Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IT1503-22
Basque Government
2022-CIEN-000022-01
Diputación Foral de Gipuzkoa
PubMed
37111965
PubMed Central
PMC10143864
DOI
10.3390/polym15081817
PII: polym15081817
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing, biodegradable, crystallinity, mechanical properties, poly(hydroxybutyrate-co-hydoxyhexanoate),
- Publikační typ
- časopisecké články MeSH
Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.
IKERBASQUE Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
School of Engineering Science and Technology Valencian International University 46002 Valencia Spain
Zobrazit více v PubMed
European Bioplastics e.V Bioplastics Market Data. 2020b. [(accessed on 10 March 2020)]. Available online: https://www.european-bioplastics.org/market/
Lee S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996;49:1–14. doi: 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P. PubMed DOI
Lee S.Y. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 1996;14:431–438. doi: 10.1016/0167-7799(96)10061-5. DOI
Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI
Yan S., Tyagi R.D., Surampalli R.Y. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci. Technol. 2006;53:175–180. doi: 10.2166/wst.2006.193. PubMed DOI
Raza Z.A., Abid S., Banat I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018;126:45–56. doi: 10.1016/j.ibiod.2017.10.001. DOI
Madison L.L., Huisman G.W. Metabolic engineering of poly (3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 1999;63:21–53. doi: 10.1128/MMBR.63.1.21-53.1999. PubMed DOI PMC
Reddy C.S.K., Ghai R., Kalia V. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003;87:137–146. doi: 10.1016/S0960-8524(02)00212-2. PubMed DOI
Serrano J. Polyhydroxyalkanoates (PHAs) polymers produced by microorganisms. A solution to environmental pollution 2010. Teoría Y Prax. Investig. 2010;5:79–84.
Gonzalez Garcia Y., Meza Contrera J.C., Gonzalez Reynoso O., Cordova Lopez J.A. Synthesis and biodegradation of polyhydroxialkanoates: Bacterially produced plastics. Rev. Int. Contam. Ambient. 2013;29:77–115.
Sharma V., Sehgal R., Gupta R. Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer. 2021;212:123161. doi: 10.1016/j.polymer.2020.123161. DOI
Li S., Cai L., Wu L., Zeng G., Chen J., Wu Q., Chen G.-Q. Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules. 2014;15:2310–2319. doi: 10.1021/bm500669s. PubMed DOI
Zheng Y., Chen J.-C., Ma Y.-M., Chen G.-Q. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab. Eng. 2020;58:82–93. doi: 10.1016/j.ymben.2019.07.004. PubMed DOI
Sodian R., Sperling J.S., Martin D.P., Egozy A., Stock U., Mayer J.E., Jr., Vacanti J.P. Technical report: Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 2000;6:183–188. doi: 10.1089/107632700320793. PubMed DOI
Wu L.-P. Polyhydroxyalkanoates (PHA): Biosynthesis, Industrial Production and Applications in Medicine. Nova Science Publishers; New York, NY, USA: 2014.
Porter M.M., Lee S., Tanadchangsaeng N., Jaremko M.J., Yu J., Meyers M., McKittrick J. Mechanics of Biological Systems and Materials. Volume 5. Springer; Berlin/Heidelberg, Germany: 2013. Porous hydroxyapatite-polyhydroxybutyrate composites fabricated by a novel method via centrifugation; pp. 63–71.
