Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_UU_00014/2
Medical Research Council - United Kingdom
MC_UU_00014/5
Medical Research Council - United Kingdom
PubMed
37121509
PubMed Central
PMC10197113
DOI
10.1016/j.molmet.2023.101731
PII: S2212-8778(23)00065-0
Knihovny.cz E-zdroje
- Klíčová slova
- ADAM17/TACE, Adipose tissue, Beta-adrenoceptor signalling, Cold challenge, Metabolism, Obesity, Semaphorin4B Sema4b, Thermogenesis,
- MeSH
- adipokiny * metabolismus MeSH
- beta-adrenergní receptory metabolismus MeSH
- buněčná diferenciace MeSH
- hnědé tukové buňky metabolismus MeSH
- lipidy MeSH
- myši MeSH
- proteomika MeSH
- semaforiny * genetika metabolismus MeSH
- termogeneze fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adipokiny * MeSH
- beta-adrenergní receptory MeSH
- lipidy MeSH
- semaforiny * MeSH
- semaphorin 4B, mouse MeSH Prohlížeč
OBJECTIVE: The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS: We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS: ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS: Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.
German Center for Neurodegenerative Diseases Munich Germany
Girona Biomedical Research Institute Madrid Spain
Instituto de Tecnologia Química da Universidade Nova de Lisboa Oeiras Portugal
Instituto Gulbenkian de Ciência Oeiras Portugal
Patrick G Johnston Centre for Cancer Research Queen's University Belfast N Ireland
Zobrazit více v PubMed
White C.L., Purpera M.N., Ballard K., Morrison C.D. Decreased food intake following overfeeding involves leptin-dependent and leptin-independent mechanisms. Physiol Behav. 2010;100(4):408–416. PubMed PMC
Ravussin Y., Edwin E., Gallop M., Xu L., Bartolomé A., Kraakman M.J., et al. Evidence for a non-leptin system that defends against weight gain in overfeeding. Cell Metabol. 2018;28(2):289–299.e5. PubMed PMC
Richards P., Thornberry N.A., Pinto S. The gut-brain axis: identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Mol Metabol. 2021;46 PubMed PMC
Müller T.D., Blüher M., Tschöp M.H., DiMarchi R.D. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov. 2021:1–23. PubMed PMC
Loos R.J.F., Yeo G.S.H. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23(2):120–133. PubMed PMC
Harvey I., Boudreau A., Stephens J.M. Adipose tissue in health and disease. Open Biol. 2020;10(12) PubMed PMC
Zwick R.K., Guerrero-Juarez C.F., Horsley V., Plikus M.V. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabol. 2018;27(1):68–83. PubMed PMC
Desruisseaux M.S., Nagajyothi, Trujillo M.E., Tanowitz H.B., Scherer P.E. Adipocyte, adipose tissue, and infectious disease. Infect Immun. 2007;75(3):1066–1078. PubMed PMC
Scheja L., Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol. 2019;15(9):507–524. PubMed
Rexford A., Flier J.S. Leptin. Annu Rev Physiol. 2000;62(7):413–437. PubMed
Jequier E. Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci. 2002;967(1):379–388. PubMed
Griggio M.A., Richard D., Leblanc J. Effects of fasting and food restriction on sympathetic activity in brown adipose tissue in mice. J Comp Physiol B. 1992;162(7):602–606. PubMed
Kawate R., Talan M.I., Engel B.T. Sympathetic nervous activity to brown adipose tissue increases in cold-tolerant mice. Physiol Behav. 1994;55(5):921–925. PubMed
Cypess A.M., Chen Y.C., Sze C., Wang K., English J., Chan O., et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci U S A. 2012;109(25):10001–10005. PubMed PMC
Bartness T.J., Song C.K. Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res. 2007;48(8):1655–1672. PubMed
