Total Phenolic and Total Flavonoid Content, Individual Phenolic Compounds and Antioxidant Activity in Sweet Rowanberry Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2023/003
Tomas Bata University in Zlin
PubMed
37107288
PubMed Central
PMC10135960
DOI
10.3390/antiox12040913
PII: antiox12040913
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant activity, correlation analyses, cultivars, polyphenolic compounds, rowanberry,
- Publikační typ
- časopisecké články MeSH
Sweet rowanberry and its cultivars represent a less-known fruit species with significant antioxidant activity, mostly promoted by polyphenolic compounds. This paper examined seven Sorbus cultivars and evaluated their total polyphenolic and flavonoid content, as well as the content of individual polyphenolic compounds from the group of phenolic acids and flavonoids. It also determined their antioxidant activity using DPPH, ACW and ACL. Furthermore, to reflect the distribution of the contribution to antioxidant activity, correlations between antioxidant activity and the contents of ascorbic acid, vitamin E and individual phenolic compounds were established. The highest total phenolic content of 8307.4 mg kg-1 was determined in 'Granatina', with the main contribution of phenolic acid content of 7001.7 mg kg-1 and a significantly lower total flavonoid content of 1304.6 mg kg-1. Flavanols represented the most abundant group of flavonoids, with catechin being the second most frequent flavanol with the highest content of 633.67 mg kg-1 in 'Granatina'. Flavonols were represented by rutin and quercetin. 'Businka' displayed a significant vitamin E content of 4.77 mg kg-1, and 'Alaja Krupnaja' had the highest vitamin C level of 7.89 g kg-1. These results emphasize their potential health and nutritional benefits and, thus, their promising and valuable role in the food processing industry.
Zobrazit více v PubMed
Nelson–Jones E.B., Briggs D., Smith A.G. The origin of intermediate species of the genus Sorbus. Theor. Appl. Genet. 2002;105:953–963. doi: 10.1007/s00122-002-0957-6. PubMed DOI
Uhrinova V., Zozomova–Lihova J., Bernatova D., Paule J., Paule L., Gömör D. Origin and genetic differentiation of pink–flowered Sorbus hybrids in the Western Carpathians. Ann. Bot. 2017;120:271–284. doi: 10.1093/aob/mcx013. PubMed DOI PMC
Hukkanen A.T., Pölönen S.S., Kärenlampi S.O., Kokko H.I. Antioxidant capacity and phenolic content of sweet rowanberries. J. Agric. Food Chem. 2006;54:112–119. doi: 10.1021/jf051697g. PubMed DOI
Sarv V., Venskutonis P.R., Bhat R. The Sorbus spp.—Underutilised Plants for Foods and Nutraceuticals: Review on Polyphenolic Phytochemicals and Antioxidant Potential. Antioxidants. 2020;9:813. doi: 10.3390/antiox9090813. PubMed DOI PMC
Sokolov V.V., Savel’ev N.I., Goncharov N.P.I.V. Michurin’s work on expansion of the plant horticulture assortment and improvement of food quality. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2015;69:190–197. doi: 10.1515/prolas-2015-0028. DOI
Mlcek J., Rop O., Jurikova T., Sochor J., Fisera M., Balla S., Baron M., Hrabe J. Bioactive compounds in sweet rowanberry fruits of interspecific rowan crosses. Cent. Eur. J. Biol. 2014;9:1078–1086. doi: 10.2478/s11535-014-0336-8. DOI
Rengarten G.A., Sorokopudov V.N. Selection of rows as a decorative culture in Russia and in European countries. Vestn. KrasGAU Agron. 2019;6:9–15.
