Influence of Storage Conditions on Stability of Phenolic Compounds and Antioxidant Activity Values in Nutraceutical Mixtures with Edible Flowers as New Dietary Supplements

. 2023 Apr 19 ; 12 (4) : . [epub] 20230419

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37107337

This paper investigates the effects of storage conditions on the stability of phenolics and their antioxidant activities in unique nutraceutical supplements containing non-traditional cereal flakes, edible flowers, fruits, nuts, and seeds. Significant total phenolic content (TPC) of 1170-2430 mg GAE/kg and total anthocyanin content (TAC) with the values of 322-663 mg C3G/kg were determined with the highest TPC content established in free phenolic fractions. The most notable declines in TPC (by 53%), TAC (by 62%), phenolics (e.g., glycosylated anthocyanins by 35-67%), and antioxidant activity (by 25% using DPPH) were established in the presence of sunlight at 23 °C followed by the storage at 40 °C. Quercetin, rutin, peonidin, pelargonidin, p-coumaric, ellagic, and p-hydroxybenzoic acids were identified as the least stable phenolics when exposed to sunlight. Furthermore, glycosylated forms of anthocyanins demonstrated a greater stability when compared with anthocyanidins. The mixtures considerably eliminated ABTS and DPPH radicals. In all samples, water-soluble substances showed a higher antioxidant activity than lipid-soluble substances with the main contributors in the following order: delphinidin-3-glucoside (r = +0.9839) > p-coumaric > gallic > sinapic > p-hydroxybenzoic acids > delphinidin > peonidin and malvidin (r = +0.6538). Gluten-free nutraceutical mixtures M3 (containing red rice and black quinoa flakes, red and blue cornflowers, blueberries, and barberries) and M4 (containing red and black rice flakes, rose, blue cornflower, blueberries, raspberries, and barberries) were evaluated as the least stable under all storage conditions although they showed considerable phenolic concentrations. Phenolic contents and antioxidant activity of the nutraceutical mixtures were the highest at 23 °C without the presence of sunlight with the most stable M1 nutraceutical mixture (containing oat and red wheat flakes, hibiscus, lavender, blueberries, raspberries, and barberries).

Zobrazit více v PubMed

Jones J.M., Poutanen K.S. Nutritional aspects of breakfast cereals. In: Perdon A.A., Schonauer S.L., Pountanen K.S., editors. Breakfast Cereals and How They Are Made. 3rd ed. Woodhead Publishing and AACC International Press; Cambridge, MA, USA: 2020. pp. 391–413. DOI

Sutharut J., Sudarat J. Total anthocyanin content and antioxidant activity of germinated colored rice. [(accessed on 10 December 2022)];Int. Food Res. J. 2012 19:215–221. Available online: https://www.ifrj.upm.edu.my/19%20(01)%202011/(28)IFRJ-2011-060%20Sudarat.pdf.

Ryan L., Thondre P.S., Henry C.J.K. Oat-based breakfast cereals are a rich source of polyphenols and high in antioxidant potential. J. Food Compos. Anal. 2011;24:929–934. doi: 10.1016/j.jfca.2011.02.002. DOI

Rocchetti G., Lucini L., Lorenzo Rodriguez J.M., Barba F.J., Giuberti G. Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chem. 2019;271:157–164. doi: 10.1016/j.foodchem.2018.07.176. PubMed DOI

Losada-Barreiro S., Bravo-Díaz C. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases. Eur. J. Med. Chem. 2017;133:379–402. doi: 10.1016/j.ejmech.2017.03.061. PubMed DOI

Lopez-Corona A.V., Valencia-Espinosa I., González-Sánchez F.A., Sánchez-López A.L., Garcia-Amezquita L.E., Garcia-Varela R. Antioxidant, anti-inflammatory and cytotoxic activity of phenolic compound family extracted from raspberries (Rubus idaeus): A general review. Antioxidants. 2022;11:1192. doi: 10.3390/antiox11061192. PubMed DOI PMC