François M., Torres H., Huesing C., Zhang R., Saurage C., Lee N., et al. Sympathetic innervation of the interscapular brown adipose tissue in mouse. Ann N Y Acad Sci. 2019;1454(1):3–13. PubMed PMC
Münzberg H., Floyd E., Chang J.S. Sympathetic innervation of white adipose tissue: to beige or not to beige. Physiology. 2021;36(4):246–255. PubMed PMC
Duncan R.E., Ahmadian M., Jaworski K., Sarkadi-Nagy E., Sul H.S. Regulation of lipolysis in adipocytes. Annu Rev Nutr. 2007;27:79–101. PubMed PMC
Grabner G.F., Xie H., Schweiger M., Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab. 2021;3(11):1445–1465. PubMed
Collins S. β-Adrenoceptor signaling networks in adipocytes for recruiting stored fat and energy expenditure. Front Endocrinol. 2011;2:102. PubMed PMC
Cannon B., Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. PubMed
Wade G., McGahee A., Ntambi J.M., Simcox J. Lipid transport in Brown adipocyte thermogenesis. Front Physiol. 2021;12 PubMed PMC
Crichton P.G., Lee Y., Kunji E.R. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie. 2017;134:35–50. PubMed PMC
Fedorenko A., Lishko P.V., Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151(2):400–413. PubMed PMC
Cannon B., Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J Exp Biol. 2011;214(Pt 2):242–253. PubMed
Roesler A., Kazak L. UCP1-independent thermogenesis. Biochem J. 2020;477(3):709–725. PubMed
Wu J., Boström P., Sparks L.M., Ye L., Choi J.H., Giang A.H., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. PubMed PMC
Petrovic N., Walden T.B., Shabalina I.G., Timmons J.A., Cannon B., Nedergaard J. proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–7164. PubMed PMC
Cohen P., Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol. 2021;22(6):393–409. PubMed PMC
Ghaben A.L., Scherer P.E. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20(4):242–258. PubMed
Singh A.M., Zhang L., Avery J., Yin A., Du Y., Wang H., et al. Human beige adipocytes for drug discovery and cell therapy in metabolic diseases. Nat Commun. 2020;11(1):2758. PubMed PMC
Thyagarajan B., Foster M.T. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm Mol Biol Clin Invest. 2017;31:2. j/hmbci.2017.31.issue-2/hmbci. PubMed
Silva G.D.N., Amato A.A. Thermogenic adipose tissue aging: mechanisms and implications. Front Cell Dev Biol. 2022;10 PubMed PMC
Moss M.L., Jin S.-L.C., Milla M.E., Burkhart W., Carter H.L., Chen W.-J., et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α. Nature. 1997;385(6618):733–736. PubMed
Black R.A., Rauch C.T., Kozlosky C.J., Peschon J.J., Slack J.L., Wolfson M.F., et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells. Nature. 1997;385(6618):729–733. PubMed
Zunke F., Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt B):2059–2070. PubMed
Schumacher N., Rose-John S. ADAM17 activity and IL-6 trans-signaling in inflammation and cancer. Cancers. 2019;11:E1736. PubMed PMC
Gelling R.W., Yan W., Al-Noori S., Pardini A., Morton G.J., Ogimoto K., et al. Deficiency of TNFalpha converting enzyme (TACE/ADAM17) causes a lean, hypermetabolic phenotype in mice. Endocrinology. 2008;149(12):6053–6064. PubMed PMC
Serino M., Menghini R., Fiorentino L., Amoruso R., Mauriello A., Lauro D., et al. Mice heterozygous for tumor necrosis factor-alpha converting enzyme are protected from obesity-induced insulin resistance and diabetes. Diabetes. 2007;56(10):2541–2546. PubMed
Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. PubMed
Hotamisligil G.S. The role of TNFα and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245(6):621–625. PubMed
