• This record comes from PubMed

Identification of the trail-following pheromone receptor in termites

. 2025 Aug 19 ; 13 () : . [epub] 20250819

Status In-Process Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
20-17194S Czech Science Foundation
61388963 Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences
LM2023050 MEYS

Pheromone communication is the cornerstone of eusocial insect societies since it mediates the social hierarchy, division of labor, and concerted activities of colony members. The current knowledge on molecular mechanisms of social insect pheromone detection by odorant receptors (ORs) is limited to bees and ants, while no OR was yet functionally characterized in termites, the oldest eusocial insect clade. Here, we present the first OR deorphanization in termites. We selected four OR sequences from the annotated antennal transcriptome of the termite Prorhinotermes simplex (Psammotermitidae), expressed them in Empty Neuron Drosophila, and functionally characterized them using single sensillum recording (SSR). For one of the selected ORs, PsimOR14, we obtained strong responses to the main component of P. simplex trail-following pheromone, the monocyclic diterpene neocembrene. PsimOR14 showed a narrow tuning to neocembrene with only one additional compound out of 67 tested generating non-negligible responses. We report on homology-based modeling and molecular dynamics simulations of ligand binding by PsimOR14. Subsequently, we used SSR in P. simplex workers and identified the olfactory sensillum responding to neocembrene, thus likely expressing PsimOR14. Finally, we demonstrate that PsimOR14 is significantly more expressed in worker antennae compared to soldiers, which correlates with higher sensitivity of workers to neocembrene.

Update Of

doi: 10.1101/2024.07.24.605012 PubMed

Update Of

doi: 10.7554/eLife.101814.1 PubMed

Update Of

doi: 10.7554/eLife.101814.2 PubMed

See more in PubMed

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Allegretti PA, Ferreira EM. Generation of α,β-unsaturated platinum carbenes from homopropargylic alcohols: rearrangements to polysubstituted furans. Organic Letters. 2011;13:5924–5927. doi: 10.1021/ol202649j. PubMed DOI

Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Frontiers in Ecology and Evolution. 2015;3:53. doi: 10.3389/fevo.2015.00053. DOI

Bagnères AG, Hanus R. In: Social Recognition in Invertebrates. Aquiloni L, Tricarico E, editors. Springer International Publishing; 2015. Communication and social regulation in termites; pp. 193–248. DOI

Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLOS Biology. 2006;4:e20. doi: 10.1371/journal.pbio.0040020. PubMed DOI PMC

Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009;136:149–162. doi: 10.1016/j.cell.2008.12.001. PubMed DOI PMC

Benton R. Multigene family evolution: Perspectives from insect chemoreceptors. Trends in Ecology & Evolution. 2015;30:590–600. doi: 10.1016/j.tree.2015.07.009. PubMed DOI

Benton R, Dahanukar A. Chemosensory coding in Drosophila single sensilla. Cold Spring Harbor Protocols. 2023;2023:pdb.top107803. doi: 10.1101/pdb.top107803. PubMed DOI

Bohbot J, Pitts RJ, Kwon HW, Rützler M, Robertson HM, Zwiebel LJ. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Molecular Biology. 2007;16:525–537. doi: 10.1111/j.1365-2583.2007.00748.x. PubMed DOI PMC

Bordereau C, Pasteels JM. In: Biology of Termites: A Modern Synthesis. Bignell DE, Roisin Y, Lo N, editors. Springer; 2011. Pheromones and chemical ecology of dispersal and foraging in termites; pp. 279–320. DOI

Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, Johnson BR. The origin of the odorant receptor gene family in insects. eLife. 2018;7:e38340. doi: 10.7554/eLife.38340. PubMed DOI PMC

Butterwick JA, Del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, Ruta V. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560:447–452. doi: 10.1038/s41586-018-0420-8. PubMed DOI PMC

Caminer MA, Libbrecht R, Majoe M, Ho DV, Baumann P, Foitzik S. Task-specific odorant receptor expression in worker antennae indicates that sensory filters regulate division of labor in ants. Communications Biology. 2023;6:1004. doi: 10.1038/s42003-023-05273-4. PubMed DOI PMC

Carey AF, Wang G, Su CY, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464:66–71. doi: 10.1038/nature08834. PubMed DOI PMC

