Influence of FFF Process Conditions on the Thermal, Mechanical, and Rheological Properties of Poly(hydroxybutyrate-co-hydroxy Hexanoate)

. 2023 Apr 07 ; 15 (8) : . [epub] 20230407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37111965

Grantová podpora
IT1503-22 Basque Government
2022-CIEN-000022-01 Diputación Foral de Gipuzkoa

Polyhydroxyalkanoates are natural polyesters synthesized by microorganisms and bacteria. Due to their properties, they have been proposed as substitutes for petroleum derivatives. This work studies how the printing conditions employed in fuse filament fabrication (FFF) affect the properties of poly(hydroxybutyrate-co-hydroxy hexanoate) or PHBH. Firstly, rheological results predicted the printability of PHBH, which was successfully realized. Unlike what usually happens in FFF manufacturing or several semi-crystalline polymers, it was observed that the crystallization of PHBH occurs isothermally after deposition on the bed and not during the non-isothermal cooling stage, according to calorimetric measurements. A computational simulation of the temperature profile during the printing process was conducted to confirm this behavior, and the results support this hypothesis. Through the analysis of mechanical properties, it was shown that the nozzle and bed temperature increase improved the mechanical properties, reducing the void formation and improving interlayer adhesion, as shown by SEM. Intermediate printing velocities produced the best mechanical properties.

Zobrazit více v PubMed

European Bioplastics e.V Bioplastics Market Data. 2020b. [(accessed on 10 March 2020)]. Available online: https://www.european-bioplastics.org/market/

Lee S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996;49:1–14. doi: 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P. PubMed DOI

Lee S.Y. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 1996;14:431–438. doi: 10.1016/0167-7799(96)10061-5. DOI

Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000;25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6. DOI

Yan S., Tyagi R.D., Surampalli R.Y. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms. Water Sci. Technol. 2006;53:175–180. doi: 10.2166/wst.2006.193. PubMed DOI

Raza Z.A., Abid S., Banat I.M. Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. Int. Biodeterior. Biodegrad. 2018;126:45–56. doi: 10.1016/j.ibiod.2017.10.001. DOI

Madison L.L., Huisman G.W. Metabolic engineering of poly (3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 1999;63:21–53. doi: 10.1128/MMBR.63.1.21-53.1999. PubMed DOI PMC

Reddy C.S.K., Ghai R., Kalia V. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003;87:137–146. doi: 10.1016/S0960-8524(02)00212-2. PubMed DOI

Serrano J. Polyhydroxyalkanoates (PHAs) polymers produced by microorganisms. A solution to environmental pollution 2010. Teoría Y Prax. Investig. 2010;5:79–84.

Gonzalez Garcia Y., Meza Contrera J.C., Gonzalez Reynoso O., Cordova Lopez J.A. Synthesis and biodegradation of polyhydroxialkanoates: Bacterially produced plastics. Rev. Int. Contam. Ambient. 2013;29:77–115.

Sharma V., Sehgal R., Gupta R. Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer. 2021;212:123161. doi: 10.1016/j.polymer.2020.123161. DOI

Li S., Cai L., Wu L., Zeng G., Chen J., Wu Q., Chen G.-Q. Microbial synthesis of functional homo-, random, and block polyhydroxyalkanoates by β-oxidation deleted Pseudomonas entomophila. Biomacromolecules. 2014;15:2310–2319. doi: 10.1021/bm500669s. PubMed DOI

Zheng Y., Chen J.-C., Ma Y.-M., Chen G.-Q. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab. Eng. 2020;58:82–93. doi: 10.1016/j.ymben.2019.07.004. PubMed DOI

Sodian R., Sperling J.S., Martin D.P., Egozy A., Stock U., Mayer J.E., Jr., Vacanti J.P. Technical report: Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng. 2000;6:183–188. doi: 10.1089/107632700320793. PubMed DOI

Wu L.-P. Polyhydroxyalkanoates (PHA): Biosynthesis, Industrial Production and Applications in Medicine. Nova Science Publishers; New York, NY, USA: 2014.