Uysal K.T., Wiesbrock S.M., Marino M.W., Hotamisligil G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature. 1997;389(6651):610–614. PubMed
Badenes M., Amin A., González-García I., Félix I., Burbridge E., Cavadas M., et al. Deletion of iRhom2 protects against diet-induced obesity by increasing thermogenesis. Mol Metabol. 2020;31:67–84. PubMed PMC
Adrain C., Zettl M., Christova Y., Taylor N., Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science. 2012;335(6065):225–228. PubMed PMC
McIlwain D.R., Lang P.A., Maretzky T., Hamada K., Ohishi K., Maney S.K., et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science. 2012;335(6065):229–232. PubMed PMC
Maretzky T., McIlwain D.R., Issuree P.D., Li X., Malapeira J., Amin S., et al. iRhom2 controls the substrate selectivity of stimulated ADAM17-dependent ectodomain shedding. Proc Natl Acad Sci U S A. 2013;110(28):11433–11438. PubMed PMC
Cavadas M., Oikonomidi I., Gaspar C.J., Burbridge E., Badenes M., Félix I., et al. Phosphorylation of iRhom2 controls stimulated proteolytic shedding by the metalloprotease ADAM17/TACE. Cell Rep. 2017;21(3):745–757. PubMed PMC
Grieve A.G., Xu H., Künzel U., Bambrough P., Sieber B., Freeman M. Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. Elife. 2017;6 PubMed PMC
Oikonomidi I., Burbridge E., Cavadas M., Sullivan G., Collis B., Naegele H., et al. iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. Elife. 2018;7 PubMed PMC
Künzel U., Grieve A.G., Meng Y., Sieber B., Cowley S.A., Freeman M. FRMD8 promotes inflammatory and growth factor signalling by stabilising the iRhom/ADAM17 sheddase complex. Elife. 2018;7 PubMed PMC
Badenes M., Burbridge E., Oikonomidi I., Amin A., de Carvalho É., Kosack L., et al. 2022. The ADAM17 sheddase complex regulator iTAP modulates inflammation, epithelial repair, and tumor growth. PubMed PMC
Westerterp K.R. Diet induced thermogenesis. Nutr Metab. 2004;1:5. PubMed PMC
Saito M., Matsushita M., Yoneshiro T., Okamatsu-Ogura Y. Brown adipose tissue, diet-induced thermogenesis, and thermogenic food ingredients: from mice to men. Front Endocrinol. 2020;11:222. PubMed PMC
Fischer A.W., Schlein C., Cannon B., Heeren J., Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316(3):E487–E503. PubMed PMC
Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C., et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999;402(6764):884–888. PubMed
Gooz M., Gooz P., Luttrell L.M., Raymond J.R. 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-α-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells. J Biol Chem. 2006;281(30):21004–21012. PubMed
Yin J., Yu F.S. ERK1/2 mediate wounding- and G-protein-coupled receptor ligands-induced EGFR activation via regulating ADAM17 and HB-EGF shedding. Invest Ophthalmol Vis Sci. 2009;50(1):132–139. PubMed PMC
Horiuchi K., Kimura T., Miyamoto T., Takaishi H., Okada Y., Toyama Y., et al. Cutting edge: TNF-alpha-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J Immunol. 2007;179(5):2686–2689. PubMed
Eguchi J., Wang X., Yu S., Kershaw E.E., Chiu P.C., Dushay J., et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metabol. 2011;13(3):249–259. PubMed PMC
Carobbio S., Guenantin A.C., Bahri M., Rodriguez-Fdez S., Honig F., Kamzolas I., et al. Unraveling the developmental roadmap toward human Brown AdiposeTissue. Stem Cell Rep. 2021;16(4):1010. PubMed PMC
Tran K.V., Brown E.L., DeSouza T., Jespersen N.Z., Nandrup-Bus C., Yang Q., et al. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab. 2020;2(5):397–412. PubMed PMC