Case DA, Aktulga HM, Belfon K, Cerutti DS, Cisneros GA, Cruzeiro VWD, Forouzesh N, Giese TJ, Götz AW, Gohlke H, Izadi S, Kasavajhala K, Kaymak MC, King E, Kurtzman T, Lee TS, Li P, Liu J, Luchko T, Luo R, Manathunga M, Machado MR, Nguyen HM, O’Hearn KA, Onufriev AV, Pan F, Pantano S, Qi R, Rahnamoun A, Risheh A, Schott-Verdugo S, Shajan A, Swails J, Wang J, Wei H, Wu X, Wu Y, Zhang S, Zhao S, Zhu Q, Cheatham TE, Roe DR, Roitberg A, Simmerling C, York DM, Nagan MC, Merz KM. AmberTools. Journal of Chemical Information and Modeling. 2023;63:6183–6191. doi: 10.1021/acs.jcim.3c01153. PubMed DOI PMC

Castillo P, Le N, Sun Q. Comparative antennal morphometry and sensilla organization in the reproductive and non-reproductive castes of the formosan subterranean termite. Insects. 2021;12:576. doi: 10.3390/insects12070576. PubMed DOI PMC

Chahda JS, Soni N, Sun JS, Ebrahim SAM, Weiss BL, Carlson JR. The molecular and cellular basis of olfactory response to tsetse fly attractants. PLOS Genetics. 2019;15:e1008005. doi: 10.1371/journal.pgen.1008005. PubMed DOI PMC

Chang H, Unni AP, Tom MT, Cao Q, Liu Y, Wang G, Llorca LC, Brase S, Bucks S, Weniger K, Bisch-Knaden S, Hansson BS, Knaden M. Odorant detection in a locust exhibits unusually low redundancy. Current Biology. 2023;33:5427–5438. doi: 10.1016/j.cub.2023.11.017. PubMed DOI

Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999;22:327–338. doi: 10.1016/s0896-6273(00)81093-4. PubMed DOI

Del Mármol J, Yedlin MA, Ruta V. The structural basis of odorant recognition in insect olfactory receptors. Nature. 2021;597:126–131. doi: 10.1038/s41586-021-03794-8. PubMed DOI PMC

Díaz-Morales M, Khallaf MA, Stieber R, Alali I, Hansson BS, Knaden M. The ortholog receptor Or67d in Drosophila bipectinata is able to detect two different pheromones. Journal of Chemical Ecology. 2024;50:610–619. doi: 10.1007/s10886-024-01545-3. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Dolejšová K, Krasulová J, Kutalová K, Hanus R. Chemical alarm in the termite Termitogeton planus (Rhinotermitidae) Journal of Chemical Ecology. 2014;40:1269–1276. doi: 10.1007/s10886-014-0515-0. PubMed DOI

Dolejšová K, Křivánek J, Štáfková J, Horáček N, Havlíčková J, Roy V, Kalinová B, Roy A, Kyjaková P, Hanus R. Identification of a queen primer pheromone in higher termites. Communications Biology. 2022;5:1165. doi: 10.1038/s42003-022-04163-5. PubMed DOI PMC

Engsontia P, Sangket U, Robertson HM, Satasook C. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Research Notes. 2015;8:380. doi: 10.1186/s13104-015-1371-x. PubMed DOI PMC

Fleischer J, Krieger J. Insect pheromone receptors – Key elements in sensing intraspecific chemical signals. Frontiers in Cellular Neuroscience. 2018;12:425. doi: 10.3389/fncel.2018.00425. PubMed DOI PMC

Gao Y, Huang Q, Xu H. Silencing orco impaired the ability to perceive trail pheromones and affected locomotion behavior in two termite species. Journal of Economic Entomology. 2020;113:2941–2949. doi: 10.1093/jee/toaa248. PubMed DOI

Gomez Ramirez WC, Thomas NKT, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. Current Opinion in Insect Science. 2023;56:101018. doi: 10.1016/j.cois.2023.101018. PubMed DOI

Gonzalez F, Witzgall P, Walker WB. Protocol for heterologous expression of insect odourant receptors in Drosophila. Frontiers in Ecology and Evolution. 2016;4:24. doi: 10.3389/fevo.2016.00024. DOI

Gössinger E. In: Progress in the Chemistry of Organic Natural Products 109. Kinghorn AD, Falk H, Gibbons S, Kobayashi Ji, Asakawa Y, Liu JK, editors. Springer International Publishing; 2019. Chemistry of the secondary metabolites of termites; pp. 1–384. PubMed DOI