Porter M.M., Lee S., Tanadchangsaeng N., Jaremko M.J., Yu J., Meyers M., McKittrick J. Mechanics of Biological Systems and Materials. Volume 5. Springer; Berlin/Heidelberg, Germany: 2013. Porous hydroxyapatite-polyhydroxybutyrate composites fabricated by a novel method via centrifugation; pp. 63–71.

Hong S.K., Shirai Y., Nor A., Hassan M.A. Semi-continuous and continuous anaerobic treatment of palm oil mill effluent for the production of organic acids and polyhydroxyalkanoates. Res. J. Environ. Sci. 2009;3:552–559. doi: 10.3923/rjes.2009.552.559. DOI

Hazari A., Wiberg M., Johansson-Ruden G., Green C., Terenghi G. A resorbable nerve conduit as an alternative to nerve autograft in nerve gap repair. Br. J. Plast. Surg. 1999;52:653–657. doi: 10.1054/bjps.1999.3184. PubMed DOI

Bugnicourt E., Cinelli P., Lazzeri A., Alvarez V.A. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym. Lett. 2014;8:791–808. doi: 10.3144/expresspolymlett.2014.82. DOI

Lizarraga-Valderrama L.R., Nigmatullin R., Taylor C., Haycock J.W., Claeyssens F., Knowles J.C., Roy I. Nerve tissue engineering using blends of poly (3-hydroxyalkanoates) for peripheral nerve regeneration. Eng. Life Sci. 2015;15:612–621. doi: 10.1002/elsc.201400151. DOI

Chen G.-Q., Wu Q. Microbial production and applications of chiral hydroxyalkanoates. Appl. Microbiol. Biotechnol. 2005;67:592–599. doi: 10.1007/s00253-005-1917-2. PubMed DOI

Baptist J.N., Ziegler J.B. Method of Making Absorbable Surgical Sutures from Poly Beta Hydroxy Acids. 3,225,766. U.S. Patent. 1965 December 28;

Shishatskaya E.I., Nikolaeva E.D., Vinogradova O.N., Volova T.G. Experimental wound dressings of degradable PHA for skin defect repair. J. Mater. Sci. Mater. Med. 2016;27:165. doi: 10.1007/s10856-016-5776-4. PubMed DOI

Dhania S., Rani R., Kumar R., Thakur R. Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation. J. Biotechnol. 2023;361:30–40. doi: 10.1016/j.jbiotec.2022.11.014. PubMed DOI

Ni J., Wang M. In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater. Sci. Eng. C. 2002;20:101–109. doi: 10.1016/S0928-4931(02)00019-X. DOI

Reis E.C.C., Borges A.P.B., Fonseca C.C., Martinez M.M.M., Eleotério R.B., Morato G.O., Oliveira P.M. Biocompatibility, osteointegration, osteoconduction, and biodegradation of a hydroxyapatite-polyhydroxybutyrate composite. Braz. Arch. Biol. Technol. 2010;53:817–826. doi: 10.1590/S1516-89132010000400010. DOI

Alves M.I., Macagnan K.L., Rodrigues A.A., de Assis D.A., Torres M.M., de Oliveira P.D., Furlan L., Vendruscolo C.T., Moreira A. da S. Poly (3-hydroxybutyrate)-P (3HB): Review of production process technology. Ind. Biotechnol. 2017;13:192–208. doi: 10.1089/ind.2017.0013. DOI

Karahaliloglu Z., Ercan B., Taylor E.N., Chung S., Denkbaş E.B., Webster T.J. Antibacterial nanostructured polyhydroxybutyrate membranes for guided bone regeneration. J. Biomed. Nanotechnol. 2015;11:2253–2263. doi: 10.1166/jbn.2015.2106. PubMed DOI

Akaraonye E., Moreno C., Knowles J.C., Keshavarz T., Roy I. Poly (3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol. J. 2012;7:293–303. doi: 10.1002/biot.201100122. PubMed DOI