Tüshaus J., Müller S.A., Kataka E.S., Zaucha J., Sebastian Monasor L., Su M., et al. An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome. EMBO J. 2020;39(20) PubMed PMC
Tüshaus J., Müller S.A., Shrouder J., Arends M., Simons M., Plesnila N., et al. The pseudoprotease iRhom1 controls ectodomain shedding of membrane proteins in the nervous system. Faseb J. 2021;35(11) PubMed PMC
Burkhardt C., Müller M., Badde A., Garner C.C., Gundelfinger E.D., Püschel A.W. Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif. FEBS Lett. 2005;579(17):3821–3828. PubMed
Adrain C., Strisovsky K., Zettl M., Hu L., Lemberg M.K., Freeman M. Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep. 2011;12(5):421–427. PubMed PMC
Naviaux R.K., Costanzi E., Haas M., Verma I.M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol. 1996;70(8):5701–5705. PubMed PMC
Cavadas M., Oikonomidi I., Gaspar C.J., Burbridge E., Badenes M., Félix I., et al. Phosphorylation of iRhom2 controls stimulated proteolytic shedding by the metalloprotease ADAM17/TACE. Cell Rep. 2017;21(3):745–757. PubMed PMC
Klein J., Fasshauer M., Ito M., Lowell B.B., Benito M., Kahn C.R. β3-Adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem. 1999;274(49):34795–34802. PubMed
Picelli S., Faridani O.R., Björklund A.K., Winberg G., Sagasser S., Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9(1):171–181. PubMed
Baym M., Kryazhimskiy S., Lieberman T.D., Chung H., Desai M.M., Kishony R. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One. 2015;10(5) PubMed PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. PubMed PMC
Anders S., Pyl P.T., Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–169. PubMed PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) Nucleic Acids Res. 2022;50(W1):W216–W221. PubMed PMC
Ortega F.J., Mercader J.M., Moreno-Navarrete J.M., Nonell L., Puigdecanet E., Rodriquez-Hermosa J.I., et al. Surgery-induced weight loss is associated with the downregulation of genes targeted by MicroRNAs in adipose tissue. J Clin Endocrinol Metab. 2015;100(11):E1467–E1476. PubMed
Prenzel N., Zwick E., Daub H., Leserer M., Abraham R., Wallasch C., et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature. 1999;402(6764):884–888. PubMed
Palanisamy S., Xue C., Ishiyama S., Naga Prasad S.V., Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal. 2021;86 PubMed
Collins S. β-Adrenergic receptors and adipose tissue metabolism: evolution of an old story. Annu Rev Physiol. 2022;84:1–16. PubMed
Shook R.P., Hand G.A., Paluch A.E., Wang X., Moran R., Hébert J.R., et al. High respiratory quotient is associated with increases in body weight and fat mass in young adults. Eur J Clin Nutr. 2016;70(10):1197–1202. PubMed
Burke S.J., Batdorf H.M., Martin T.M., Burk D.H., Noland R.C., Cooley C.R., et al. Liquid sucrose consumption promotes obesity and impairs glucose tolerance without altering circulating insulin levels. Obesity. 2018;26(7):1188–1196. PubMed PMC
Jo J., Gavrilova O., Pack S., Jou W., Mullen S., Sumner A.E., et al. Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol. 2009;5(3) PubMed PMC
Attie A.D., Scherer P.E. Adipocyte metabolism and obesity. J Lipid Res. 2009;50(Suppl):S395–S399. PubMed PMC
Geisler C.E., Renquist B.J. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones. J Endocrinol. 2017;234(1):R1–R21. PubMed
Koonen D.P., Jacobs R.L., Febbraio M., Young M.E., Soltys C.L., Ong H., et al. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes. 2007;56(12):2863–2871. PubMed