Hong S.K., Shirai Y., Nor A., Hassan M.A. Semi-continuous and continuous anaerobic treatment of palm oil mill effluent for the production of organic acids and polyhydroxyalkanoates. Res. J. Environ. Sci. 2009;3:552–559. doi: 10.3923/rjes.2009.552.559. DOI
Hazari A., Wiberg M., Johansson-Ruden G., Green C., Terenghi G. A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br. J. Plast. Surg. 1999;52:653–657. doi: 10.1054/bjps.1999.3184. PubMed DOI
Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V.A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym. Lett. 2014;8:791–808. doi: 10.3144/expresspolymlett.2014.82. DOI
Lizarraga-Valderrama L.R., Nigmatullin R., Taylor C., Haycock J.W., Claeyssens F., Knowles J.C., Roy I. Nerve tissue engineering using blends of poly (3-hydroxyalkanoates) for peripheral nerve regeneration. Eng. Life Sci. 2015;15:612–621. doi: 10.1002/elsc.201400151. DOI
Chen G.-Q., Wu Q. Microbial production and applications of chiral hydroxyalkanoates. Appl. Microbiol. Biotechnol. 2005;67:592–599. doi: 10.1007/s00253-005-1917-2. PubMed DOI
Baptist J.N., Ziegler J.B. Method of Making Absorbable Surgical Sutures from Poly Beta Hydroxy Acids. 3,225,766. U.S. Patent. 1965 December 28;
Shishatskaya E.I., Nikolaeva E.D., Vinogradova O.N., Volova T.G. Experimental wound dressings of degradable PHA for skin defect repair. J. Mater. Sci. Mater. Med. 2016;27:165. doi: 10.1007/s10856-016-5776-4. PubMed DOI
Dhania S., Rani R., Kumar R., Thakur R. Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation. J. Biotechnol. 2023;361:30–40. doi: 10.1016/j.jbiotec.2022.11.014. PubMed DOI
Ni J., Wang M. In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng. C. 2002;20:101–109. doi: 10.1016/S0928-4931(02)00019-X. DOI
Reis E.C.C., Borges A.P.B., Fonseca C.C., Martinez M.M.M., Eleotério R.B., Morato G.O., Oliveira P.M. Biocompatibility, osteointegration, osteoconduction, and biodegradation of a hydroxyapatite-polyhydroxybutyrate composite. Braz. Arch. Biol. Technol. 2010;53:817–826. doi: 10.1590/S1516-89132010000400010. DOI
Alves M.I., Macagnan K.L., Rodrigues A.A., de Assis D.A., Torres M.M., de Oliveira P.D., Furlan L., Vendruscolo C.T., Moreira A. da S. Poly (3-hydroxybutyrate)-P (3HB): Review of production process technology. Ind. Biotechnol. 2017;13:192–208. doi: 10.1089/ind.2017.0013. DOI
Karahaliloglu Z., Ercan B., Taylor E.N., Chung S., Denkbaş E.B., Webster T.J. Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration. J. Biomed. Nanotechnol. 2015;11:2253–2263. doi: 10.1166/jbn.2015.2106. PubMed DOI
Akaraonye E., Moreno C., Knowles J.C., Keshavarz T., Roy I. Poly (3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol. J. 2012;7:293–303. doi: 10.1002/biot.201100122. PubMed DOI
Yano T., Nomoto T., Kozaki S., Imamura T., Honma T., Canon K.K. No. 2006263432. U.S. Patent. 2006
Pouton C.W., Akhtar S. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev. 1996;18:133–162. doi: 10.1016/0169-409X(95)00092-L. DOI
Yagmurlu M.F., Korkusuz F., Gürsel I., Korkusuz P., Örs Ü., Hasirci V. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 1999;46:494–503. doi: 10.1002/(SICI)1097-4636(19990915)46:4<494::AID-JBM7>3.0.CO;2-E. PubMed DOI
Gursel I., Yagmurlu F., Korkusuz F., Hasirci V. In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J. Microencapsul. 2002;19:153–164. doi: 10.1080/02652040110065413. PubMed DOI
Valappil S.P., Peiris D., Langley G.J., Herniman J.M., Boccaccini A.R., Bucke C., Roy I. Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J. Biotechnol. 2007;127:475–487. doi: 10.1016/j.jbiotec.2006.07.015. PubMed DOI
Valappil S.P., Misra S.K., Boccaccini A.R., Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices. 2006;3:853–868. doi: 10.1586/17434440.3.6.853. PubMed DOI
Yao Y.C., Zhan X.Y., Zhang J., Zou X.H., Wang Z.H., Xiong Y.C., Chen J.C.G. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials. 2008;36:4823–4830. doi: 10.1016/j.biomaterials.2008.09.008. PubMed DOI
Avérous L., Pollet E. Biorenewable nanocomposites. MRS Bull. 2011;36:703–710. doi: 10.1557/mrs.2011.206. DOI
Abid S., Raza Z.A., Rehman A. Synthesis of poly (3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film. Mater. Res. Express. 2016;3:105042. doi: 10.1088/2053-1591/3/10/105042. DOI
Plackett D., Siró I. Multifunctional and Nanoreinforced Polymers for Food Packaging. Elsevier; Amsterdam, The Netherlands: 2011. Polyhydroxyalkanoates (PHAs) for food packaging; pp. 498–526.