Yano T., Nomoto T., Kozaki S., Imamura T., Honma T., Canon K.K. No. 2006263432. U.S. Patent. 2006

Pouton C.W., Akhtar S. Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv. Drug Deliv. Rev. 1996;18:133–162. doi: 10.1016/0169-409X(95)00092-L. DOI

Yagmurlu M.F., Korkusuz F., Gürsel I., Korkusuz P., Örs Ü., Hasirci V. Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: In vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 1999;46:494–503. doi: 10.1002/(SICI)1097-4636(19990915)46:4<494::AID-JBM7>3.0.CO;2-E. PubMed DOI

Gursel I., Yagmurlu F., Korkusuz F., Hasirci V. In vitro antibiotic release from poly (3-hydroxybutyrate-co-3-hydroxyvalerate) rods. J. Microencapsul. 2002;19:153–164. doi: 10.1080/02652040110065413. PubMed DOI

Valappil S.P., Peiris D., Langley G.J., Herniman J.M., Boccaccini A.R., Bucke C., Roy I. Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus spp. J. Biotechnol. 2007;127:475–487. doi: 10.1016/j.jbiotec.2006.07.015. PubMed DOI

Valappil S.P., Misra S.K., Boccaccini A.R., Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev. Med. Devices. 2006;3:853–868. doi: 10.1586/17434440.3.6.853. PubMed DOI

Yao Y.C., Zhan X.Y., Zhang J., Zou X.H., Wang Z.H., Xiong Y.C., Chen J.C.G. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials. 2008;36:4823–4830. doi: 10.1016/j.biomaterials.2008.09.008. PubMed DOI

Avérous L., Pollet E. Biorenewable nanocomposites. MRS Bull. 2011;36:703–710. doi: 10.1557/mrs.2011.206. DOI

Abid S., Raza Z.A., Rehman A. Synthesis of poly (3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film. Mater. Res. Express. 2016;3:105042. doi: 10.1088/2053-1591/3/10/105042. DOI

Plackett D., Siró I. Multifunctional and Nanoreinforced Polymers for Food Packaging. Elsevier; Amsterdam, The Netherlands: 2011. Polyhydroxyalkanoates (PHAs) for food packaging; pp. 498–526.

Samaniego K., Matos A., Sánchez-Safont E., Candal M.V., Lagaron J.M., Cabedo L., Gamez-Perez J. Role of Plasticizers on PHB/bio-TPE Blends Compatibilized by Reactive Extrusion. Materials. 2022;15:1226. doi: 10.3390/ma15031226. PubMed DOI PMC

Anderson A.J., Dawes E. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990;54:450–472. doi: 10.1128/mr.54.4.450-472.1990. PubMed DOI PMC

Vinet L., Zhedanov A. A “missing” family of classical orthogonal polynomials. J. Phys. A Math. Theor. 2010;54:450–472. doi: 10.1088/1751-8113/44/8/085201. DOI

Zhao W., Chen G.-Q. Production and characterization of terpolyester poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem. 2007;42:1342–1347. doi: 10.1016/j.procbio.2007.07.006. DOI

Tan D., Yin J., Chen G.-Q. Current Developments in Biotechnology and Bioengineering. Elsevier; Amsterdam, The Netherlands: 2017. Production of polyhydroxyalkanoates; pp. 655–692.

Eraslan K., Aversa C., Nofar M., Barletta M., Gisario A., Salehiyan R., Goksu Y.A. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(PHBH): Synthesis, properties, and applications-A Review. Eur. Polym. J. 2022;167:111044. doi: 10.1016/j.eurpolymj.2022.111044. DOI

Sato H., Nakamura M., Padermshoke A., Yamaguchi H., Terauchi H., Ekgasit S., Noda I., Ozaki Y. Thermal behavior and molecular interaction of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by wide-angle X-ray diffraction. Macromolecules. 2004;37:3763–3769. doi: 10.1021/ma049863t. DOI