Dufour C., Villa-Rodriguez J.A., Furger C., Lessard-Lord J., Gironde C., Rigal M., Badr A., Desjardins Y., Guyonnet D. Cellular antioxidant effect of an aronia extract and its polyphenolic fractions enriched in proanthocyanidins, phenolic acids, and anthocyanins. Antioxidants. 2022;11:1561. doi: 10.3390/antiox11081561. PubMed DOI PMC

Netzel M., Netzel G., Tian Q., Schwartz S., Konczak I. Native Australian fruits—A novel source of antioxidants for food. IFST. 2007;8:339–346. doi: 10.1016/j.ifset.2007.03.007. DOI

Demasi S., Mellano M.G., Falla N.M., Caser M., Scariot V. Sensory profile, shelf life, and dynamics of bioactive compounds during cold storage of 17 edible flowers. Horticulturae. 2021;7:166. doi: 10.3390/horticulturae7070166. DOI

Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC

Bouvier J.-M. Breakfast cereals. In: Guy R., editor. Extrusion Cooking: Technologies and Applications. 1st ed. Woodhead Publishing; Cambridge, UK: 2001. [(accessed on 14 February 2023)]. p. 206. Available online: https://books.google.cz/books?hl=cs&lr=&id=e1OkAgAAQBAJ&oi=fnd&pg=PA133&dq=breakfast+cereals+consumption+kg&ots=uh-vLZ1Oub&sig=_5bErgfgCtjWqO_XWOg8Ry3O5NM&redir_esc=y#v=onepage&q=breakfast%20cereals%20consumption%20kg&f=false.

Regulation No. 18. Regulation for Cereal and Cereal Products, Pasta and Bakery Products. Ministry of Agriculture; Prague, The Czech Republic: 2020.

Mihaylova D., Popova A. Non-traditional grains for a balanced diet. [(accessed on 15 February 2023)];J. Hyg. Eng. Des. 2018 26:64–71. Available online: https://keypublishing.org/jhed/wp-content/uploads/2020/07/02.-Full-paper-Dasha-Mihaylova.pdf.

Vici G., Belli L., Biondi M., Polzonetti V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016;35:1236–1241. doi: 10.1016/j.clnu.2016.05.002. PubMed DOI

Šťastná K., Mrázková M., Sumczynski D., Cindik B., Yalçin E. The nutritional value of non-traditional gluten-free flakes and their antioxidant activity. Antioxidants. 2019;8:565. doi: 10.3390/antiox8110565. PubMed DOI PMC

Reque P.M., Steffens R.S., Jablonski A., Flôres S.H., Rios A.D.O., de Jong E.V. Cold storage of blueberry (Vaccinium spp.) fruits and juice: Anthocyanin stability and antioxidant activity. J. Food Compos. Anal. 2014;3:111–116. doi: 10.1016/j.jfca.2013.11.007. DOI

Lin Y., Wang Y., Li B., Tan H., Li D., Li L., Liu X., Han J., Meng X. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry. Plant Physiol. Biochem. 2018;127:561–572. doi: 10.1016/j.plaphy.2018.04.034. PubMed DOI

Landi M., Ruffoni B., Combournac L., Guidi L. Nutraceutical value of edible flowers upon cold storage. [(accessed on 5 December 2022)];Ital. J. Food Sci. 2018 30:336–347. Available online: https://www.itjfs.com/index.php/ijfs/article/view/756.

