• This record comes from PubMed

Long-Term Follow-Up of Patients Needing Extracorporeal Membrane Oxygenation Following a Critical Course of COVID-19

. 2023 Apr 20 ; 13 (4) : . [epub] 20230420

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

INTRODUCTION: Severe respiratory failure is one of the most serious complications of coronavirus disease 2019 (COVID-19). In a small proportion of patients, mechanical ventilation fails to provide adequate oxygenation and extracorporeal membrane oxygenation (ECMO) is needed. The surviving individuals need long-term follow-up as it is not clear what their prognosis is. AIM: To provide a complex clinical picture of patients during follow-up exceeding one year after the ECMO therapy due to severe COVID-19. METHODS: All subjects involved in the study required ECMO in the acute stage of COVID-19. The survivors were followed-up for over one year at a specialized respiratory medical center. RESULTS: Of the 41 patients indicated for ECMO, 17 patients (64.7% males) survived. The average age of survivors was 47.8 years, and the average BMI was 34.7 kg·m-2. The duration of ECMO support was 9.4 days. A mild decrease in vital capacity (VC) and transfer factor (DLCO) was observed on the initial follow-up visit (82.1% and 60%, respectively). VC improved by 6.2% and by an additional 7.5% after 6 months and 1 year, respectively. DLCO improved by 21.1% after 6 months and remained stable after 1 year. Post-intensive care consequences included psychological problems and neurological impairment in 29% of patients; 64.7% of the survivors got vaccinated against SARS-CoV-2 within 12 months of hospitalization and 17.6% experienced reinfection with a mild course. CONCLUSION: The COVID-19 pandemic has significantly increased the need for ECMO. Patients' quality of life after ECMO is temporarily significantly reduced but most patients do not experience permanent disability.

See more in PubMed

Allen S., Holena D., McCunn M., Kohl B., Sarani B. A Review of the Fundamental Principles and Evidence Base in the Use of Extracorporeal Membrane Oxygenation (ECMO) in Critically Ill Adult Patients. J. Intensive Care Med. 2011;26:13–26. doi: 10.1177/0885066610384061. PubMed DOI

Lim H. The physiology of extracorporeal membrane oxygenation: The Fick principle. Perfusion. 2021;38:236–244. doi: 10.1177/02676591211055971. PubMed DOI

Makdisi G., Wang I.-W. Extra Corporeal Membrane Oxygenation (ECMO) review of a lifesaving technology. J. Thorac. Dis. 2015;7:E166–E176. doi: 10.3978/j.issn.2072-1439.2015.07.17. PubMed DOI PMC

Lee S.H. Awakening in extracorporeal membrane oxygenation as a bridge to lung transplantation. Acute Crit. Care. 2022;37:26–34. doi: 10.4266/acc.2022.00031. PubMed DOI PMC

Nöbauer-Huhmann I.-M., Eibenberger K., Schaefer-Prokop C., Steltzer H., Schlick W., Strasser K., Fridrich P., Herold C.J. Changes in lung parenchyma after acute respiratory distress syndrome (ARDS): Assessment with high-resolution computed tomography. Eur. Radiol. 2001;11:2436–2443. doi: 10.1007/s003300101103. PubMed DOI

Neff T.A., Stocker R., Frey H.-R., Stein S., Russi E.W. Long-term Assessment of Lung Function in Survivors of Severe ARDS. Chest. 2003;123:845–853. doi: 10.1378/chest.123.3.845. PubMed DOI

Lindén V.B., Lidegran M.K., Frisén G., Dahlgren P., Frenckner B., Larsen F. ECMO in ARDS: A long-term follow-up study regarding pulmonary morphology and function and health-related quality of life. Acta Anaesthesiol. Scand. 2009;53:489–495. doi: 10.1111/j.1399-6576.2008.01808.x. PubMed DOI

Supady A., Combes A., Barbaro R.P., Camporota L., Diaz R., Fan E., Giani M., Hodgson C., Hough C.L., Karagiannidis C., et al. Respiratory indications for ECMO: Focus on COVID-19. Intensive Care Med. 2022;48:1326–1337. doi: 10.1007/s00134-022-06815-w. PubMed DOI PMC

Combes A., Hajage D., Capellier G., Demoule A., Lavoué S., Guervilly C., Da Silva D., Zafrani L., Tirot P., Veber B., et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2018;378:1965–1975. doi: 10.1056/NEJMoa1800385. PubMed DOI

Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019;200:e70–e88. doi: 10.1164/rccm.201908-1590ST. PubMed DOI PMC

Desai A.D., Lavelle M., Boursiquot B.C., Wan E.Y. Long-term complications of COVID-19. Am. J. Physiol. Cell Physiol. 2022;322:C1–C11. doi: 10.1152/ajpcell.00375.2021. PubMed DOI PMC

Genzor S., Jakubec P., Sova M., Mizera J., Joppa P., Burget R., Pobeha P. Clinical presentation and pulmonary function tests in post-acute COVID-19 patients. Biomed. Pap. 2022 doi: 10.5507/bp.2022.039. PubMed DOI

Boaventura P., Macedo S., Ribeiro F., Jaconiano S., Soares P. Post-COVID-19 Condition: Where Are We Now? Life. 2022;12:517. doi: 10.3390/life12040517. PubMed DOI PMC

Sova M., Sovova E., Ozana J., Moravcova K., Sovova M., Jelinek L., Mizera J., Genzor S. Post-COVID Syndrome and Cardiorespiratory Fitness—26-Month Experience of Single Center. Life. 2023;13:684. doi: 10.3390/life13030684. PubMed DOI PMC

Raman B., Cassar M.P., Tunnicliffe E.M., Filippini N., Griffanti L., Alfaro-Almagro F., Okell T., Sheerin F., Xie C., Mahmod M., et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EclinicalMedicine. 2021;31:100683. doi: 10.1016/j.eclinm.2020.100683. PubMed DOI PMC

Steinbeis F., Thibeault C., Doellinger F., Ring R.M., Mittermaier M., Ruwwe-Glösenkamp C., Alius F., Knape P., Meyer H.J., Lippert L.J., et al. Severity of respiratory failure and computed chest tomography in acute COVID-19 correlates with pulmonary function and respiratory symptoms after infection with SARS-CoV-2: An observational longitudinal study over 12 months. Respir. Med. 2022;191:106709. doi: 10.1016/j.rmed.2021.106709. PubMed DOI PMC

Ego A., Taton O., Brasseur A., Laurent Y., Taccone F.S.M., Courcelle R. Six-Month Pulmonary Function After Venovenous Extracorporeal Membrane Oxygenation for Coronavirus Disease 2019 Patients. Crit. Care Explor. 2021;3:e0494. doi: 10.1097/CCE.0000000000000494. PubMed DOI PMC

Grasselli G., Scaravilli V., Tubiolo D., Russo R., Crimella F., Bichi F., Morlacchi L.C., Scotti E., Patrini L., Gattinoni L., et al. Quality of Life and Lung Function in Survivors of Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. Anesthesiology. 2019;130:572–580. doi: 10.1097/ALN.0000000000002624. PubMed DOI

Ricard J.-D., Dreyfuss D., Saumon G. Ventilator-induced lung injury. Eur. Respir. J. Suppl. 2003;42:2s–9s. doi: 10.1183/09031936.03.00420103. PubMed DOI

Schmidt M., Pellegrino V., Combes A., Scheinkestel C., Cooper D.J., Hodgson C. Mechanical ventilation during extracorporeal membrane oxygenation. Crit. Care. 2014;18:203. doi: 10.1186/cc13702. PubMed DOI PMC

Salton F., Confalonieri P., Campisciano G., Cifaldi R., Rizzardi C., Generali D., Pozzan R., Tavano S., Bozzi C., Lapadula G., et al. Cytokine Profiles as Potential Prognostic and Therapeutic Markers in SARS-CoV-2-Induced ARDS. J. Clin. Med. 2022;11:2951. doi: 10.3390/jcm11112951. PubMed DOI PMC

Baratella E., Bussani R., Zanconati F., Marrocchio C., Fabiola G., Braga L., Maiocchi S., Berlot G., Volpe M.C., Moro E., et al. Radiological–pathological signatures of patients with COVID-19-related pneumomediastinum: Is there a role for the Sonic hedgehog and Wnt5a pathways? ERJ Open Res. 2021;7:1–4. doi: 10.1183/23120541.00346-2021. PubMed DOI PMC

Bahl A., Johnson S., Maine G., Garcia M.H., Nimmagadda S., Qu L., Chen N.-W. Vaccination reduces need for emergency care in breakthrough COVID-19 infections: A multicenter cohort study. Lancet Reg. Health Am. 2021;4:100065. doi: 10.1016/j.lana.2021.100065. PubMed DOI PMC