Wu C.-S., Liao H.-T., Cai Y.-X. Characterisation, biodegrad-ability and application of palm fibre-reinforced polyhy-droxyalkanoate composites. Polym. Degrad. Stab. 2017;140:55–63. doi: 10.1016/j.polymdegradstab.2017.04.016. DOI

Wu C.L., Liao H.T. Interface design of environmentally friendly carbon nanotube-filled polyester composites: Fabrication, characterisation, functionality and application. Express Polym. Lett. 2017;11:187–198. doi: 10.3144/expresspolymlett.2017.20. DOI

Wu C.-S. Characterization, functionality and application of siliceous sponge spicules additive-based manufacturing biopolymer composites. Addit. Manuf. 2018;22:13–20. doi: 10.1016/j.addma.2018.04.034. DOI

Tian J., Zheng Y., Ouyang Q., Xue P., Guo B., Xu J. Advances in 3D Printing. American Chemical Society; Washington, DC, USA: 2023. Structure and Properties of Biodegradable Polymer Materials for Fused Deposition Modeling 3D Printing. DOI

Kovalcik A., Sangroniz L., Kalina M., Skopalova K., Humpolíček P., Omastova M., Mundigler N., Müller A.J. Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates) Int. J. Biol. Macromol. 2020;161:364–376. doi: 10.1016/j.ijbiomac.2020.06.022. PubMed DOI

Kovalcik A., Smilek J., Machovsky M., Kalina M., Enev V., Dugova H., Cernekova N., Kovacova M., Spitalsky Z. Properties and structure of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) filaments for fused deposition modelling. Int. J. Biol. Macromol. 2021;183:880–889. doi: 10.1016/j.ijbiomac.2021.04.183. PubMed DOI

Stanzani V., Giubilini A., Checchi M., Messori M., Bondioli F., Palumbo C. Eco-friendly biodegradable materials as new promising 3D-printed scaffold for eco-sustainable regenerative medicine. Ital. J. Anat. Embryol. 2021;125:159.

Giubilini A., Siqueira G., Clemens F.J., Sciancalepore C., Messori M., Nyström G., Bondioli F. 3D-Printing Nanocellulose-Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate) Biodegradable Composites by Fused Deposition Modeling. ACS Sustain. Chem. Eng. 2020;8:10292–10302. doi: 10.1021/acssuschemeng.0c03385. DOI

Valentini F., Dorigato A., Rigotti D., Pegoretti A. Polyhydroxyalkanoates/fibrillated nanocellulose composites for additive manufacturing. J. Polym. Environ. 2019;27:1333–1341. doi: 10.1007/s10924-019-01429-8. DOI

Cox W., Mertz E. Correlation of Dynamic and Steady Flow Viscosities. J. Polym. Sci. 1958;28:619–622. doi: 10.1002/pol.1958.1202811812. DOI

Candal M.V., Calafel I., Aranburu N., Fernández M., Gerrica-Echevarria G., Santamaría A., Müller A.J. Thermo-rheological effects on successful 3D printing of biodegradable polyesters. Addit. Manuf. 2020;36:101408. doi: 10.1016/j.addma.2020.101408. DOI

Van Krevelen D.W., Te Nijenhuis K. Properties of Polymers: Their Correlation with Chemical Structure. Elsevier; Amsterdam, The Netherlands: 2009. Their Numerical Estimation and Prediction from Additive Group Contributions.

Wang J., Hopmann C., Schmitz M., Hohlweck T., Wipperfürth J. Modeling of pvT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding. Mater. Des. 2019;183:108149. doi: 10.1016/j.matdes.2019.108149. DOI

ASTM . Standard Test Method for Tensile Properties of Plastics (ASTM D638-14) ASTM International; West Conshohocken, PA, USA: 2014.