Guedes IA, Barreto AMS, Marinho D, Krempser E, Kuenemann MA, Sperandio O, Dardenne LE, Miteva MA. New machine learning and physics-based scoring functions for drug discovery. Scientific Reports. 2021;11:3198. doi: 10.1038/s41598-021-82410-1. PubMed DOI PMC

Guo X, Yu Q, Chen D, Wei J, Yang P, Yu J, Wang X, Kang L. 4-Vinylanisole is an aggregation pheromone in locusts. Nature. 2020;584:584–588. doi: 10.1038/s41586-020-2610-4. PubMed DOI

Hanus R, Šobotník J, Valterová I, Lukáš J. The ontogeny of soldiers in Prorhinotermes simplex (Isoptera, Rhinotermitidae) Insectes Sociaux. 2006;53:249–257. doi: 10.1007/s00040-006-0865-x. DOI

Hanus R, Luxová A, Šobotník J, Kalinová B, Jiroš P, Křeček J, Bourguignon T, Bordereau C. Sexual communication in the termite Prorhinotermes simplex (Isoptera, Rhinotermitidae) mediated by a pheromone from female tergal glands. Insectes Sociaux. 2009;56:111–118. doi: 10.1007/s00040-009-0005-5. DOI

Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin J, Greiner C, Han Y, Hu H, Hughes DST, Huylmans A-K, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs M-D, Poelchau M, Qu J, Schaub F, Wada-Katsumata A, Worley KC, Xie Q, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E. Hemimetabolous genomes reveal molecular basis of termite eusociality. Nature Ecology & Evolution. 2018;2:557–566. doi: 10.1038/s41559-017-0459-1. PubMed DOI PMC

Haverkamp A, Hansson BS, Knaden M. Combinatorial codes and labeled lines: How insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Frontiers in Physiology. 2018;9:49. doi: 10.3389/fphys.2018.00049. PubMed DOI PMC

Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, MacKerell AD., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods. 2017;14:71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC

Jirošová A, Jančařík A, Menezes RC, Bazalová O, Dolejšová K, Vogel H, Jedlička P, Buček A, Brabcová J, Majer P, Hanus R, Svatoš A. Co-option of the sphingolipid metabolism for the production of nitroalkene defensive chemicals in termite soldiers. Insect Biochemistry and Molecular Biology. 2017;82:52–61. doi: 10.1016/j.ibmb.2017.01.008. PubMed DOI

Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI

Johny J, Diallo S, Lukšan O, Shewale M, Kalinová B, Hanus R, Große-Wilde E. Conserved orthology in termite chemosensory gene families. Frontiers in Ecology and Evolution. 2023;10:1065947. doi: 10.3389/fevo.2022.1065947. DOI

Jongepier E, Séguret A, Labutin A, Feldmeyer B, Gstöttl C, Foitzik S, Heinze J, Bornberg-Bauer E. Convergent loss of chemoreceptors across independent origins of slave-making in ants. Molecular Biology and Evolution. 2022;39:msab305. doi: 10.1093/molbev/msab305. PubMed DOI PMC

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Kaib M. In: Social Insects and the Environment. Veeresh GK, Mallik B, Viraktamath CA, editors. E. J. Brill; 1990. Multiple functions of exocrine secretions in termite communication: exemplified by Schedorhinotermes lamanianus; pp. 37–38.

Keesey IW, Zhang J, Depetris-Chauvin A, Obiero GF, Gupta A, Gupta N, Vogel H, Knaden M, Hansson BS. Functional olfactory evolution in Drosophila suzukii and the subgenus Sophophora. iScience. 2022;25:104212. doi: 10.1016/j.isci.2022.104212. PubMed DOI PMC

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2023 update. Nucleic Acids Research. 2023;51:D1373–D1380. doi: 10.1093/nar/gkac956. PubMed DOI PMC

Koubová J, Pangrácová M, Jankásek M, Lukšan O, Jehlík T, Brabcová J, Jedlička P, Křivánek J, Čapková Frydrychová R, Hanus R. Long-lived termite kings and queens activate telomerase in somatic organs. Proceedings of the Royal Society B. 2021;288:20210511. doi: 10.1098/rspb.2021.0511. PubMed DOI PMC

Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004;43:703–714. doi: 10.1016/j.neuron.2004.08.019. PubMed DOI