Samaniego K., Matos A., Sánchez-Safont E., Candal M.V., Lagaron J.M., Cabedo L., Gamez-Perez J. Role of Plasticizers on PHB/bio-TPE Blends Compatibilized by Reactive Extrusion. Materials. 2022;15:1226. doi: 10.3390/ma15031226. PubMed DOI PMC
Anderson A.J., Dawes E. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990;54:450–472. doi: 10.1128/mr.54.4.450-472.1990. PubMed DOI PMC
Vinet L., Zhedanov A. A “missing” family of classical orthogonal polynomials. J. Phys. A Math. Theor. 2010;54:450–472. doi: 10.1088/1751-8113/44/8/085201. DOI
Zhao W., Chen G.-Q. Production and characterization of terpolyester poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem. 2007;42:1342–1347. doi: 10.1016/j.procbio.2007.07.006. DOI
Tan D., Yin J., Chen G.-Q. Current Developments in Biotechnology and Bioengineering. Elsevier; Amsterdam, The Netherlands: 2017. Production of polyhydroxyalkanoates; pp. 655–692.
Eraslan K., Aversa C., Nofar M., Barletta M., Gisario A., Salehiyan R., Goksu Y.A. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBH): Synthesis, properties, and applications-A Review. Eur. Polym. J. 2022;167:111044. doi: 10.1016/j.eurpolymj.2022.111044. DOI
Sato H., Nakamura M., Padermshoke A., Yamaguchi H., Terauchi H., Ekgasit S., Noda I., Ozaki Y. Thermal behavior and molecular interaction of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by wide-angle X-ray diffraction. Macromolecules. 2004;37:3763–3769. doi: 10.1021/ma049863t. DOI
Wu C.-S., Liao H.-T., Cai Y.-X. Characterisation, biodegrad-ability and application of palm fibre-reinforced polyhy-droxyalkanoate composites. Polym. Degrad. Stab. 2017;140:55–63. doi: 10.1016/j.polymdegradstab.2017.04.016. DOI
Wu C.L., Liao H.T. Interface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and application. Express Polym. Lett. 2017;11:187–198. doi: 10.3144/expresspolymlett.2017.20. DOI
Wu C.-S. Characterization, functionality and application of siliceous sponge spicules additive-based manufacturing biopolymer composites. Addit. Manuf. 2018;22:13–20. doi: 10.1016/j.addma.2018.04.034. DOI
Tian J., Zheng Y., Ouyang Q., Xue P., Guo B., Xu J. Advances in 3D Printing. American Chemical Society; Washington, DC, USA: 2023. Structure and Properties of Biodegradable Polymer Materials for Fused Deposition Modeling 3D Printing. DOI
Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates) Int. J. Biol. Macromol. 2020;161:364–376. doi: 10.1016/j.ijbiomac.2020.06.022. PubMed DOI
Kovalcik A., Smilek J., Machovsky M., Kalina M., Enev V., Dugova H., Cernekova N., Kovacova M., Spitalsky Z. Properties and structure of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling. Int. J. Biol. Macromol. 2021;183:880–889. doi: 10.1016/j.ijbiomac.2021.04.183. PubMed DOI
Stanzani V., Giubilini A., Checchi M., Messori M., Bondioli F., Palumbo C. Eco-friendly biodegradable materials as new promising 3D-printed scaffold for eco-sustainable regenerative medicine. Ital. J. Anat. Embryol. 2021;125:159.
Giubilini A., Siqueira G., Clemens F.J., Sciancalepore C., Messori M., Nyström G., Bondioli F. 3D-Printing Nanocellulose-Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustain. Chem. Eng. 2020;8:10292–10302. doi: 10.1021/acssuschemeng.0c03385. DOI
Valentini F., Dorigato A., Rigotti D., Pegoretti A. Polyhydroxyalkanoates/fibrillated nanocellulose composites for additive manufacturing. J. Polym. Environ. 2019;27:1333–1341. doi: 10.1007/s10924-019-01429-8. DOI
Cox W., Mertz E. Correlation of Dynamic and Steady Flow Viscosities. J. Polym. Sci. 1958;28:619–622. doi: 10.1002/pol.1958.1202811812. DOI
Candal M.V., Calafel I., Aranburu N., Fernández M., Gerrica-Echevarria G., Santamaría A., Müller A.J. Thermo-rheological effects on successful 3D printing of biodegradable polyesters. Addit. Manuf. 2020;36:101408. doi: 10.1016/j.addma.2020.101408. DOI
Van Krevelen D.W., Te Nijenhuis K. Properties of Polymers: Their Correlation with Chemical Structure. Elsevier; Amsterdam, The Netherlands: 2009. Their Numerical Estimation and Prediction from Additive Group Contributions.
