Characterization of sensitivity of optical fiber cables to acoustic vibrations
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VJ01010035
Ministerstvo Vnitra České Republiky
CZ.02.1.01/0.0/0.0/164_026/0008460
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
37127690
PubMed Central
PMC10151333
DOI
10.1038/s41598-023-34097-9
PII: 10.1038/s41598-023-34097-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fiber optic infrastructure is essential in the transmission of data of all kinds, both for the long haul and shorter distances in cities. Optical fibers are also preferred for data infrastructures inside buildings, especially in highly secured organizations and government facilities. This paper focuses on a reference measurement and analysis of optical fiber cables sensitivity to acoustic waves. Measurement was carried out in an anechoic chamber to ensure stable conditions of acoustic pressure in the range from 20 Hz to 20 kHz. The frequency response, the signal-to-noise ratio per frequency, and the Speech Transmission Index are evaluated for various types of optical fiber cables and different ceiling tiles, followed by their comparison. The influence of the means of fixing the cable is also studied. The results prove that optical fiber-based infrastructure in buildings can be exploited as a sensitive microphone.
Zobrazit více v PubMed
Spurny V, Munster P, Tomasov A, Horvath T, Skaljo E. Physical layer components security risks in optical fiber infrastructures. Sensors. 2022 doi: 10.3390/s22020588. PubMed DOI PMC
Cole JH, Johnson RL, Cunningham JA, Bhuta PG. Optical detection of low frequency sound. J. Acoust. Soc. Am. 1975;20:418–426.
Cole JH, Johnson RL, Bhuta PG. Fiber-optic detection of sound. J. Acoust. Soc. Am. 1977;62:1136–1138. doi: 10.1121/1.381647. DOI
Bucaro JA, Dardy HD, Carome EF. Fiber-optic hydrophone. J. Acoust. Soc. Am. 1977;62:1302–1304. doi: 10.1121/1.381624. DOI
Wang Y, et al. A comprehensive study of optical fiber acoustic sensing. IEEE Access. 2019;7:85821–85837. doi: 10.1109/ACCESS.2019.2924736. DOI
Teixeira JG, Leite IT, Silva S, Frazão O. Advanced fiber-optic acoustic sensors. Photon. Sens. 2014;4:198–208. doi: 10.1007/s13320-014-0148-5. DOI
He Z, Liu Q. Optical fiber distributed acoustic sensors: A review. J. Lightw. Technol. 2021;39:3671–3686. doi: 10.1109/JLT.2021.3059771. DOI
Hill, D. Distributed acoustic sensing (DAS): Theory and applications. In Frontiers in Optics 2015, FTh4E.1 (Optica Publishing Group, 2015) 10.1364/FIO.2015.FTh4E.1.
Tomboza W, Guerrier S, Awwad E, Dorize C. High sensitivity differential phase OTDR for acoustic signals detection. IEEE Photon. Technol. Lett. 2021;33:645–648. doi: 10.1109/LPT.2021.3084557. DOI
Kageyama K, et al. Doppler effect in flexible and expandable light waveguide and development of new fiber-optic vibration/acoustic sensor. J. Lightw. Technol. 2006;24:1768–1775. doi: 10.1109/JLT.2005.863331. DOI
Zhou C, et al. Doppler effect-based optical fiber vibration sensor using frequency-shifted interferometry demodulation. J. Lightw. Technol. 2017;35:3483–3488. doi: 10.1109/JLT.2016.2592538. DOI
Han C, Ding H, Li B, Shi L, Xu H. A miniature fiber-optic microphone based on plano-concave micro-interferometer. Rev. Sci. Instrum. 2022;93:045001. doi: 10.1063/5.0084559. PubMed DOI
Hayber SE, Tabaru TE, Keser S, Saracoglu OG. A simple, high sensitive fiber optic microphone based on cellulose triacetate diaphragm. J. Lightw. Technol. 2018;36:5650–5655. doi: 10.1109/JLT.2018.2878345. DOI
Yang Y, Wang Y, Chen K. Wideband fiber-optic Fabry–Perot acoustic sensing scheme using high-speed absolute cavity length demodulation. Opt. Express. 2021;29:6768–6779. doi: 10.1364/OE.415750. PubMed DOI
Chyad RM, et al. Acoustic fiber sensors by Fabry–Perot interferometer technology. J. Phys. Conf. Ser. 2020;1660:012052. doi: 10.1088/1742-6596/1660/1/012052. DOI
Zhou Z, et al. Speech detection enhancement in optical fiber acoustic sensor via adaptive threshold function. Opt. Fiber Technol. 2019;47:1–6. doi: 10.1016/j.yofte.2018.11.013. DOI
Hayber SE, Keser S. 3D sound source localization with fiber optic sensor array based on genetic algorithm. Opt. Fiber Technol. 2020;57:102229. doi: 10.1016/j.yofte.2020.102229. DOI
Sun A, Wu Z, Wan C, Yang C. All-fiber optic acoustic sensor based on multimode-single mode-multimode structure. Optik. 2012;123:1138–1139. doi: 10.1016/j.ijleo.2011.07.040. DOI
Sahota JK, Gupta N, Dhawan D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020;59:060901. doi: 10.1117/1.OE.59.6.060901. DOI
Zhang, P. et al. Fiber optic acoustic sensor based on fiber Bragg grating Fabry–Perot (FBG-FP) cavity. In 2021 19th International Conference on Optical Communications and Networks (ICOCN), 1–3. 10.1109/ICOCN53177.2021.9563894 (2021).