Strissel K.J., Stancheva Z., Miyoshi H., Perfield J.W., DeFuria J., Jick Z., et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes. 2007;56(12):2910–2918. PubMed
De Taeye B.M., Novitskaya T., McGuinness O.P., Gleaves L., Medda M., Covington J.W., et al. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am J Physiol Endocrinol Metab. 2007;293(3):E713–E725. PubMed
Sugawara K., Schneider M.R., Dahlhoff M., Kloepper J.E., Paus R. Cutaneous consequences of inhibiting EGF receptor signaling in vivo: normal hair follicle development, but retarded hair cycle induction and inhibition of adipocyte growth in Egfr(Wa5) mice. J Dermatol Sci. 2010;57(3):155–161. PubMed
Choung S., Kim J.M., Joung K.H., Lee E.S., Kim H.J., Ku B.J. Epidermal growth factor receptor inhibition attenuates non-alcoholic fatty liver disease in diet-induced obese mice. PLoS One. 2019;14(2) PubMed PMC
Timper K., Denson J.L., Steculorum S.M., Heilinger C., Engström-Ruud L., Wunderlich C.M., et al. IL-6 improves energy and glucose homeostasis in obesity via enhanced central IL-6 trans-signaling. Cell Rep. 2017;19(2):267–280. PubMed
Schöbitz B., Pezeshki G., Pohl T., Hemmann U., Heinrich P.C., Holsboer F., et al. Soluble interleukin-6 (IL-6) receptor augments central effects of IL-6 in vivo. Faseb J. 1995;9(8):659–664. PubMed
Wallenius V., Wallenius K., Ahrén B., Rudling M., Carlsten H., Dickson S.L., et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8(1):75–79. PubMed
Wallenius K., Wallenius V., Sunter D., Dickson S.L., Jansson J.-O. Intracerebroventricular interleukin-6 treatment decreases body fat in rats. Biochem Biophys Res Commun. 2002;293(1):560–565. PubMed
Tüshaus J., Müller S.A., Kataka E.S., Zaucha J., Sebastian Monasor L., Su M., et al. An optimized quantitative proteomics method establishes the cell type-resolved mouse brain secretome. EMBO J. 2020;39(20) PubMed PMC
Alto L.T., Terman J.R. Semaphorins and their signaling mechanisms. Semaphorin signaling. 2017:1–25. PubMed PMC
Ramseyer V.D., Granneman J.G. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues. Adipocyte. 2016;5(2):119–129. PubMed PMC
Christie S.M., Hao J., Tracy E., Buck M., Yu J.S., Smith A.W. Interactions between semaphorins and plexin-neuropilin receptor complexes in the membranes of live cells. J Biol Chem. 2021;297(2) PubMed PMC
Kerr A.G., Andersson D.P., Rydén M., Arner P., Dahlman I. Long-term changes in adipose tissue gene expression following bariatric surgery. J Intern Med. 2020;288(2):219–233. PubMed
U Din M., Saari T., Raiko J., Kudomi N., Maurer S.F., Lahesmaa M., et al. Postprandial oxidative metabolism of human Brown fat indicates thermogenesis. Cell Metabol. 2018;28(2):207–216.e3. PubMed
Lorenzen I., Lokau J., Korpys Y., Oldefest M., Flynn C.M., Künzel U., et al. Control of ADAM17 activity by regulation of its cellular localisation. Sci Rep. 2016;6 PubMed PMC
Wang Z. Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int J Mol Sci. 2016;17(1):E95. PubMed PMC
Fischer A.W., Cannon B., Nedergaard J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol Metabol. 2018;7:161–170. PubMed PMC
Škop V., Guo J., Liu N., Xiao C., Hall K.D., Gavrilova O., et al. Mouse thermoregulation: introducing the concept of the thermoneutral point. Cell Rep. 2020;31(2) PubMed PMC
Ravussin Y., LeDuc C.A., Watanabe K., Leibel R.L. Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am J Physiol Regul Integr Comp Physiol. 2012;303(4):R438–R448. PubMed PMC
Lownik J.C., Farrar J.S., Pearce J.V., Celi F.S., Martin R.K. Adipocyte ADAM17 plays a limited role in metabolic inflammation. Adipocyte. 2020;9(1):509–522. PubMed PMC
