LOGGIC Core BioClinical Data Bank: Added clinical value of RNA-Seq in an international molecular diagnostic registry for pediatric low-grade glioma patients
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem
Grantová podpora
Brain Tumour Charity
HIT-LOGGIC
Pediatric Brain Tumor Foundation
Deutsche Kinderkrebsstiftung
PubMed
37075810
PubMed Central
PMC10628936
DOI
10.1093/neuonc/noad078
PII: 7131410
Knihovny.cz E-zdroje
- Klíčová slova
- RNA sequencing, actionable drivers, molecular profiling, pLGG, rare gene fusions,
- MeSH
- dítě MeSH
- DNA vazebné proteiny genetika MeSH
- gliom * patologie MeSH
- individualizovaná medicína MeSH
- lidé MeSH
- molekulární patologie MeSH
- protoonkogenní proteiny B-Raf * genetika MeSH
- protoonkogenní proteiny genetika MeSH
- sekvenování transkriptomu MeSH
- transkripční faktory genetika MeSH
- tyrosinkinasy MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- protoonkogenní proteiny B-Raf * MeSH
- protoonkogenní proteiny MeSH
- transkripční faktory MeSH
- tyrosinkinasy MeSH
- VGLL1 protein, human MeSH Prohlížeč
BACKGROUND: The international, multicenter registry LOGGIC Core BioClinical Data Bank aims to enhance the understanding of tumor biology in pediatric low-grade glioma (pLGG) and provide clinical and molecular data to support treatment decisions and interventional trial participation. Hence, the question arises whether implementation of RNA sequencing (RNA-Seq) using fresh frozen (FrFr) tumor tissue in addition to gene panel and DNA methylation analysis improves diagnostic accuracy and provides additional clinical benefit. METHODS: Analysis of patients aged 0 to 21 years, enrolled in Germany between April 2019 and February 2021, and for whom FrFr tissue was available. Central reference histopathology, immunohistochemistry, 850k DNA methylation analysis, gene panel sequencing, and RNA-Seq were performed. RESULTS: FrFr tissue was available in 178/379 enrolled cases. RNA-Seq was performed on 125 of these samples. We confirmed KIAA1549::BRAF-fusion (n = 71), BRAF V600E-mutation (n = 12), and alterations in FGFR1 (n = 14) as the most frequent alterations, among other common molecular drivers (n = 12). N = 16 cases (13%) presented rare gene fusions (eg, TPM3::NTRK1, EWSR1::VGLL1, SH3PXD2A::HTRA1, PDGFB::LRP1, GOPC::ROS1). In n = 27 cases (22%), RNA-Seq detected a driver alteration not otherwise identified (22/27 actionable). The rate of driver alteration detection was hereby increased from 75% to 97%. Furthermore, FGFR1 internal tandem duplications (n = 6) were only detected by RNA-Seq using current bioinformatics pipelines, leading to a change in analysis protocols. CONCLUSIONS: The addition of RNA-Seq to current diagnostic methods improves diagnostic accuracy, making precision oncology treatments (MEKi/RAFi/ERKi/NTRKi/FGFRi/ROSi) more accessible. We propose to include RNA-Seq as part of routine diagnostics for all pLGG patients, especially when no common pLGG alteration was identified.
2nd Department of Pediatrics Semmelweis University Budapest Hungary
Children's Cancer Institute Lowy Cancer Research Centre UNSW Sydney Sydney Australia
Clinical Cooperation Unit Neuropathology German Cancer Research Center Heidelberg Germany
Clinical Cooperation Unit Pediatric Oncology German Cancer Research Center Heidelberg Germany
Department of Haematology and Oncology Children's Health Ireland at Crumlin Dublin Ireland
Department of Health Sciences and Medicine University of Lucerne Lucerne Switzerland
Department of Paediatrics McMaster Children's Hospital and McMaster University Hamilton Canada
Department of Pediatric Hematology and Oncology Saint Luc University Hospital Brussels Belgium
Department of Pediatric Oncology Princess Máxima Center for Pediatric Oncology Utrecht Netherlands
Division of Pediatric Glioma Research German Cancer Research Center Heidelberg Germany
Division of Pediatric Neurooncology German Cancer Research Center Heidelberg Germany
German Cancer Consortium Heidelberg Germany
Great Ormond Street Hospital for Children NHS Trust London London UK
Heidelberg Medical Faculty University of Heidelberg Heidelberg Germany
Hopp Children's Cancer Center Heidelberg Heidelberg Germany
Kids Cancer Centre Sydney Children's Hospital High St Randwick NSW Australia
National Center for Tumor Diseases Heidelberg Germany
Neuro Oncology Unit Pediatric Cancer Center Hospital Sant Joan de Deu Barcelona Spain
Pediatric Oncology Unit Padova University Padova Italy
School of Clinical Medicine UNSW Medicine and Health UNSW Sydney Sydney NSW Australia
Section of Pediatric Oncology UNN University Hospital of Northern Norway Tromsø Norway
Swedish Childhood Cancer Registry Karolinska Institutet Stockholm Sweden
Zobrazit více v PubMed
Ostrom QT, Price M, Ryan K, et al. . CBTRUS statistical report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro-Oncol. 2022; 24(Suppl 3):iii11–iii38 PubMed PMC
Louis DN, Perry A, Wesseling P, et al. . The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021; 23(8):1231–1251. PubMed PMC