Seeßle J., Waterboer T., Hippchen T., Simon J., Kirchner M., Lim A., Müller B., Merle U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2022;74:1191–1198. doi: 10.1093/cid/ciab611. PubMed DOI PMC

González J., Zuil M., Benítez I.D., de Gonzalo-Calvo D., Aguilar M., Santisteve S., Vaca R., Minguez O., Seck F., Torres G., et al. One Year Overview and Follow-Up in a Post-COVID Consultation of Critically Ill Patients. Front. Med. 2022;9:897990. doi: 10.3389/fmed.2022.897990. PubMed DOI PMC

Flacco M.E., Acuti Martellucci C., Baccolini V., De Vito C., Renzi E., Villari P., Manzoli L. Risk of reinfection and disease after SARS-CoV -2 primary infection: Meta-analysis. Eur. J. Clin. Investig. 2022;52:e13845. doi: 10.1111/eci.13845. PubMed DOI PMC

Khan I.R., Saulle M., Oldham M.A., Weber M.T., Schifitto G., Lee H.B. Cognitive, Psychiatric, and Quality of Life Outcomes in Adult Survivors of Extracorporeal Membrane Oxygenation Therapy: A Scoping Review of the Literature. Crit. Care Med. 2020;48:e959–e970. doi: 10.1097/CCM.0000000000004488. PubMed DOI

Risnes I., Heldal A., Wagner K., Boye B., Haraldsen I., Leganger S., Møkleby K., Svennevig J.L., Malt U. Psychiatric Outcome after Severe Cardio-Respiratory Failure Treated with Extracorporeal Membrane Oxygenation: A Case-Series. Psychosomatics. 2013;54:418–427. doi: 10.1016/j.psym.2013.02.008. PubMed DOI

Park H.Y., Song I., Cho H., Oh T.K. Insomnia disorder and long-term mortality in adult patients treated with extracorporeal membrane oxygenation in South Korea. J. Sleep Res. 2022;31:e13454. doi: 10.1111/jsr.13454. PubMed DOI

Fernando S.M., Scott M., Talarico R., Fan E., McIsaac D.I., Sood M.M., Myran D.T., Herridge M.S., Needham D.M., Hodgson C.L., et al. Association of Extracorporeal Membrane Oxygenation With New Mental Health Diagnoses in Adult Survivors of Critical Illness. JAMA. 2022;328:1827–1836. doi: 10.1001/jama.2022.17714. PubMed DOI PMC

Nehal K.R., Steendam L.M., Ponce M.C., van der Hoeven M., Smit G.S.A. Worldwide Vaccination Willingness for COVID-19: A Systematic Review and Meta-Analysis. Vaccines. 2021;9:1071. doi: 10.3390/vaccines9101071. PubMed DOI PMC

Sciscent B.Y., Eisele C.D., Ho L., King S.D., Jain R., Golamari R.R. COVID-19 reinfection: The role of natural immunity, vaccines, and variants. J. Community Hosp. Intern. Med. Perspect. 2021;11:733–739. doi: 10.1080/20009666.2021.1974665. PubMed DOI PMC

Fox T., Geppert J., Dinnes J., Scandrett K., Bigio J., Sulis G., Hettiarachchi D., Mathangasinghe Y., Weeratunga P., Wickramasinghe D., et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2022;11:CD013652. doi: 10.1002/14651858.cd013652.pub2. PubMed DOI PMC

Gan L., Chen Y., Tan J., Wang X., Zhang D. Does potential antibody-dependent enhancement occur during SARS-CoV-2 infection after natural infection or vaccination? A meta-analysis. BMC Infect. Dis. 2022;22:742. doi: 10.1186/s12879-022-07735-2. PubMed DOI PMC

Guzmán-Martínez O., Guardado K., Varela-Cardoso M., Trujillo-Rivera A., Marín-Hernández A., Ortiz-León M.C., Gómez-Ñañez I., Gutiérrez M., Espinosa R., Sampieri C.L., et al. Generation and persistence of S1 IgG and neutralizing antibodies in post-COVID-19 patients. Infection. 2022;50:447–456. doi: 10.1007/s15010-021-01705-7. PubMed DOI PMC

van Prehn J., Reigadas E., Vogelzang E.H., Bouza E., Hristea A., Guery B., Krutova M., Norén T., Allerberger F., Coia J.E., et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin. Microbiol. Infect. 2021;27((Suppl 2)):S1–S21. doi: 10.1016/j.cmi.2021.09.038. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...