. PubMed PMC

Pradat P., Francannet C., Harris J.A., Robert E. The epidemiology of cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr. Cardiol. 2003;24:195–221. PubMed

Willig T.N., Niemeyer C.M., Leblanc T., Tiemann C., Robert A., Budde J., Lambiliotte A., Kohne E., Souillet G., Eber S., et al. Identification of new prognosis factors from the clinical and epidemiologic analysis of a registry of 229 Diamond-Blackfan anemia patients. DBA group of Societe d'Hematologie et d'Immunologie Pediatrique (SHIP), Gesellshaft fur Padiatrische Onkologie und Hamatologie (GPOH), and the European Society for Pediatric Hematology and Immunology (ESPHI) Pediatr. Res. 1999;46:553–561. PubMed

Laferté A., Favry E., Sentenac A., Riva M., Carles C., Chédin S. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev. 2006;20:2030–2040. PubMed PMC

Chau K.F., Shannon M.L., Fame R.M., Fonseca E., Mullan H., Johnson M.B., Sendamarai A.K., Springel M.W., Laurent B., Lehtinen M.K. Downregulation of ribosome biogenesis during early forebrain development. Elife. 2018;7:e36998. PubMed PMC

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...