Legan AW, Jernigan CM, Miller SE, Fuchs MF, Sheehan MJ. Expansion and accelerated evolution of 9-exon odorant receptors in Polistes paper wasps. Molecular Biology and Evolution. 2021;38:3832–3846. doi: 10.1093/molbev/msab023. PubMed DOI PMC

Leonhardt SD, Menzel F, Nehring V, Schmitt T. Ecology and evolution of communication in social insects. Cell. 2016;164:1277–1287. doi: 10.1016/j.cell.2016.01.035. PubMed DOI

Liu YP, Ji LP, Eno M, Kudalkar S, Li AL, Schimpgen M, Benchama O, Morales P. (R)-N-(1-Methyl-2-hydroxyethyl)-13-(S)-methyl-arachidonamide (AMG315): A novel chiral potent endocannabinoid ligand with stability to metabolizing enzymes. Journal of Medicinal Chemistry. 2018;61:8639–8657. doi: 10.1021/acs.jmedchem.8b00611. PubMed DOI

Mariette J, Carcaud J, Louis T, Lacassagne E, Servais I, Montagné N, Chertemps T, Jacquin-Joly E, Meslin C, Marion-Poll F, Sandoz J-C. Evolution of queen pheromone receptor tuning in four honeybee species (Hymenoptera, Apidae, Apis) iScience. 2024;27:111243. doi: 10.1016/j.isci.2024.111243. PubMed DOI PMC

Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L. Identification of a pheromone regulating caste differentiation in termites. PNAS. 2010;107:12963–12968. doi: 10.1073/pnas.1004675107. PubMed DOI PMC

McKenzie SK, Fetter-Pruneda I, Ruta V, Kronauer DJC. Transcriptomics and neuroanatomy of the clonal raider ant implicate an expanded clade of odorant receptors in chemical communication. PNAS. 2016;113:14091–14096. doi: 10.1073/pnas.1610800113. PubMed DOI PMC

McKenzie SK, Kronauer DJC. The genomic architecture and molecular evolution of ant odorant receptors. Genome Research. 2018;28:1757–1765. doi: 10.1101/gr.237123.118. PubMed DOI PMC

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nature Methods. 2022;19:679–682. doi: 10.1038/s41592-022-01488-1. PubMed DOI PMC

Mitaka Y, Kobayashi K, Mikheyev A, Tin MMY, Watanabe Y, Matsuura K. Caste-specific and sex-specific expression of chemoreceptor genes in a termite. PLOS ONE. 2016;11:e0146125. doi: 10.1371/journal.pone.0146125. PubMed DOI PMC

Mitaka Y, Akino T. A review of termite pheromones: Multifaceted, context-dependent, and rational chemical communications. Frontiers in Ecology and Evolution. 2021;8:595614. doi: 10.3389/fevo.2020.595614. DOI

Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene families. Annual Review of Genetics. 2005;39:121–152. doi: 10.1146/annurev.genet.39.073003.112240. PubMed DOI PMC

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Obiero GF, Pauli T, Geuverink E, Veenendaal R, Niehuis O, Große-Wilde E. Chemoreceptor diversity in apoid wasps and its reduction during the evolution of the pollen-collecting lifestyle of bees (Hymenoptera: Apoidea) Genome Biology and Evolution. 2021;13:evaa269. doi: 10.1093/gbe/evaa269. PubMed DOI PMC

Olsson SB, Hansson BS. In: Pheromone Signaling: Methods and Protocols. Touhara K, editor. Humana Press; 2013. Electroantennogram and single sensillum recording in insect antennae; pp. 157–177. PubMed DOI

Pask GM, Slone JD, Millar JG, Das P, Moreira JA, Zhou X, Bello J, Berger SL, Bonasio R, Desplan C, Reinberg D, Liebig J, Zwiebel LJ, Ray A. Specialized odorant receptors in social insects that detect cuticular hydrocarbon cues and candidate pheromones. Nature Communications. 2017;8:297. doi: 10.1038/s41467-017-00099-1. PubMed DOI PMC

Pettersson JH, Cattaneo AM. Heterologous investigation of metabotropic and ionotropic odorant receptors in ab3A neurons of Drosophila melanogaster. Frontiers in Molecular Biosciences. 2023;10:1275901. doi: 10.3389/fmolb.2023.1275901. PubMed DOI PMC