Jones DT, Hutter B, Jäger N, et al. . Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013; 45(8):927–932. PubMed PMC
Packer RJ, Pfister S, Bouffet E, et al. . Pediatric low-grade gliomas: implications of the biologic era. Neuro-Oncol. 2017; 19(6):750–761. PubMed PMC
Jones DT, Kocialkowski S, Liu L, et al. . Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008; 68(21):8673–8677. PubMed PMC
Pfister S, Janzarik WG, Remke M, et al. . BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008; 118(5):1739–1749. PubMed PMC
Sturm D, Pfister SM, Jones DTW.. Pediatric gliomas: current concepts on diagnosis, biology, and clinical management. Am J Clin Oncol. 2017; 35(21):2370–2377. PubMed
Ryall S, Zapotocky M, Fukuoka K, et al. . Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell. 2020; 37(4):569–583.e5. PubMed PMC
Fisher MJ, Jones DTW, Li Y, et al. . Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol. 2021; 141(4):605–617. PubMed
Rodriguez FJ, Perry A, Gutmann DH, et al. . Gliomas in neurofibromatosis type 1: a clinicopathologic study of 100 patients. J Neuropathol Exp Neurol. 2008; 67(3):240–249. PubMed PMC
Gnekow AK, Walker DA, Kandels D, et al. . A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma - A final report. Eur J Cancer. 2017; 81:206–225. doi:10.1016/j.ejca.2017.04.019 PubMed PMC
Guerreiro Stucklin AS, Tabori U, Grotzer MA.. The changing landscape of pediatric low-grade gliomas: clinical challenges and emerging therapies. Neuropediatrics. 2016; 47(2):70–83. PubMed
Armstrong GT, Conklin HM, Huang S, et al. . Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro-Oncol. 2011; 13(2):223–234. PubMed PMC
Kandels D, Pietsch T, Bison B, et al. . Loss of efficacy of subsequent nonsurgical therapy after primary treatment failure in pediatric low-grade glioma patients—report from the German SIOP-LGG 2004 cohort. Int J Cancer. 2020; 147(12):3471–3489. PubMed
Goebel AM, Gnekow AK, Kandels D, et al. . Natural history of pediatric low-grade glioma disease - first multi-state model analysis. J Cancer. 2019; 10(25):6314–6326. PubMed PMC
Bandopadhayay P, Bergthold G, London WB, et al. . Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer. 2014; 61(7):1173–1179. PubMed PMC
Fangusaro J, Bandopadhayay P.. The “risk” in pediatric low-grade glioma. Cancer Cell. 2020; 37(4):424–425. PubMed
Gnekow AK, Kandels D, Tilburg CV, et al. . SIOP-E-BTG and GPOH guidelines for diagnosis and treatment of children and adolescents with low grade glioma. Klin Padiatr. 2019; 231(3):107–135. PubMed
de Blank P, Bandopadhayay P, Haas-Kogan D, Fouladi M, Fangusaro J.. Management of pediatric low-grade glioma. Curr Opin Pediatr. 2019; 31(1):21–27. PubMed PMC
Pearson ADJ, Allen C, Fangusaro J, et al. . Paediatric strategy forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European medicines agency with participation of the food and drug administration. Eur J Cancer. 2022; 177:120–142. doi:10.1016/j.ejca.2022.09.036 PubMed
Capper D, Jones DTW, Sill M, et al. . DNA methylation-based classification of central nervous system tumours. Nature. 2018; 555(7697):469–474. PubMed PMC
Stichel D, Schrimpf D, Sievers P, et al. . Accurate calling of KIAA1549-BRAF fusions from DNA of human brain tumours using methylation array-based copy number and gene panel sequencing data. Neuropathol Appl Neurobiol. 2021; 47(3):406–414. PubMed
McPherson A, Hormozdiari F, Zayed A, et al. . deFuse: An algorithm for gene fusion discovery in tumor RNA-seq data. PLoS Comput Biol. 2011; 7(5):e1001138. PubMed PMC
Alioto TS, Buchhalter I, Derdak S, et al. . A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nat Commun. 2015; 6. doi:10.1038/ncomms10001 PubMed PMC
Hehir-Kwa JY, Koudijs MJ, Verwiel ETP, et al. . Improved gene fusion detection in childhood cancer diagnostics using RNA sequencing. JCO Precis Oncol. 2022; 6:e2000504. doi:10.1200/PO.20.00504 PubMed PMC
Sommerkamp AC, Uhrig S, Stichel D, et al. . An optimized workflow to improve reliability of detection of KIAA1549:BRAF fusions from RNA sequencing data. Acta Neuropathol. 2020; 140(2):237–239. PubMed PMC
Zhang J, Wu G, Miller CP, et al. . Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013; 45(6):602–612. PubMed PMC
Qaddoumi I, Orisme W, Wen J, et al. . Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 2016; 131(6):833–845. PubMed PMC
Buhl JL, Selt F, Hielscher T, et al. . The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma. Clin Cancer Res. 2019; 25(6):1851–1866. PubMed
Selt F, Sigaud R, Valinciute G, et al. . BH3 mimetics targeting BCL-XL impact the senescent compartment of pilocytic astrocytoma. Neuro-Oncol. 2023;25(4):735–747. PubMed PMC
van Tilburg CM, Pfaff E, Pajtler KW, et al. . The pediatric precision oncology INFORM registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 2021; 11(11):2764–2779. PubMed PMC
Stichel D, Schrimpf D, Casalini B, et al. . Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathol. 2019; 138(5):827–835. PubMed
GEO
GSE228100