Caputo M.R., Tang X., Westlie A.H., Sardon H., Chen E.Y.-X., Müler A.J. Effect of Chain Stereoconfiguration on Poly (3-hydroxybutyrate) Crystallization Kinetics. Biomacromolecules. 2022;23:3847–3859. doi: 10.1021/acs.biomac.2c00682. PubMed DOI PMC

Jiang Z., Liu P., Sue H.-J., Bremner T. Effect of annealing on the viscoelastic behavior of poly (ether-ether-ketone) Polymer. 2019;160:231–237. doi: 10.1016/j.polymer.2018.11.052. DOI

Yasuniwa M., Tsubakihara S., Sugimoto Y., Nakafuku C. Thermal analysis of the double-melting behavior of poly (L-lactic acid) J. Polym. Sci. Part B Polym. Phys. 2004;42:25–32. doi: 10.1002/polb.10674. DOI

Sangroniz L., Cavallo D., Müller A.J. Self-nucleation effects on polymer crystallization. Macromolecules. 2020;53:4581–4604. doi: 10.1021/acs.macromol.0c00223. DOI

Seppala J.E., Migler K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016;12:71–76. doi: 10.1016/j.addma.2016.06.007. PubMed DOI PMC

Candal M.V., Calafel I., Fernández M., Aranburu N., Aguirresarobe R.H., Gerrica-Echevarria G., Santamaría A., Müller A.J. Study of the interlayer adhesion and warping during material extrusion-based additive manufacturing of a carbon nanotube/biobased thermoplastic polyurethane nanocomposite. Polymer. 2021;224:123734. doi: 10.1016/j.polymer.2021.123734. DOI

Vaes D., Van Puyvelde P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021;118:101411. doi: 10.1016/j.progpolymsci.2021.101411. DOI

Mackay M.E. The importance of rheological behavior in the additive manufacturing technique material extrusion. J. Rheol. 2018;62:1549–1561. doi: 10.1122/1.5037687. DOI

Thumsorn S., Prasong W., Kurose T., Ishigami A., Kobayashi Y., Ito H. Rheological behavior and dynamic mechanical properties for interpretation of layer adhesion in FDM 3D printing. Polymers. 2022;14:2721. doi: 10.3390/polym14132721. PubMed DOI PMC

Phan D.D., Swain Z.R., Mackay M.E. Rheological and heat transfer effects in fused filament fabrication. J. Rheol. 2018;62:1097–1107. doi: 10.1122/1.5022982. DOI

Cross M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965;20:417–437. doi: 10.1016/0095-8522(65)90022-X. DOI

McIlroy C., Olmsted P.D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer. 2017;123:376–391. doi: 10.1016/j.polymer.2017.06.051. DOI

Costanzo A., Spotorno R., Candal M.V., Fernández M.M., Müller A.J., Graham R.S., Cavallo D., McIlroy C. Residual alignment and its effect on weld strength in material-extrusion 3D-printing of polylactic acid. Addit. Manuf. 2020;36:101415. doi: 10.1016/j.addma.2020.101415. DOI

Likhtman A.E., McLeish T.C.B. Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules. 2002;35:6332–6343. doi: 10.1021/ma0200219. DOI

Boudara A.H., Read D.J. RepTate rheology software: Toolkit for the analysis of theories and experiments. J. Rheol. 2020;64:709. doi: 10.1122/8.0000002. DOI

Palade L.-I., Lehermeier H.J., Dorgan J.R. Melt rheology of high L-content poly (lactic acid) Macromolecules. 2001;34:1384–1390. doi: 10.1021/ma001173b. DOI

Shmueli Y., Jiang J., Zhou Y., Xue Y., Chang C.-C., Yuan G., Satija S.K., Lee S., Nam C.-Y., Kim T. Simultaneous in situ X-ray scattering and infrared imaging of polymer extrusion in additive manufacturing. ACS Appl. Polym. Mater. 2019;1:1559–1567. doi: 10.1021/acsapm.9b00328. DOI

Yang F., Pitchumani R. Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules. 2002;35:3213–3224. doi: 10.1021/ma010858o. DOI

Ausejo J.G., Rydz J., Musioł M., Sikorska W., Sobota M., Włodarczyk J., Adamus G., Janeczek H., Kwiecień I., Hercog A. A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polym. Degrad. Stab. 2018;152:191–207. doi: 10.1016/j.polymdegradstab.2018.04.024. DOI