Piskorski R, Hanus R, Vašíčková S, Cvačka J, Šobotník J, Svatoš A, Valterová I. Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland of three Prorhinotermes termite species. Journal of Chemical Ecology. 2007;33:1787–1794. doi: 10.1007/s10886-007-9341-y. PubMed DOI

Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: Expansion of the odorant, but not gustatory, receptor family. Genome Research. 2006;16:1395–1403. doi: 10.1101/gr.5057506. PubMed DOI PMC

Robertson HM, Baits RL, Walden KKO, Wada-Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution. 2018;330:265–278. doi: 10.1002/jez.b.22797. PubMed DOI PMC

Robertson HM. Molecular evolution of the major arthropod chemoreceptor gene families. Annual Review of Entomology. 2019;64:227–242. doi: 10.1146/annurev-ento-020117-043322. PubMed DOI

Roisin Y, Everaerts C, Pasteels JM, Bonnard O. Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. Journal of Chemical Ecology. 1990;16:2865–2875. doi: 10.1007/BF00979479. PubMed DOI

Rupf T, Roisin Y. Coming out of the woods: Do termites need a specialized worker caste to search for new food sources? Die Naturwissenschaften. 2008;95:811–819. doi: 10.1007/s00114-008-0387-7. PubMed DOI

Santos KB, Guedes IA, Karl ALM, Dardenne LE. Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP protein-peptide data set. Journal of Chemical Information and Modeling. 2020;60:667–683. doi: 10.1021/acs.jcim.9b00905. PubMed DOI

Saran RK, Millar JG, Rust MK. Role of (3Z,6Z,8E)-dodecatrien-1-ol in trail following, feeding, and mating behavior of Reticulitermes hesperus. Journal of Chemical Ecology. 2007;33:369–389. doi: 10.1007/s10886-006-9229-2. PubMed DOI

Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452:1002–1006. doi: 10.1038/nature06850. PubMed DOI

Sigurjónsson S, Haraldsson GG. Asymmetric synthesis of methoxylated ether lipids: Total synthesis of polyunsaturated C18:3 omega-3 and omega-6 MEL triene derivatives. Molecules. 2024;29:223. doi: 10.3390/molecules29010223. PubMed DOI PMC

Sillam-Dussès D, Kalinová B, Jiroš P, Březinová A, Cvačka J, Hanus R, Šobotník J, Bordereau C, Valterová I. Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae) Journal of Insect Physiology. 2009;55:751–757. doi: 10.1016/j.jinsphys.2009.04.007. PubMed DOI

Sillam-Dussès D. Trail Pheromones and Sex Pheromones in Termites. Nova Novinka, Nova Science Publishers; 2010.

Slone JD, Pask GM, Ferguson ST, Millar JG, Berger SL, Reinberg D, Liebig J, Ray A, Zwiebel LJ. Functional characterization of odorant receptors in the ponerine ant, Harpegnathos saltator. PNAS. 2017;114:8586–8591. doi: 10.1073/pnas.1704647114. PubMed DOI PMC

Šobotník J, Hanus R, Kalinová B, Piskorski R, Cvačka J, Bourguignon T, Roisin Y. (E,E)-alpha-farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. Journal of Chemical Ecology. 2008;34:478–486. doi: 10.1007/s10886-008-9450-2. PubMed DOI

Šobotník J, Jirošová A, Hanus R. Chemical warfare in termites. Journal of Insect Physiology. 2010;56:1012–1021. doi: 10.1016/j.jinsphys.2010.02.012. PubMed DOI

Steiger S, Schmitt T, Schaefer HM. The origin and dynamic evolution of chemical information transfer. Proceedings of the Royal Society B. 2011;278:970–979. doi: 10.1098/rspb.2010.2285. PubMed DOI PMC

Su CY, Menuz K, Reisert J, Carlson JR. Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature. 2012;492:66–71. doi: 10.1038/nature11712. PubMed DOI PMC

Tateishi K, Nishimura Y, Sakuma M, Yokohari F, Watanabe H. Sensory neurons that respond to sex and aggregation pheromones in the nymphal cockroach. Scientific Reports. 2020;10:1995. doi: 10.1038/s41598-020-58816-8. PubMed DOI PMC

Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard JA, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J. Molecular traces of alternative social organization in a termite genome. Nature Communications. 2014;5:3636. doi: 10.1038/ncomms4636. PubMed DOI