Mrázková M., Sumczynski D., Orsavová J. Non-traditional muesli mixtures supplemented by edible flowers: Analysis of nutritional composition, phenolic acids, flavonoids and anthocyanins. Plant Foods Hum. Nutr. 2021;76:371–376. doi: 10.1007/s11130-021-00918-3. PubMed DOI

Demasi S., Caser M., Donno D., Enri S.R., Lonati M., Scariot V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021;33:27–48. doi: 10.2478/fhort-2021-0004. DOI

Chen Q., Xu B., Huang W., Amrouche A.T., Maurizio B., Simal-Gandara J., Tundis R., Xiao J., Zou L., Lu B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci. Technol. 2020;106:30–47. doi: 10.1016/j.tifs.2020.09.023. DOI

Zhao L., Fan H., Zhang M., Chitrakar B., Bhandari B., Wang B. Edible flowers: Review of flower processing and extraction of bioactive compounds by novel technologies. Int. Food Res. J. 2019;126:108660. doi: 10.1016/j.foodres.2019.108660. PubMed DOI

Chen G.-L., Chen S.-G., Xie Y.-Q., Chen F., Zhao Y.-Y., Luo C.-X., Gao Y.-Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. JFF. 2015;17:243–259. doi: 10.1016/j.jff.2015.05.028. DOI

Zheng J., Lu B., Xu B. An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chem. 2021;340:127940. doi: 10.1016/j.foodchem.2020.127940. PubMed DOI

Mlček J., Sumczynski D. Nutraceutical Food Mixture; Patent No. 306520. Industrial Property Office of the Czech Republic; Prague, The Czech Republic: 2017.

Fernandes L., Casal S., Pereira J.A., Saraiva J.A., Ramalhosa E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017;60:38–50. doi: 10.1016/j.jfca.2017.03.017. DOI

Haouet M.N., Tommasino M., Mercuri M.L., Benedetti F., Di Bella S., Framboas M., Pelli S., Altissimi M.S. Experimental accelerated shelf life determination of a ready-to-eat processed food. Ital. J. Food Saf. 2018;7:4. doi: 10.4081/ijfs.2018.6919. PubMed DOI PMC

Shahidi F., John J.A. Oxidation in foods and beverages and antioxidant applications. In: Decker E.A., Elias R.J., McClements D.J., editors. Oxidation and Protection of Nuts and Nut Oils. 2nd ed. Woodhead Publishing Limited; Cambridge, UK: 2010. pp. 274–305.

Rababah T.M., Al-Mahasneh M.A., Kilani I., Yang W., Alhamad M.N., Ereifej K., Al-u’datt M. Effect of jam processing and storage on total phenolics, antioxidant activity, and anthocyanins of different fruits. J. Sci. Food Agric. 2011;91:1096–1102. doi: 10.1002/jsfa.4289. PubMed DOI

Pradeep P.M., Sreerama Y.N. Soluble and bound phenolics of two different millet genera and their milled fractions: Comparative evaluation of antioxidant properties and inhibitory effects on starch hydrolysing enzyme activities. J. Funct. Foods. 2017;35:682–693. doi: 10.1016/j.jff.2017.06.033. DOI

Peanparkdee M., Patrawart J., Iwamoto S. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts. Food Chem. 2020;329:127157. doi: 10.1016/j.foodchem.2020.127157. PubMed DOI

Bozkurt S., Görgüç A., Gençdağ E., Elmas F., Koç M., Yilmaz F.M. Principles and recent applications of vacuum technology in the processing of dough-based cereal products: A comprehensive review. Food Chem. 2022;403:134443. doi: 10.1016/j.foodchem.2022.134443. PubMed DOI

Mrázková M. Dissertation Thesis. TBU; Zlín, Czech Republic: 2022. Production of Non-Traditional Muesli with Edible Flowers and Their Nutritional Analysis.

Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. [(accessed on 17 January 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02011R1169-20180101&qid=1679387649851&from=CS.

AOAC . Association of Official Analytical Chemists International. 5th ed. AOAC; Arlington, VA, USA: 2007.

American Association of Cereal Chemists International . AACCI Approved Methods of Analysis; Method No. 08-01.01. 11th ed. Cereals & Grains Association; St. Paul, MN, USA: 1995. [(accessed on 17 January 2022)]. Available online: https://www.cerealsgrains.org/resources/Methods/Pages/08TotalAsh.aspx.