Liu F., Vyas C., Poologasundarampillai G., Pape I., Hinduja S., Mirihanage W., Bartolo P. Structural evolution of PCL during melt extrusion 3D printing. Macromol. Mater. Eng. 2018;303:1700494. doi: 10.1002/mame.201700494. DOI

de Jager B., Moxham T., Besnard C., Salvati E., Chen J., Dolbnya I.P., Korsunsky A.M. Synchrotron X-ray scattering analysis of nylon-12 crystallisation variation depending on 3D printing conditions. Polymers. 2020;12:1169. doi: 10.3390/polym12051169. PubMed DOI PMC

Ianniruberto G., Marrucci G. Convective constraint release (CCR) revisited. J. Rheol. 2014;58:89–102. doi: 10.1122/1.4843957. DOI

Graham R.S., Likhtman A.E., McLeish T.C.B., Milner S.T. Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J. Rheol. 2003;47:1171–1200. doi: 10.1122/1.1595099. DOI

Das A., Riet J.A., Bortner M.J., McIlroy C. Rheology, crystallization, and process conditions: The effect on interlayer properties in three-dimensional printing. Phys. Fluids. 2022;34:123108. doi: 10.1063/5.0128660. DOI

Cunha M.A.G., Robbins M.O. Effect of Flow-Induced Molecular Alignment on Welding and Strength of Polymer Interfaces. Macromolecules. 2020;53:8417–8427. doi: 10.1021/acs.macromol.0c01508. DOI

Seppala J.E., Han S.H., Hillgartner K.E., Davis C.S., Migler K.B. Weld Formation during Material Extrusion Additive Manufacturing. Soft Matter. 2017;13:6761–6769. doi: 10.1039/C7SM00950J. PubMed DOI PMC

Costanzo A., Cavallo D., McIlroy C. High-Performance Co-Polyesters for Material-Extrusion 3D Printing: A Molecular Perspective of Weld Properties. Addit. Manuf. 2022;49:102474. doi: 10.1016/j.addma.2021.102474. DOI

McIlroy C. A fundamental rule: Determining the importance of flow prior to polymer crystallization. Phys. Fluids. 2019;31:113103. doi: 10.1063/1.5129119. DOI

Wang J., Hopmann C., Kahve C., Hohlweck T., Alms J. Measurement of specific volume of polymers under simulated injection molding processes. Mater. Des. 2020;196:109136. doi: 10.1016/j.matdes.2020.109136. DOI

Mishra A.A., Momin A., Strano M., Rane K. Implementation of viscosity and density models for improved numerical analysis of melt flow dynamics in the nozzle during extrusion-based additive manufacturing. Prog. Addit. Manuf. 2022;7:41–54. doi: 10.1007/s40964-021-00208-z. DOI

Kazmer D.O., Colon A.R., Peterson A.M., Kim S.K. Concurrent characterization of compressibility and viscosity in extrusion-based additive manufacturing of acrylonitrile butadiene styrene with fault diagnoses. Addit. Manuf. 2021;46:102106. doi: 10.1016/j.addma.2021.102106. DOI

Garzon-Hernandez S., Garcia-Gonzalez D., Jérusalem A., Arias A. Design of FDM 3D printed polymers: An experimental-modelling methodology for mechanical property prediction. Mater. Des. 2019;188:108414. doi: 10.1016/j.matdes.2019.108414. DOI

Yadav D., Chhabra D., Garg R.K., Ahlawat A., Phogat A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater. Today Proc. 2020;21:1583–1591. doi: 10.1016/j.matpr.2019.11.225. DOI

Ding S., Zou B., Wang P., Ding H. Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym. Test. 2019;78:105948. doi: 10.1016/j.polymertesting.2019.105948. DOI

Pulipaka A., Gide K.M., Beheshti A., Bagheri Z.S. Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK. J. Manuf. Process. 2023;85:368–386. doi: 10.1016/j.jmapro.2022.11.057. DOI