Kylli P., Nohynek L., Puupponen–Pimiä R., Westerlund–Wikström B., McDougall G., Stewart D., Heinonen M. Rowanberry phenolics: Compositional analysis and bioactivities. J. Agric. Food Chem. 2010;58:11985–11992. doi: 10.1021/jf102739v. PubMed DOI
Olszewska M.A., Presler A., Michel P. Profiling of phenolic compounds and antioxidant activity of dry extracts from the selected Sorbus species. Molecules. 2012;17:3093–3113. doi: 10.3390/molecules17033093. PubMed DOI PMC
Šavikin K.P., Zdunić G.M., Krstić–Milošević D.B., Šircelj H.J., Stešević D.D., Pljevljakušić D.S. Sorbus aucuparia and Sorbus aria as a Source of Antioxidant Phenolics, Tocopherols, and Pigments. Chem. Biodivers. 2017;14:e1700329. doi: 10.1002/cbdv.201700329. PubMed DOI
Olszewska M.A., Nowak S., Michel P., Banaszczak P., Kicel A. Assessment of the content of phenolics and antioxidant action of inflorescences and leaves of selected species from the genus Sorbus sensu stricto. Molecules. 2010;15:8769–8783. doi: 10.3390/molecules15128769. PubMed DOI PMC
Mattila P., Hellström J., Törrönen R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006;54:7193–7199. doi: 10.1021/jf0615247. PubMed DOI
Jurikova T., Sochor J., Mlcek J., Balla S., Klejdus B., Baron M., Ercisli S., Ozturk Yilmaz S. Polyphenolic profile of interspecific crosses of rowan (Sorbus aucuparia L.) Ital. J. Food Sci. 2014;26:317–324.
Fomenko S.E., Kushnerova N.F., Sprygin V.G., Drugova E.S., Mmot T.V. Chemical Composition and biological action of rowanberry extract. Russ. J. Bioorganic Chem. 2016;42:764–769. doi: 10.1134/S1068162016070074. DOI
Berna E., Kampuse S., Straumite E. The suitability of different rowanberry cultivars for production of fruit marmalade; Proceedings of the Annual 18th International Scientific Conference “Research for Rural Development”; Jelgava, Latvia. 16–18 May 2012; pp. 109–116.
Minařík P. Diploma Thesis. Mendel University in Brno, Faculty of Agronomy, Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition; Brno, Czech Republic: 2016. Influencing the yield and quality of winter wheat using stabilized nitrogen fertilizers with sulphur.
Orsavová J., Hlaváčová I., Mlček J., Snopek L., Mišurcová L. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva–crispa L.) fruits. Food Chem. 2019;284:323–333. doi: 10.1016/j.foodchem.2019.01.072. PubMed DOI
Sytařová I., Orsavová J., Snopek L., Mlček J., Byczyňski L., Mišurcová L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020;310:125784. doi: 10.1016/j.foodchem.2019.125784. PubMed DOI
Lee M.T., Lin W.C., Yu B., Lee T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals—A review. Asian-Australasian J. Anim. Sci. 2016;30:299–308. doi: 10.5713/ajas.16.0438. PubMed DOI PMC
Evans J.D. Straightforward Statistics for the Behavioral Sciences. Brooks/Cole Publishing; Pacific Grove, CA, USA: 1996. p. 634.
Sarv V., Venskutonis P.R., Rätsep R., Aluvee A., Kazernavičiute R., Bhat R. Antioxidants Characterization of the Fruit, Juice, and Pomace of Sweet Rowanberry (Sorbus aucuparia L.) Cultivated in Estonia. Antioxidants. 2021;10:1779. doi: 10.3390/antiox10111779. PubMed DOI PMC
Jabłońska–Ryś E., Zalewska–Korona M., Kalbarczyk J. Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. J. Fruit Ornam. Plant Research. 2009;17:115–120.
Termentzi A., Kefalas P., Kokkalou E. Antioxidant activities of various extracts and fractions of Sorbus domestica fruits at different maturity stages. Food Chem. 2006;98:599–608. doi: 10.1016/j.foodchem.2005.06.025. DOI
Kivrak I., Kivrak S. Antioxidant properties, phenolic profile and nutritional value for Sorbus umbellata fruits from Turkey. Austin J. Nutr. Food Sci. 2014;2:1–6.
Paulovicsová B., Turianice I., Juriková T., Baloghová M., Matuškovič J. Antioxidant properties of selected less common fruit species. Lucr. Științifice-Zooteh. Și Biotehnol. 2009;42:608–614.
Zymone K., Raudone L., Raudonis R., Marksa M., Ivanauskas L., Janulis V. Phytochemical profiling of fruit powders of twenty Sorbus L. Cultivars. Molecules. 2018;23:2593. doi: 10.3390/molecules23102593. PubMed DOI PMC
Kampuss K., Kampuse S., Berna E., Kruma Z., Krasnova I., Drudze I. A Biochemical composition and antiradical activity of rowanberry (Sorbus L.) cultivars and hybrids with different Rosaceae L. cultivars. Agron. Vestís. 2009;12:59.
