Distributed Acoustic Sensing of Sounds in Audible Spectrum in Realistic Optical Cable Infrastructure

. 2025 May 13 ; 12 (1) : 783. [epub] 20250513

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40360563

Grantová podpora
VJ01010035 Ministerstvo Vnitra České Republiky (Ministry of the Interior of the Czech Republic)
VJ01010035 Ministerstvo Vnitra České Republiky (Ministry of the Interior of the Czech Republic)
VJ01010035 Ministerstvo Vnitra České Republiky (Ministry of the Interior of the Czech Republic)
VJ01010035 Ministerstvo Vnitra České Republiky (Ministry of the Interior of the Czech Republic)
VJ01010035 Ministerstvo Vnitra České Republiky (Ministry of the Interior of the Czech Republic)

Odkazy

PubMed 40360563
PubMed Central PMC12075592
DOI 10.1038/s41597-025-05119-0
PII: 10.1038/s41597-025-05119-0
Knihovny.cz E-zdroje

Distributed acoustic sensing (DAS) is an emerging technology with diverse applications in monitoring infrastructure, security systems, and environmental sensing. This study presents a dataset comprising acoustic vibration patterns recorded by a commercial DAS system, providing valuable insights into the acoustic sensitivity of optical fibers. The data are crucial for evaluating the performance of DAS systems, particularly in scenarios related to security and eavesdropping. The dataset offers the possibility to develop and test algorithms aimed at enhancing signal-to-noise ratio (SNR), detecting anomalies, and improving speech intelligibility. Additionally, this resource facilitates the validation of de-noising techniques through the calculation of the speech transmission index (STI). The experimental setup, measurement procedures, and the characteristics of the DAS system employed are comprehensively documented for researchers in the field of optical fiber sensing and signal processing.

Zobrazit více v PubMed

Shang, Y. et al. Research progress in distributed acoustic sensing techniques. Sensors22, 10.3390/s22166060 (2022). PubMed PMC

Dejdar, P., Záviška, P., Valach, S., Münster, P. & Horváth, T. Image edge detection methods in perimeter security systems using distributed fiber optical sensing. Sensors22, 10.3390/s22124573 (2022). PubMed PMC

Liu, Z. et al. Underwater acoustic source localization based on phase-sensitive optical time domain reflectometry. Opt. Express29, 12880–12892, 10.1364/OE.422255 (2021). PubMed

Hicke, K., Liao, C.-M., Chruscicki, S. & Breithaupt, M. Vibration monitoring of large-scale bridge model using distributed acoustic sensing. In 27th International Conference on Optical Fiber Sensors, W4.31, 10.1364/OFS.2022.W4.31 (Optica Publishing Group, 2022).

Liu, J., Yuan, S., Luo, B., Biondi, B. & Noh, H. Y. Turning telecommunication fiber-optic cables into distributed acoustic sensors for vibration-based bridge health monitoring. Structural Control and Health Monitoring2023, 3902306, 10.1155/2023/3902306 (2023).

Li, Z., Zhang, J., Wang, M., Zhong, Y. & Peng, F. Fiber distributed acoustic sensing using convolutional long short-term memory network: a field test on high-speed railway intrusion detection. Opt. Express28, 2925–2938, 10.1364/OE.28.002925 (2020). PubMed

Zhang, G., Song, Z., Osotuyi, A. G., Lin, R. & Chi, B. Railway traffic monitoring with trackside fiber-optic cable by distributed acoustic sensing technology. Frontiers in Earth Science10, 10.3389/feart.2022.990837 2022).

Milne, D., Masoudi, A., Ferro, E., Watson, G. & Le Pen, L. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing. Mechanical Systems and Signal Processing142, 106769, 10.1016/j.ymssp.2020.106769 (2020).