Qiu Y., Liu Q., Beta T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem. 2010;121:140–147. doi: 10.1016/j.foodchem.2009.12.021. DOI

Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1. DOI

Deng G.-F., Xu X.-R., Guo Y.-J., Xia E.-Q., Li S., Wu S., Chen F., Ling W.-H., Li H.-B. Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. J. Funct. Foods. 2012;4:906–914. doi: 10.1016/j.jff.2012.06.008. DOI

Abdel-Aal E.-S.M., Hucl P. Composition and stability of anthocyanins in blue-grained wheat. J. Agric. Food Chem. 2003;51:2174–2180. doi: 10.1021/jf021043x. PubMed DOI

Barnes J.S., Nguyen H.P., Shen S., Schug K.A. General method for extraction of blueberry anthocyanins and identification using high performance liquid chromatography–electrospray ionization-ion trap-time off flight-mass spectrometry. J. Chromatogr. A. 2009;1216:4728–4735. doi: 10.1016/j.chroma.2009.04.032. PubMed DOI

Sumczynski D., Bubelová Z., Sneyd J., Erb-Weber S., Mlček J. Total phenolics, flavonoids, antioxidant activity, crude fibre and digestibility in non-traditional wheat flakes and muesli. Food Chem. 2015;174:319–325. doi: 10.1016/j.foodchem.2014.11.065. PubMed DOI

Ferri M., Gianotti A., Tassoni A. Optimisation of assay conditions for the determination of antioxidant capacity and polyphenols in cereal food components. J. Food Compos. Anal. 2013;30:94–101. doi: 10.1016/j.jfca.2013.02.004. DOI

Besco E., Braccioli E., Vertuani S., Ziosi P., Brazzo F., Bruni R., Sacchetti G., Manfredini S. The use of photochemiluminiscence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007;102:1352–1356. doi: 10.1016/j.foodchem.2006.05.067. DOI

Chung K.H., Shin K.O., Hwang H.J., Choi K.-S. Chemical composition of nuts and seeds sold in Korea. Nutr. Res. Pract. 2013;7:82–88. doi: 10.4162/nrp.2013.7.2.82. PubMed DOI PMC

Barros L., Carvalho A.M., Sá Morais J., Ferreira I.C.F.R. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chem. 2010;120:247–254. doi: 10.1016/j.foodchem.2009.10.016. DOI

Theethira T.G., Dennis M., Leffler D.A. Nutritional consequences of celiac disease and the gluten-free diet. Expert Rev. Gastroenterolo. Hepatol. 2014;8:123–129. doi: 10.1586/17474124.2014.876360. PubMed DOI

Massaretto I.L., Alves M.F.M., de Mira N.V.M., Carmona A.K., Marquez U.M.L. Phenolic compounds in raw and cooked rice (Oryza sativa L.) and their inhibitory effect on the activity of angiotensin I-converting enzyme. J. Cereal Sci. 2011;54:236–240. doi: 10.1016/j.jcs.2011.06.006. DOI

Wu S., Shen D., Wang R., Li Q., Mo R., Zheng Y., Zhou Y., Liu Y. Phenolic profiles and antioxidant activities of free, esterified and bound phenolic compounds in walnut kernel. Food Chem. 2021;350:129217. doi: 10.1016/j.foodchem.2021.129217. PubMed DOI

Yao J., Chen J., Yang J., Hao Y., Fan Y., Wang C., Li N. Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace. LWT-Food Sci. Technol. 2021;135:109995. doi: 10.1016/j.lwt.2020.109995. DOI

He J., Yin T., Chen Y., Cai L., Tai Z., Li Z., Liu C., Wang Y., Ding Z. Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia. J. Funct. Foods. 2015;17:371–379. doi: 10.1016/j.jff.2015.05.045. DOI

Chen G.-L., Chen S.-G., Xiao Y., Fu N.-L. Antioxidant capacities and total phenolic contents of 30 flowers. Ind. Crops Prod. 2018;111:430–445. doi: 10.1016/j.indcrop.2017.10.051. DOI