Tahirović A., Mehić E., Kjosevski N., Bašić N. Phenolics content and antioxidant activity of three Sorbus species. Bull. Chem. Technol. Bosnia Herzeg. 2019;53:15–21.
Raudonis R., Raudone L., Gaivelyte K., Viškelis P., Janulis V. Phenolic and antioxidant profiles of rowan (Sorbus L.) fruits. Nat. Prod. Res. 2014;28:1231–1240. doi: 10.1080/14786419.2014.895727. PubMed DOI
Olszewska M.A., Michel P. Antioxidant activity of inflorescences, leaves and fruits of three Sorbus species in relation to their polyphenolic composition. Nat. Prod. Res. 2009;23:1507–1521. doi: 10.1080/14786410802636177. PubMed DOI
Rop O., Mlček J., Kramářová D., Juriková T. Selected cultivars of cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr. J. Biotechnol. 2010;9:1205–1210.
Mrkonjić Z., Nađpal J., Beara I., Šibul F., Knežević P., Lesjak M., Mimica–Dukić M. Fresh fruits and jam of Sorbus domestica L. and Sorbus intermedia (Ehrh.) Pers. 2019. phenolic profiles, antioxidant action and antimicrobial activity. Bot. Serbica. 2019;43:187–196. doi: 10.2298/BOTSERB1902187M. DOI
Isaikina N.V., Kalinkina G.I., Razina T.G., Zueva E.P., Rybalkina O.Y., Ulirich A.V., Fedorova E.P., Shilova A.B. Sorbus aucuparia L. fruit is a source of the drug for increasing the efficiency of tumor chemotherapy. Russ. J. Bioorganic Chem. 2018;44:899–905. doi: 10.1134/S1068162018070038. DOI
Termentzi A., Kefalas P., Kokkalou E. 2008. LC–DAD–MS (ESI+) analysis of the phenolic content of Sorbus domestica fruits in relation to their maturity stage. Food Chem. 2008;106:1234–1245. doi: 10.1016/j.foodchem.2007.07.021. DOI
Mikulic–Petkovsek M., Krska B., Kiprovski B., Veberic R. 2017. Bioactive components and antioxidant capacity of fruits from nine Sorbus genotypes. J. Food Sci. 2017;82:647–658. PubMed
Mrkonjić Z.O., Nadpal J.D., Beara I.N., Sabo V.S.A., Cetojević–Simin D.D., Mimica–Dukić N.M., Lesjak M.M. Phenolic profiling and bioactivities of fresh fruits and jam of Sorbus species. J. Serb. Chem. Soc. 2017;82:651–664. doi: 10.2298/JSC170202049M. DOI
Bobinaitė R., Grootaert C., Van Camp J., Šarkinas A., Liaudanskas M., Žvikas V., Viškelis P., Rimantas Venskutonis P. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of the extracts isolated from the pomace of rowanberry (Sorbus aucuparia L.) Food Res. Int. 2020;136:109310. doi: 10.1016/j.foodres.2020.109310. PubMed DOI
Piir R., Niiberg T. Rowan in Garden and Kitchen Pihlakas Aias ja Köögis. Maahele Raamat; Tallin, Estonia: 2003.
Häkkinen S.H., Kärenlampi S.O., Heinonen I.M., Mykkanen H.M., Törrönen A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 edible Berries. J. Agric. Food Chem. 1999;47:2274–2279. doi: 10.1021/jf9811065. PubMed DOI
Ozolina U., Kampuse S. Comparison of bioactive compounds of cultivated sweet rowanberry, chokeberry and blackcurrant juice residues; Proceedings of the 14th International Scientific Conference Students on Their Way to Science (Undergraduate, Graduate, Post–Graduate Students) Collection of Abstracts; Jelgava, Latvia. 26 April 2019; pp. 57–58.
Hasbal G., Tugba Y.O., Can A. Antioxidant and antiacetylcholinesterase activities of Sorbus torminalis (L.) Crantz (wild service tree) fruits. J. Food Drug Anal. 2015;23:57–62. doi: 10.1016/j.jfda.2014.06.006. PubMed DOI PMC
Gil–izquierdo A., Mellethin A. Identification and quantitation of flavonols in rowanberry (Sorbus aucuparia L.) juice. Eur. Food Res. Technol. 2001;213:12–17.
Kähkönen M.P., Hopia A.I., Heinonen M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001;49:4076–4082. doi: 10.1021/jf010152t. PubMed DOI