Guo, Z. et al. Ultra-thin optical hydrophone array based on fiber Bragg gratings. In 2019 18th International Conference on Optical Communications and Networks (ICOCN), 1–3. 10.1109/ICOCN.2019.8934720 (2019).
Leong, M. C. et al. Contactless vibration sensing and acoustics wave detection based on laser feedback interferometer. In 2020 IEEE 8th International Conference on Photonics (ICP), 91–92. 10.1109/ICP46580.2020.9206494 (2020).
Zhu X, et al. High-sensitive acoustic sensor based on microfiber Mach–Zehnder interferometer with tapered polarization-maintaining fiber. Fiber Integr. Opt. 2022;41:41–61. doi: 10.1080/01468030.2022.2042626. DOI
Stepanov KV, et al. Non-invasive acoustic monitoring of gas turbine units by fiber optic sensors. Sensors. 2022 doi: 10.3390/s22134781. PubMed DOI PMC
Zhu W, Li D, Liu J, Wang R. Membrane-free acoustic sensing based on an optical fiber Mach–Zehnder interferometer. Appl. Opt. 2020;59:1775–1779. doi: 10.1364/AO.381002. PubMed DOI
Duque WS, Rodríguez Díaz CA, Leal-Junior AG, Frizera A. Fiber-optic hydrophone based on Michelsons interferometer with active stabilization for liquid volume measurement. Sensors. 2022 doi: 10.3390/s22124404. PubMed DOI PMC
Zhou, H.-y. et al. The anti-interference method of Michelson optical fiber interferometer for GIS partial discharge ultrasonic detection. In 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 283–286. 10.1109/CEIDP47102.2019.9009739 (2019).
Marra G, et al. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables. Science. 2018;361:486–490. doi: 10.1126/science.aat4458. PubMed DOI
Min R, et al. Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt. Laser Technol. 2021;140:107082. doi: 10.1016/j.optlastec.2021.107082. DOI
Hu Y, Song Q, Peng H, Xiao Q. Improvement of noise stability of Michelson optical fiber voice monitoring system. IEEE Access. 2021;9:60482–60488. doi: 10.1109/ACCESS.2021.3073953. DOI
Jackson DA, Dandridge A, Sheem SK. Measurement of small phase shifts using a single-mode optical-fiber interferometer. Opt. Lett. 1980;5:139–141. doi: 10.1364/OL.5.000139. PubMed DOI
Lu P, Liu D, Liao H. High-sensitivity fiber optic acoustic sensors. In: Liu T, Jiang S, Landgraf R, editors. Advanced Sensor Systems and Applications VII. International Society for Optics and Photonics (SPIE); 2016. pp. 202–209.
Yin S, Ruffin PB, Yu FTS. Fiber Optic Sensors: Second Edition. CRC Press; 2017. pp. 1–477.
Li Y, et al. Phase demodulation methods for optical fiber vibration sensing system: A review. IEEE Sens. J. 2022;22:1842–1866. doi: 10.1109/JSEN.2021.3135909. DOI
Yuan H, et al. An anti-noise composite optical fiber vibration sensing system. Opt. Lasers Eng. 2021;139:106483. doi: 10.1016/j.optlaseng.2020.106483. DOI
Wang J, et al. Sound source localization based on Michelson fiber optic interferometer array. Opt. Fiber Technol. 2019;51:112–117. doi: 10.1016/j.yofte.2019.05.008. DOI
Marra, G. Transfer of optical frequency combs over optical fibre links. Ph.D. thesis, University of Southampton (2013).
Jiang H, Kéfélian F, Lemonde P, Clairon A, Santarelli G. An agile laser with ultra-low frequency noise and high sweep linearity. Opt. Express. 2010;18:3284–3297. doi: 10.1364/OE.18.003284. PubMed DOI
Zhang, T. et al. The research of optical fiber sensor calibration based on acoustic sensor calibration system. In Zhu, J., Xu, K., Xiao, H. & Han, S. (eds.) 2019 International Conference on Optical Instruments and Technology: Optoelectronic Measurement Technology and Systems, vol. 11439, 403 – 410 (International Society for Optics and Photonics (SPIE), 2020) 10.1117/12.2549877.
The MathWorks, Inc. Unwrap signal phase. https://mathworks.com/help/dsp/ref/unwrap.html (2023). Accessed 03 Apr 2023.
Oppenheim AV, Schafer RW, Buck JR. Discrete-Time Signal Processing. 2. Prentice-Hall; 1998.
Farina, A. Simultaneous measurement of impulse response and distortion with a swept-sine technique. In Audio Engineering Society Convention 108 (2000).
Müller S, Massarani P. Transfer-function measurement with sweeps. J. Audio Eng. Soc. 2001;49:443–471.
Novak A, Lotton P, Simon L. Synchronized swept-sine: Theory, application, and implementation. J. Audio Eng. Soc. 2015;63:786–798. doi: 10.17743/jaes.2015.0071. DOI
Kay SM. Fundamentals of Statistical Processing, Volume I: Estimation Theory. Prentice Hall; 1993.
Sound system equipment—Part 16: Objective rating of speech intelligibility by speech transmission index. Standard, International Organization for Standardization, Geneva, CH (2020).
Hatziantoniou PD, Mourjopoulos JN. Generalized fractional-octave smoothing of audio and acoustic responses. J. Audio Eng. Soc. 2000;48:259–280.