Bento-Silva A., Koistinen V.M., Mena P., Bronze M.R., Hanhineva K., Sahlstrøm S., Kitrytė V., Moco S., Aura A.-M. Factors affecting intake, metabolism and health benefits of phenolic acids: Do we understand individual variability? Eur. J. Nutr. 2020;59:1275–1293. doi: 10.1007/s00394-019-01987-6. PubMed DOI PMC

Mazza G. Anthocyanins and heart health. [(accessed on 10 December 2022)];Ann. Ist. Super. 2007 43:369. Available online: https://pubmed.ncbi.nlm.nih.gov/18209270/ PubMed

Benvenuti S., Bortolotti E., Maggini R. Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Sci. Hortic. 2016;199:170–177. doi: 10.1016/j.scienta.2015.12.052. DOI

Martinsen B.K., Aaby K., Skrede G. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chem. 2020;316:126297. doi: 10.1016/j.foodchem.2020.126297. PubMed DOI

Tong Y., Deng H., Kong Y., Tan C., Chen J., Wan M., Wang M., Yan T., Meng X., Li L. Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food Chem. 2020;311:125687. doi: 10.1016/j.foodchem.2019.125687. PubMed DOI

Abdel-Aal E.-S.M., Young J.C., Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agric. Food Chem. 2006;54:4696–4704. doi: 10.1021/jf0606609. PubMed DOI

Torskangerpoll K., Andersen Ø.M. Color stability of anthocyanins in aqueous solutions at various pH values. Food Chem. 2005;89:427–440. doi: 10.1016/j.foodchem.2004.03.002. DOI

Chung C., Rojanasasithara T., Mutilangi W., McClements D.J. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages. Food Chem. 2017;218:277–284. doi: 10.1016/j.foodchem.2016.09.087. PubMed DOI

Teribia N., Buvé C., Bonerz D., Aschoff J., Goos P., Hendrickx M., Van Loey A. The effect of thermal processing and storage on the color stability of strawberry puree originating from different cultivars. LWT-Food Sci. Technol. 2021;145:111270. doi: 10.1016/j.lwt.2021.111270. DOI

Wu N.-N., Li H.-H., Tan B., Zhang M., Xiao Z.-G., Tian X.-H., Zhai X.-T., Liu M., Liu Y.-X., Wang L.-P., et al. Free and bound phenolic profiles of the bran from different rice varieties and their antioxidant activity and inhibitory effects on α-amylose and α-glucosidase. J. Cereal Sci. 2018;82:206–212. doi: 10.1016/j.jcs.2018.06.013. DOI

Shao Y., Hu Z., Yu Y., Mou R., Zhu Z., Beta T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chem. 2018;239:733–741. doi: 10.1016/j.foodchem.2017.07.009. PubMed DOI

Sang S., Lapsley K., Jeong W.S., Lachance P.A., Ho C.T., Rosen R.T. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch) [(accessed on 17 January 2022)];J. Agric. Food Chem. 2002 50:2459–2463. doi: 10.1021/jf011533+. Available online: https://pubs.acs.org/doi/10.1021/jf011533%2B. PubMed DOI

John J.A., Shahidi F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa) J. Funct. Foods. 2010;2:196–209. doi: 10.1016/j.jff.2010.04.008. DOI

Huang W.-Y., Zhang H.-C., Lou W.-X., Li C.-Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. [(accessed on 10 December 2022)];J. Zhejiang Univ. Sci. B. 2012 13:94–102. doi: 10.1631/jzus.B1100137. Available online: https://link.springer.com/article/10.1631/jzus.B1100137. PubMed DOI PMC

Russell W.R., Labat A., Scobbie L., Duncan G.J., Duthie G.G. Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem. 2009;115:100–104. doi: 10.1016/j.foodchem.2008.11.086. DOI

Fu L., Xu B.-T., Xu X.-R., Gan R.-Y., Zhang Y., Xia E.-Q., Li H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. PubMed DOI