Shuto R., Norimatsu S., Arola D.D., Matsuzaki R. Effect of the nozzle temperature on the microstructure and interlaminar strength in 3D printing of carbon fiber/polyphenylene sulfide composites. Compos. Part C Open Access. 2022;9:100328. doi: 10.1016/j.jcomc.2022.100328. DOI

Gao X., Qi S., Kuang X., Su Y., Li J., Wang D. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021;37:101658. doi: 10.1016/j.addma.2020.101658. DOI

Spoerk M., Arbeiter F., Raguž I., Weingrill G., Fischinger T., Traxler G., Schuschnigg S., Cardon L., Holzer C. Polypropylene filled with glass spheres in extrusion-based additive manufacturing: Effect of filler size and printing chamber temperature. Macromol. Mater. Eng. 2018;303:1800179. doi: 10.1002/mame.201800179. DOI

Spoerk M., Holzer C., Gonzalez-Gutierrez J. Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. J. Appl. Polym. Sci. 2020;137:48545. doi: 10.1002/app.48545. DOI

Hertle S., Drexler M., Drummer D. Additive manufacturing of poly (propylene) by means of melt extrusion. Macromol. Mater. Eng. 2016;301:1482–1493. doi: 10.1002/mame.201600259. DOI

Benwood C., Anstey A., Andrzejewski J., Misra M., Mohanty A.K. Improving the impact strength and heat resistance of 3D printed models: Structure, property, and processing correlationships during fused deposition modeling (FDM) of poly (lactic acid) ACS Omega. 2018;3:4400–4411. doi: 10.1021/acsomega.8b00129. PubMed DOI PMC

Xiaoyong S., Liangcheng C., Honglin M., Peng G., Zhanwei B., Cheng L. Experimental analysis of high temperature PEEK materials on 3D printing test; Proceedings of the 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA); Changsha, China. 14–15 January 2017; pp. 13–16.

Hsueh M.-H., Lai C.-J., Wang S.-H., Zeng Y.-S., Hsieh C.-H., Pan C.-Y., Huang W.-C. Effect of printing parameters on the thermal and mechanical properties of 3d-printed pla and petg, using fused deposition modeling. Polymers. 2021;13:1758. doi: 10.3390/polym13111758. PubMed DOI PMC

Abeykoon C., Sri-Amphorn P., Fernando A. Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. Int. J. Lightweight Mater. Manuf. 2020;3:284–297. doi: 10.1016/j.ijlmm.2020.03.003. DOI

Yang T.-C., Yeh C.-H. Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using fused deposition modeling (FDM): The effects of printing speed. Polymers. 2020;12:1334. doi: 10.3390/polym12061334. PubMed DOI PMC

Ziemian C., Sharma M., Ziemian S. Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. Mech. Eng. 2012;23:2397.

Spoerk M., Savandaiah C., Arbeiter F., Traxler G., Cardon L., Holzer C., Sapkota J. Anisotropic properties of oriented short carbon fibre filled polypropylene parts fabricated by extrusion-based additive manufacturing. Compos. Part A Appl. Sci. Manuf. 2018;113:95–104. doi: 10.1016/j.compositesa.2018.06.018. DOI

Ang K.C., Leong K.F., Chua C.K., Chandrasekaran M. Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp. J. 2006;12:100–105.

Anitha R., Arunachalam S., Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 2001;118:385–388. doi: 10.1016/S0924-0136(01)00980-3. DOI

Perez C.J.L. Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int. J. Prod. Res. 2002;40:2865–2881. doi: 10.1080/00207540210146099. DOI

Pandey P.M., Reddy N.V., Dhande S.G. Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 2003;43:61–71. doi: 10.1016/S0890-6955(02)00164-5. DOI

Lay M., Thajudin N.L.N., Hamid Z.A.A., Rusli A., Abdullah M.K., Shuib R.K. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B Eng. 2019;176:107341. doi: 10.1016/j.compositesb.2019.107341. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...