Wang J., Hopmann C., Schmitz M., Hohlweck T., Wipperfürth J. Modeling of pvT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding. Mater. Des. 2019;183:108149. doi: 10.1016/j.matdes.2019.108149. DOI
ASTM . Standard Test Method for Tensile Properties of Plastics (ASTM D638-14) ASTM International; West Conshohocken, PA, USA: 2014.
Caputo M.R., Tang X., Westlie A.H., Sardon H., Chen E.Y.-X., Müler A.J. Effect of Chain Stereoconfiguration on Poly (3-hydroxybutyrate) Crystallization Kinetics. Biomacromolecules. 2022;23:3847–3859. doi: 10.1021/acs.biomac.2c00682. PubMed DOI PMC
Jiang Z., Liu P., Sue H.-J., Bremner T. Effect of annealing on the viscoelastic behavior of poly (ether-ether-ketone) Polymer. 2019;160:231–237. doi: 10.1016/j.polymer.2018.11.052. DOI
Yasuniwa M., Tsubakihara S., Sugimoto Y., Nakafuku C. Thermal analysis of the double-melting behavior of poly (L-lactic acid) J. Polym. Sci. Part B Polym. Phys. 2004;42:25–32. doi: 10.1002/polb.10674. DOI
Sangroniz L., Cavallo D., Müller A.J. Self-nucleation effects on polymer crystallization. Macromolecules. 2020;53:4581–4604. doi: 10.1021/acs.macromol.0c00223. DOI
Seppala J.E., Migler K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016;12:71–76. doi: 10.1016/j.addma.2016.06.007. PubMed DOI PMC
Candal M.V., Calafel I., Fernández M., Aranburu N., Aguirresarobe R.H., Gerrica-Echevarria G., Santamaría A., Müller A.J. Study of the interlayer adhesion and warping during material extrusion-based additive manufacturing of a carbon nanotube/biobased thermoplastic polyurethane nanocomposite. Polymer. 2021;224:123734. doi: 10.1016/j.polymer.2021.123734. DOI
Vaes D., Van Puyvelde P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021;118:101411. doi: 10.1016/j.progpolymsci.2021.101411. DOI
Mackay M.E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 2018;62:1549–1561. doi: 10.1122/1.5037687. DOI
Thumsorn S., Prasong W., Kurose T., Ishigami A., Kobayashi Y., Ito H. Rheological behavior and dynamic mechanical properties for interpretation of layer adhesion in FDM 3D printing. Polymers. 2022;14:2721. doi: 10.3390/polym14132721. PubMed DOI PMC
Phan D.D., Swain Z.R., Mackay M.E. Rheological and heat transfer effects in fused filament fabrication. J. Rheol. 2018;62:1097–1107. doi: 10.1122/1.5022982. DOI
Cross M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965;20:417–437. doi: 10.1016/0095-8522(65)90022-X. DOI
McIlroy C., Olmsted P.D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer. 2017;123:376–391. doi: 10.1016/j.polymer.2017.06.051. DOI
Costanzo A., Spotorno R., Candal M.V., Fernández M.M., Müller A.J., Graham R.S., Cavallo D., McIlroy C. Residual alignment and its effect on weld strength in material-extrusion 3D-printing of polylactic acid. Addit. Manuf. 2020;36:101415. doi: 10.1016/j.addma.2020.101415. DOI
Likhtman A.E., McLeish T.C.B. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules. 2002;35:6332–6343. doi: 10.1021/ma0200219. DOI
Boudara A.H., Read D.J. RepTate rheology software: Toolkit for the analysis of theories and experiments. J. Rheol. 2020;64:709. doi: 10.1122/8.0000002. DOI
Palade L.-I., Lehermeier H.J., Dorgan J.R. Melt rheology of high L-content poly (lactic acid) Macromolecules. 2001;34:1384–1390. doi: 10.1021/ma001173b. DOI
Shmueli Y., Jiang J., Zhou Y., Xue Y., Chang C.-C., Yuan G., Satija S.K., Lee S., Nam C.-Y., Kim T. Simultaneous in situ X-ray scattering and infrared imaging of polymer extrusion in additive manufacturing. ACS Appl. Polym. Mater. 2019;1:1559–1567. doi: 10.1021/acsapm.9b00328. DOI