Boutari C., Mantzoros C.S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133 PubMed PMC
Gelfand S.D. Nudging, bullshitting, and the meta-nudge. Camb Q Healthc Ethics. 2023;32(1):56–68. PubMed
Kupferschmidt K. On the trail of bullshit. Science. 2022;375(6587):1334–1337. PubMed
Yang T., Terman J.R. 14-3-3ε couples protein kinase A to semaphorin signaling and silences plexin RasGAP-mediated axonal repulsion. Neuron. 2012;74(1):108–121. PubMed PMC
Kumanogoh A., Watanabe C., Lee I., Wang X., Shi W., Araki H., et al. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity. 2000;13(5):621–631. PubMed
Cho J.Y., Chak K., Andreone B.J., Wooley J.R., Kolodkin A.L. The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev. 2012;26(19):2222–2235. PubMed PMC
Kumanogoh A., Marukawa S., Suzuki K., Takegahara N., Watanabe C., Ch’ng E., et al. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature. 2002;419(6907):629–633. PubMed
Pasterkamp R.J., Peschon J.J., Spriggs, Kolodkin A.L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature. 2003;424(6947):398–405. PubMed
Nedergaard J., Petrovic N., Lindgren E.M., Jacobsson A., Cannon B. PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta. 2005;1740(2):293–304. PubMed
Manchado C., Yubero P., Viñas O., Iglesias R., Villarroya F., Mampel T., et al. CCAAT/enhancer-binding proteins α and β in brown adipose tissue: evidence for a tissue-specific pattern of expression during development. Biochem J. 1994;302(3):695–700. PubMed PMC
Bos J.L., Rehmann H., Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129(5):865–877. PubMed
Wang Y., He H., Srivastava N., Vikarunnessa S., Chen Y.B., Jiang J., et al. Plexins are GTPase-activating proteins for Rap and are activated by induced dimerization. Sci Signal. 2012;5:207. ra6. PubMed PMC
Biernacka A., Dobaczewski M., Frangogiannis N.G. TGF-β signaling in fibrosis. Growth Factors. 2011;29(5):196–202. PubMed PMC
Kefaloyianni E., Muthu M.L., Kaeppler J., Sun X., Sabbisetti V., Chalaris A., et al. ADAM17 substrate release in proximal tubule drives kidney fibrosis. JCI Insight. 2016;1(13) PubMed PMC
Matsui Y., Tomaru U., Miyoshi A., Ito T., Fukaya S., Miyoshi H., et al. Overexpression of TNF-α converting enzyme promotes adipose tissue inflammation and fibrosis induced by high fat diet. Exp Mol Pathol. 2014;97(3):354–358. PubMed
Wang X., Oka T., Chow F.L., Cooper S.B., Odenbach J., Lopaschuk G.D., et al. Tumor necrosis factor-alpha-converting enzyme is a key regulator of agonist-induced cardiac hypertrophy and fibrosis. Hypertension. 2009;54(3):575–582. PubMed
Carvalheiro T., Affandi A.J., Malvar-Fernández B., Dullemond I., Cossu M., Ottria A., et al. Induction of inflammation and fibrosis by semaphorin 4A in systemic sclerosis. Arthritis Rheumatol. 2019;71(10):1711–1722. PubMed PMC
Jeon K.I., Nehrke K., Huxlin K.R. Semaphorin 3A potentiates the profibrotic effects of transforming growth factor-β1 in the cornea. Biochem Biophys Res Commun. 2020;521(2):333–339. PubMed PMC
Peng H.Y., Gao W., Chong F.R., Liu H.Y., Zhang J.I. Semaphorin 4A enhances lung fibrosis through activation of Akt via PlexinD1 receptor. J Biosci. 2015;40(5):855–862. PubMed
Sang Y., Tsuji K., Fukushima K., Takahashi K., Kitamura S., Wada J. Semaporin3A inhibitor ameliorates renal fibrosis through the regulation of JNK signaling. Am J Physiol Ren Physiol. 2021;321(6):F740–F756. PubMed
Ruiz-Ojeda F.J., Méndez-Gutiérrez A., Aguilera C.M., Plaza-Díaz J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int J Mol Sci. 2019;20(19):E4888. PubMed PMC