Thoma M, Missbach C, Jordan MD, Grosse-Wilde E, Newcomb RD, Hansson BS. Transcriptome surveys in silverfish suggest a multistep origin of the insect odorant receptor gene family. Frontiers in Ecology and Evolution. 2019;7:281. doi: 10.3389/fevo.2019.00281. DOI

Tian C, Kasavajhala K, Belfon KAA, Raguette L, Huang H, Migues AN, Bickel J, Wang Y, Pincay J, Wu Q, Simmerling C. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation. 2020;16:528–552. doi: 10.1021/acs.jctc.9b00591. PubMed DOI

Traniello JFA. Enemy deterrence in the recruitment strategy of a termite: Soldier-organized foraging in Nasutitermes costalis. PNAS. 1981;78:1976–1979. doi: 10.1073/pnas.78.3.1976. PubMed DOI PMC

Traniello JFA, Busher C. Chemical regulation of polyethism during foraging in the neotropical termite Nasutitermes costalis. Journal of Chemical Ecology. 1985;11:319–332. doi: 10.1007/BF01411418. PubMed DOI

Tuma J, Eggleton P, Fayle TM. Ant-termite interactions: An important but under-explored ecological linkage. Biological Reviews of the Cambridge Philosophical Society. 2020;95:555–572. doi: 10.1111/brv.12577. PubMed DOI

Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD., Jr CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry. 2010;31:671–690. doi: 10.1002/jcc.21367. PubMed DOI PMC

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. Journal of Computational Chemistry. 2004;25:1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Wang Y, Qiu L, Wang B, Guan Z, Dong Z, Zhang J, Cao S, Yang L, Wang B, Gong Z, Zhang L, Ma W, Liu Z, Zhang D, Wang G, Yin P. Structural basis for odorant recognition of the insect odorant receptor OR-Orco heterocomplex. Science. 2024;384:1453–1460. doi: 10.1126/science.adn6881. PubMed DOI

Wanner KW, Nichols AS, Walden KKO, Brockmann A, Luetje CW, Robertson HM. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. PNAS. 2007;104:14383–14388. doi: 10.1073/pnas.0705459104. PubMed DOI PMC

Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452:1007–1011. doi: 10.1038/nature06861. PubMed DOI

Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. The Journal of Experimental Biology. 2020;223:jeb208215. doi: 10.1242/jeb.208215. PubMed DOI PMC

Yuvaraj JK, Roberts RE, Sonntag Y, Hou X-Q, Grosse-Wilde E, Machara A, Zhang D-D, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biology. 2021;19:16. doi: 10.1186/s12915-020-00946-6. PubMed DOI PMC

Zhang DD, Löfstedt C. Moth pheromone receptors: Gene sequences, function, and evolution. Frontiers in Ecology and Evolution. 2015;3:105. doi: 10.3389/fevo.2015.00105. DOI

Zhang R, Wang B, Grossi G, Falabella P, Liu Y, Yan S, Lu J, Xi J, Wang G. Molecular basis of alarm pheromone detection in aphids. Current Biology. 2017;27:55–61. doi: 10.1016/j.cub.2016.10.013. PubMed DOI

Zhang RB, Liu Y, Yan SC, Wang GR. Identification and functional characterization of an odorant receptor in pea aphid, Acyrthosiphon pisum. Insect Science. 2019a;26:58–67. doi: 10.1111/1744-7917.12510. PubMed DOI

Zhang Y, Tsang TK, Bushong EA, Chu LA, Chiang AS, Ellisman MH, Reingruber J, Su CY. Asymmetric ephaptic inhibition between compartmentalized olfactory receptor neurons. Nature Communications. 2019b;10:1560. doi: 10.1038/s41467-019-09346-z. PubMed DOI PMC

Zhao J, Chen AQ, Ryu J, Del Mármol J. Structural basis of odor sensing by insect heteromeric odorant receptors. Science. 2024;384:1460–1467. doi: 10.1126/science.adn6384. PubMed DOI PMC

Zhou X, Rokas A, Berger SL, Liebig J, Ray A, Zwiebel LJ. Chemoreceptor evolution in Hymenoptera and its implications for the evolution of eusociality. Genome Biology and Evolution. 2015;7:2407–2416. doi: 10.1093/gbe/evv149. PubMed DOI PMC

See more in PubMed

SRA
SRX17749141, SRX18952239, SRX18952238, SRX18952237, SRX18952232, SRX18952231, SRX18952230

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...