Yang F., Pitchumani R. Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules. 2002;35:3213–3224. doi: 10.1021/ma010858o. DOI
Ausejo J.G., Rydz J., Musioł M., Sikorska W., Sobota M., Włodarczyk J., Adamus G., Janeczek H., Kwiecień I., Hercog A. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym. Degrad. Stab. 2018;152:191–207. doi: 10.1016/j.polymdegradstab.2018.04.024. DOI
Liu F., Vyas C., Poologasundarampillai G., Pape I., Hinduja S., Mirihanage W., Bartolo P. Structural evolution of PCL during melt extrusion 3D printing. Macromol. Mater. Eng. 2018;303:1700494. doi: 10.1002/mame.201700494. DOI
de Jager B., Moxham T., Besnard C., Salvati E., Chen J., Dolbnya I.P., Korsunsky A.M. Synchrotron X-ray scattering analysis of nylon-12 crystallisation variation depending on 3D printing conditions. Polymers. 2020;12:1169. doi: 10.3390/polym12051169. PubMed DOI PMC
Ianniruberto G., Marrucci G. Convective constraint release (CCR) revisited. J. Rheol. 2014;58:89–102. doi: 10.1122/1.4843957. DOI
Graham R.S., Likhtman A.E., McLeish T.C.B., Milner S.T. Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 2003;47:1171–1200. doi: 10.1122/1.1595099. DOI
Das A., Riet J.A., Bortner M.J., McIlroy C. Rheology, crystallization, and process conditions: The effect on interlayer properties in three-dimensional printing. Phys. Fluids. 2022;34:123108. doi: 10.1063/5.0128660. DOI
Cunha M.A.G., Robbins M.O. Effect of Flow-Induced Molecular Alignment on Welding and Strength of Polymer Interfaces. Macromolecules. 2020;53:8417–8427. doi: 10.1021/acs.macromol.0c01508. DOI
Seppala J.E., Han S.H., Hillgartner K.E., Davis C.S., Migler K.B. Weld Formation during Material Extrusion Additive Manufacturing. Soft Matter. 2017;13:6761–6769. doi: 10.1039/C7SM00950J. PubMed DOI PMC
Costanzo A., Cavallo D., McIlroy C. High-Performance Co-Polyesters for Material-Extrusion 3D Printing: A Molecular Perspective of Weld Properties. Addit. Manuf. 2022;49:102474. doi: 10.1016/j.addma.2021.102474. DOI
McIlroy C. A fundamental rule: Determining the importance of flow prior to polymer crystallization. Phys. Fluids. 2019;31:113103. doi: 10.1063/1.5129119. DOI
Wang J., Hopmann C., Kahve C., Hohlweck T., Alms J. Measurement of specific volume of polymers under simulated injection molding processes. Mater. Des. 2020;196:109136. doi: 10.1016/j.matdes.2020.109136. DOI
Mishra A.A., Momin A., Strano M., Rane K. Implementation of viscosity and density models for improved numerical analysis of melt flow dynamics in the nozzle during extrusion-based additive manufacturing. Prog. Addit. Manuf. 2022;7:41–54. doi: 10.1007/s40964-021-00208-z. DOI
Kazmer D.O., Colon A.R., Peterson A.M., Kim S.K. Concurrent characterization of compressibility and viscosity in extrusion-based additive manufacturing of acrylonitrile butadiene styrene with fault diagnoses. Addit. Manuf. 2021;46:102106. doi: 10.1016/j.addma.2021.102106. DOI
Garzon-Hernandez S., Garcia-Gonzalez D., Jérusalem A., Arias A. Design of FDM 3D printed polymers: An experimental-modelling methodology for mechanical property prediction. Mater. Des. 2019;188:108414. doi: 10.1016/j.matdes.2019.108414. DOI
Yadav D., Chhabra D., Garg R.K., Ahlawat A., Phogat A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater. Today Proc. 2020;21:1583–1591. doi: 10.1016/j.matpr.2019.11.225. DOI
Ding S., Zou B., Wang P., Ding H. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test. 2019;78:105948. doi: 10.1016/j.polymertesting.2019.105948. DOI