Mejhert N., Wilfling F., Esteve D., Galitzky J., Pellegrinelli V., Kolditz C.I., et al. Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia. 2013;56(8):1792–1801. PubMed
Hasegawa Y., Ikeda K., Chen Y., Alba D.L., Stifler D., Shinoda K., et al. Repression of adipose tissue fibrosis through a PRDM16-gtf2ird1 complex improves systemic glucose homeostasis. Cell Metabol. 2018;27(1):180–194.e6. PubMed PMC
Chouchani E.T., Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat Metab. 2019;1(2):189–200. PubMed PMC
Gonzalez Porras M.A., Stojkova K., Vaicik M.K., Pelowe A., Goddi A., Carmona A., et al. Integrins and extracellular matrix proteins modulate adipocyte thermogenic capacity. Sci Rep. 2021;11(1):5442. PubMed PMC
van der Klaauw A.A., Croizier S., Mendes de Oliveira E., Stadler L.K.J., Park S., Kong Y., et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell. 2019;176(4):729–742.e18. PubMed PMC
Giordano A., Coppari R., Castellucci M., Cinti S. Sema3a is produced by brown adipocytes and its secretion is reduced following cold acclimation. J Neurocytol. 2001;30(1):5–10. PubMed
Giordano A., Cesari P., Capparuccia L., Castellucci M., Cinti S. Sema3A and neuropilin-1 expression and distribution in rat white adipose tissue. J Neurocytol. 2003;32(4):345–352. PubMed
Lu Q., Zhu L. The role of semaphorins in metabolic disorders. Int J Mol Sci. 2020;21(16):E5641. PubMed PMC
Liu M., Xie S., Liu W., Li J., Li C., Huang W., et al. Mechanism of SEMA3G knockdown-mediated attenuation of high-fat diet-induced obesity. J Endocrinol. 2020;244(1):223–236. PubMed
Fong K.P., Barry C., Tran A.N., Traxler E.A., Wannemacher K.M., Tang H.Y., et al. Deciphering the human platelet sheddome. Blood. 2011;117(1):e15–e26. PubMed PMC
Motani K., Kosako H. Activation of stimulator of interferon genes (STING) induces ADAM17-mediated shedding of the immune semaphorin SEMA4D. J Biol Chem. 2018;293(20):7717–7726. PubMed PMC
Browne K., Wang W., Liu R.Q., Piva M., O'Connor T.P. Transmembrane semaphorin5B is proteolytically processed into a repulsive neural guidance cue. J Neurochem. 2012;123(1):135–146. PubMed
Romi E., Gokhman I., Wong E., Antonovsky N., Ludwig A., Sagi I., et al. ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant Sema3A. Nat Commun. 2014;5:4058. PubMed
Ito T., Bai T., Tanaka T., Yoshida K., Ueyama T., Miyajima M., et al. Estrogen-dependent proteolytic cleavage of semaphorin 4D and plexin-B1 enhances semaphorin 4D-induced apoptosis during postnatal vaginal remodeling in pubescent mice. PLoS One. 2014;9(5) PubMed PMC
Esselens C., Malapeira J., Colomé N., Casal C., Rodríguez-Manzaneque J.C., Canals F., et al. The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem. 2010;285(4):2463–2473. PubMed PMC
Horiuchi K., Le Gall S., Schulte M., Yamaguchi T., Reiss K., Murphy G., et al. Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell. 2007;18(1):176–188. PubMed PMC
Werny L., Grogro A., Bickenbach K., Bülck C., Armbrust F., Koudelka T., et al. MT1-MMP and ADAM10/17 exhibit a remarkable overlap of shedding properties. FEBS J. 2023;290(1):93–111. PubMed
Murumkar P.R., Ghuge R.B., Chauhan M., Barot R.R., Sorathiya S., Choudhary K.M., et al. Recent developments and strategies for the discovery of TACE inhibitors. Expet Opin Drug Discov. 2020;15(7):779–801. PubMed
Calligaris M., Cuffaro D., Bonelli S., Spanò D.P., Rossello A., Nuti E., et al. Strategies to target ADAM17 in disease: from its discovery to the iRhom revolution. Molecules. 2021;26(4):944. PubMed PMC