Radziejewska-Kubzdela E., Szwengiel A., Ratajkiewicz H., Nowak K. Effect of ultrasound, heating and enzymatic pre-treatment on bioactive compounds in juice from Berberis amurensis Rupr. Ultrason. Sonochem. 2020;63:104971. doi: 10.1016/j.ultsonch.2020.104971. PubMed DOI

Kaisoon O., Siriamornpun S., Weerappeeyakul N., Meeso N. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. Foods. 2011;3:88–99. doi: 10.1016/j.jff.2011.03.002. DOI

Zhou Z., Robards K., Helliwell S., Blanchard C. The distribution of phenolic acids in rice. Food Chem. 2004;87:401–406. doi: 10.1016/j.foodchem.2003.12.015. DOI

Srivastava A., Akoh C.C., Yi W., Fischer J., Krewer G. Effect of storage conditions on the biological activity of phenolic compounds of blueberry extract packed in glass bottles. J. Agric. Food Chem. 2007;55:2705–2713. doi: 10.1021/jf062914w. PubMed DOI

Zheng J., Meenu M., Xu B. A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China. J. Pharm. Biomed. Anal. 2019;172:268–277. doi: 10.1016/j.jpba.2019.05.007. PubMed DOI

Zhang P., Li Y., Chong S., Yan S., Yu R., Chen R., Si J., Zhang X. Identification and quantitative analysis of anthocyanins composition and their stability from different strains of Hibiscus syriacus L. flowers. Ind. Crops Prod. 2022;177:114457. doi: 10.1016/j.indcrop.2021.114457. DOI

Liu C., Xue H., Shen L., Liu C., Zheng X., Shi J., Xue S. Improvement of anthocyanins rate of blueberry powder under variable power of microwave extraction. Sep. Purif. Technol. 2019;226:286–298. doi: 10.1016/j.seppur.2019.05.096. DOI

Damar İ., Ekşi A. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chem. 2012;135:2910–2914. doi: 10.1016/j.foodchem.2012.07.032. PubMed DOI

Abdel-Aal E.-S.M., Hucl P., Rabalski I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chem. 2018;254:13–19. doi: 10.1016/j.foodchem.2018.01.170. PubMed DOI

Rubinskiene M., Jasutiene I., Venskutonis P.R., Viskelis P. HPLC determination of the composition and stability of blackcurrant anthocyanins. J. Chromatogr. Sci. 2005;43:478–482. doi: 10.1093/chromsci/43.9.478. PubMed DOI

Prior R.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005;53:4290–4302. doi: 10.1021/jf0502698. PubMed DOI

Mareček V., Mikyška A., Hampel D., Čejka P., Neuwirthová J., Malachová A., Cerkal R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2007;73:40–45. doi: 10.1016/j.jcs.2016.11.004. DOI

Kim J.-S. Antioxidant activities of selected berries and their free, esterified, and insoluble-bound phenolic acid contents. [(accessed on 17 January 2022)];Prev. Nutr. Food Sci. 2018 23:35. doi: 10.3746/pnf.2018.23.1.35. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894784/ PubMed DOI PMC

Karmowski J., Hintze V., Kschonsek J., Killenberg M., Böhm V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminiscence. Food Chem. 2015;175:593–600. doi: 10.1016/j.foodchem.2014.12.010. PubMed DOI

Klimczak I., Malecka M., Szlachta M., Gliszczyńska-Świglo A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Compost. Anal. 2007;20:313–322. doi: 10.1016/j.jfca.2006.02.012. DOI

Paradiso V.M., Summo C., Trani A., Caponio F. An effort to improve the shelf life of breakfast cereals using natural mixed tocopherols. J. Cereal Sci. 2008;47:322–330. doi: 10.1016/j.jcs.2007.04.009. DOI

Wang T., He F., Chen G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods. 2014;7:101–111. doi: 10.1016/j.jff.2014.01.033. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...