Pulipaka A., Gide K.M., Beheshti A., Bagheri Z.S. Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK. J. Manuf. Process. 2023;85:368–386. doi: 10.1016/j.jmapro.2022.11.057. DOI
Shuto R., Norimatsu S., Arola D.D., Matsuzaki R. Effect of the nozzle temperature on the microstructure and interlaminar strength in 3D printing of carbon fiber/polyphenylene sulfide composites. Compos. Part C Open Access. 2022;9:100328. doi: 10.1016/j.jcomc.2022.100328. DOI
Gao X., Qi S., Kuang X., Su Y., Li J., Wang D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021;37:101658. doi: 10.1016/j.addma.2020.101658. DOI
Spoerk M., Arbeiter F., Raguž I., Weingrill G., Fischinger T., Traxler G., Schuschnigg S., Cardon L., Holzer C. Polypropylene filled with glass spheres in extrusion-based additive manufacturing: Effect of filler size and printing chamber temperature. Macromol. Mater. Eng. 2018;303:1800179. doi: 10.1002/mame.201800179. DOI
Spoerk M., Holzer C., Gonzalez-Gutierrez J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. J. Appl. Polym. Sci. 2020;137:48545. doi: 10.1002/app.48545. DOI
Hertle S., Drexler M., Drummer D. Additive manufacturing of poly (propylene) by means of melt extrusion. Macromol. Mater. Eng. 2016;301:1482–1493. doi: 10.1002/mame.201600259. DOI
Benwood C., Anstey A., Andrzejewski J., Misra M., Mohanty A.K. Improving the impact strength and heat resistance of 3D printed models: Structure, property, and processing correlationships during fused deposition modeling (FDM) of poly (lactic acid) ACS Omega. 2018;3:4400–4411. doi: 10.1021/acsomega.8b00129. PubMed DOI PMC
Xiaoyong S., Liangcheng C., Honglin M., Peng G., Zhanwei B., Cheng L. Experimental analysis of high temperature PEEK materials on 3D printing test; Proceedings of the 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA); Changsha, China. 14–15 January 2017; pp. 13–16.
Hsueh M.-H., Lai C.-J., Wang S.-H., Zeng Y.-S., Hsieh C.-H., Pan C.-Y., Huang W.-C. Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling. Polymers. 2021;13:1758. doi: 10.3390/polym13111758. PubMed DOI PMC
Abeykoon C., Sri-Amphorn P., Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Lightweight Mater. Manuf. 2020;3:284–297. doi: 10.1016/j.ijlmm.2020.03.003. DOI
Yang T.-C., Yeh C.-H. Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): The effects of printing speed. Polymers. 2020;12:1334. doi: 10.3390/polym12061334. PubMed DOI PMC
Ziemian C., Sharma M., Ziemian S. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. Mech. Eng. 2012;23:2397.
Spoerk M., Savandaiah C., Arbeiter F., Traxler G., Cardon L., Holzer C., Sapkota J. Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos. Part A Appl. Sci. Manuf. 2018;113:95–104. doi: 10.1016/j.compositesa.2018.06.018. DOI
Ang K.C., Leong K.F., Chua C.K., Chandrasekaran M. Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp. J. 2006;12:100–105.
Anitha R., Arunachalam S., Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 2001;118:385–388. doi: 10.1016/S0924-0136(01)00980-3. DOI
Perez C.J.L. Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int. J. Prod. Res. 2002;40:2865–2881. doi: 10.1080/00207540210146099. DOI
Pandey P.M., Reddy N.V., Dhande S.G. Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 2003;43:61–71. doi: 10.1016/S0890-6955(02)00164-5. DOI
Lay M., Thajudin N.L.N., Hamid Z.A.A., Rusli A., Abdullah M.K., Shuib R.K. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B Eng. 2019;176:107341. doi: 10.1016/j.compositesb.2019.107341. DOI