Hu, D. et al. Intelligent structure monitoring for tunnel steel loop based on distributed acoustic sensing. In Conference on Lasers and Electro-Optics, ATh1S.4, 10.1364/CLEO_AT.2021.ATh1S.4 (Optica Publishing Group, 2021).

Monitoring tunneling construction using distributed acoustic sensing, vol. Day 1 Sun, August 28, 2022 of SEG International Exposition and Annual Meeting. 10.1190/image2022-3747169.1.

Ghazali, M. F. et al. State-of-the-art application and challenges of optical fibre distributed acoustic sensing in civil engineering. Optical Fiber Technology87, 103911, 10.1016/j.yofte.2024.103911 (2024).

Li, C. et al. Phase correction based SNR enhancement for distributed acoustic sensing with strong environmental background interference. Optics and Lasers in Engineering168, 107678, 10.1016/j.optlaseng.2023.107678 (2023).

Xie, Y., Wang, M., Zhong, Y., Deng, L. & Zhang, J. Label-free anomaly detection using distributed optical fiber acoustic sensing. Sensors23, 10.3390/s23084094 (2023). PubMed PMC

Tomasov, A. et al. Enhancing perimeter protection using ϕ-OTDR and CNN for event classification. In 28th International Conference on Optical Fiber Sensors, W4.39, 10.1364/OFS.2023.W4.39 (Optica Publishing Group, 2023).

Liu, H. et al. Vehicle detection and classification using distributed fiber optic acoustic sensing. IEEE Transactions on Vehicular Technology69, 1363–1374, 10.1109/TVT.2019.2962334 (2020).

Dejdar, P. et al. Distributed Acoustic Sensing of Sounds in Audible Spectrum in Realistic Optical Cable Infrastructure. Figshare. 10.6084/m9.figshare.27620397 (2024). PubMed

Dejdar, P. et al. Characterization of sensitivity of optical fiber cables to acoustic vibrations. Scientific Reports13, 7068, 10.1038/s41598-023-34097-9 (2023). PubMed PMC

Záviška, P., Rajmic, P. & Schimmel, J. Matlab Implementation of STIPA (Speech Transmission Index for Public Address Systems). Journal of the Audio Engineering Society (2024).

Nelson, M. A., Davies, T. J., Lyons, P. B., Golob, E. J. & Looney, L. D. A Fiber Optic Time Domain Reflectometer. Optical Engineering18, 5 – 8, 10.1117/12.7972311 (1979).

Fernández-Ruiz, M. R., Costa, L. & Martins, H. F. Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology. Sensors19, 10.3390/s19204368 (2019). PubMed PMC

Rao, Y., Wang, Z., Wu, H., Ran, Z. & Han, B. Recent advances in phase-sensitive optical time domain reflectometry (Φ-OTDR). Photonic Sensors11, 1–30, 10.1007/s13320-021-0619-4 (2021).

Zinsou, R. et al. Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems. Sensors19, 10.3390/s19071709 (2019). PubMed PMC

Farina, A. Simultaneous measurement of impulse response and distortion with a swept-sine technique. In Audio Engineering Society Convention 108 (2000).

Müller, S. & Massarani, P. Transfer-function measurement with sweeps. Journal of the Audio Engineering Society49, 443–471 (2001).

Novak, A., Lotton, P. & Simon, L. Synchronized swept-sine: Theory, application, and implementation. Journal of the Audio Engineering Society63, 786–798, 10.17743/jaes.2015.0071 (2015).

Oppenheim, A. V., Schafer, R. W. & Buck, J. R. Discrete-time signal processing (Prentice-Hall, New Jersey (USA), 2 edn. 1998).

Sound system equipment – Part 16: Objective rating of speech intelligibility by speech transmission index. Standard, International Organization for Standardization, Geneva, CH (2020).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Distributed Acoustic Sensing of Sounds in Audible Spectrum in Realistic Optical Cable Infrastructure

. 2025 May 13 ; 12 (1) : 783. [epub] 20250513

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...