Helical Bilayer Nanographenes: Impact of the Helicene Length on the Structural, Electrochemical, Photophysical, and Chiroptical Properties

. 2023 May 31 ; 145 (21) : 11599-11610. [epub] 20230502

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37129470

Helical bilayer nanographenes (HBNGs) are chiral π-extended aromatic compounds consisting of two π-π stacked hexabenzocoronenes (HBCs) joined by a helicene, thus resembling van der Waals layered 2D materials. Herein, we compare [9]HBNG, [10]HBNG, and [11]HBNG helical bilayers endowed with [9], [10], and [11]helicenes embedded in their structure, respectively. Interestingly, the helicene length defines the overlapping degree between the two HBCs (number of benzene rings involved in π-π interactions between the two layers), being 26, 14, and 10 benzene rings, respectively, according to the X-ray analysis. Unexpectedly, the electrochemical study shows that the lesser π-extended system [9]HBNG shows the strongest electron donor character, in part by interlayer exchange resonance, and more red-shifted values of emission. Furthermore, [9]HBNG also shows exceptional chiroptical properties with the biggest values of gabs and glum (3.6 × 10-2) when compared to [10]HBNG and [11]HBNG owing to the fine alignment in the configuration of [9]HBNG between its electric and magnetic dipole transition moments. Furthermore, spectroelectrochemical studies as well as the fluorescence spectroscopy support the aforementioned experimental findings, thus confirming the strong impact of the helicene length on the properties of this new family of bilayer nanographenes.

Zobrazit více v PubMed

Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI

Hu Y.; Wu C.; Pan Q.; Jin Y.; Lyu R.; Martínez V.; Huang S.; Wu J.; Wayment L. J.; Clark N. A.; Raschke M. B.; Zhao Y.; Zhang W. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 2022, 1, 449–454. 10.1038/s44160-022-00068-7. DOI

Mannix A. J.; Zhou X. F.; Kiraly B.; Wood J. D.; Alducin D.; Myers B. D.; Liu X.; Fisher B. L.; Santiago U.; Guest J. R.; Yacaman M. J.; Ponce A.; Oganov A. R.; Hersam M. C.; Guisinger N. P. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516. 10.1126/science.aad1080. PubMed DOI PMC

Dávila M. E.; Xian L.; Cahangirov S.; Rubio A.; Le Lay G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.10.1088/1367-2630/16/9/095002. DOI

Vogt P.; De Padova P.; Quaresima C.; Avila J.; Frantzeskakis E.; Asensio M. C.; Resta A.; Ealet B.; Le Lay G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108, 155501.10.1103/physrevlett.108.155501. PubMed DOI

Zhu F. F.; Chen W. J.; Xu Y.; Gao C. L.; Guan D. D.; Liu C. H.; Qian D.; Zhang S. C.; Jia J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025. 10.1038/nmat4384. PubMed DOI

Yuhara J.; He B.; Matsunami N.; Nakatake M.; Le Lay G. Graphene’s Latest Cousin: Plumbene Epitaxial Growth on a “Nano WaterCube”. Adv. Mater. 2019, 31, 1901017.10.1002/adma.201901017. PubMed DOI

Liu H.; Neal A. T.; Zhu Z.; Luo Z.; Xu X.; Tománek D.; Ye P. D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. 10.1021/nn501226z. PubMed DOI

Martínez-Periñán E.; Down M. P.; Gibaja C.; Lorenzo E.; Zamora F.; Banks C. E. Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. Adv. Energy Mater. 2018, 8, 1702606.10.1002/aenm.201702606. DOI

Reis F.; Li G.; Dudy L.; Bauernfeind M.; Glass S.; Hanke W.; Thomale R.; Schäfer J.; Claessen R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290. 10.1126/science.aai8142. PubMed DOI

Xiao X.; Wang H.; Urbankowski P.; Gogotsi Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744–8765. 10.1039/c8cs00649k. PubMed DOI

Chowdhury T.; Sadler E. C.; Kempa T. J. Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chem. Rev. 2020, 120, 12563–12591. 10.1021/acs.chemrev.0c00505. PubMed DOI

VahidMohammadi A.; Rosen J.; Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf158110.1126/science.abf1581. PubMed DOI

Wu G.; Liang R.; Ge M.; Sun G.; Zhang Y.; Xing G. Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2022, 34, 2105635.10.1002/adma.202105635. PubMed DOI

Anichini C.; Czepa W.; Pakulski D.; Aliprandi A.; Ciesielski A.; Samorì P. Chemical Sensing with 2D Materials. Chem. Soc. Rev. 2018, 47, 4860–4908. 10.1039/c8cs00417j. PubMed DOI

Das S.; Pandey D.; Thomas J.; Roy T. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Adv. Mater. 2019, 31, 1802722.10.1002/adma.201802722. PubMed DOI

Wang Z.; Jingjing Q.; Wang X.; Zhang Z.; Chen Y.; Huang X.; Huang W. Two-dimensional light-emitting materials: preparation, properties and applications. Chem. Soc. Rev. 2018, 47, 6128–6174. 10.1039/c8cs00332g. PubMed DOI

Iannaccone G.; Bonaccorso F.; Colombo L.; Fiori G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191. 10.1038/s41565-018-0082-6. PubMed DOI

Sherrell P. C.; Fronzi M.; Shepelin N. A.; Corletto A.; Winkler D. A.; Ford M.; Shapter J. G.; Ellis A. V. A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 2022, 51, 650–671. 10.1039/d1cs00844g. PubMed DOI

Qiu D.; Gong C.; Wang S.; Zhang M.; Yang C.; Wang X.; Xiong J. Recent Advances in 2D Superconductors. Adv. Mater. 2021, 33, 2006124.10.1002/adma.202006124. PubMed DOI

Gibertini M.; Koperski M.; Morpurgo A. F.; Novoselov K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. 10.1038/s41565-019-0438-6. PubMed DOI

Terrones H.; López-Urías F.; Terrones M. Novel Hetero-Layered Materials with Tunable Direct Band Gaps by Sandwiching Different Metal Disulfides and Diselenides. Sci. Rep. 2013, 3, 1549.10.1038/srep01549. PubMed DOI PMC

Robinson J. A. Growing Vertical in the Flatland. ACS Nano 2016, 10, 42–45. 10.1021/acsnano.5b08117. PubMed DOI

Lam D.; Lebedev D.; Hersam M. C. Morphotaxy of Layered van der Waals Materials. ACS Nano 2022, 16, 7144–7167. 10.1021/acsnano.2c00243. PubMed DOI

Andrei E. Y.; Efetov D. K.; Jarillo-Herrero P.; MacDonald A. H.; Mak K. F.; Senthil T.; Tutuc E.; Yazdani A.; Young A. F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206. 10.1038/s41578-021-00284-1. DOI

Cao Y.; Fatemi V.; Demir A.; Fang S.; Tomarken S. L.; Luo J. Y.; Sanchez-Yamagishi J. D.; Watanabe K.; Taniguchi T.; Kaxiras E.; Ashoori R. C.; Jarillo-Herrero P. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. 10.1038/nature26154. PubMed DOI

Lilia B.; Hennig R.; Hirschfeld P.; Profeta G.; Sanna A.; Zurek E.; Pickett W. E.; Amsler M.; Dias R.; Eremets M. I.; Heil C.; Hemley R. J.; Liu H.; Ma Y.; Pierleoni C.; Kolmogorov A. N.; Rybin N.; Novoselov D.; Anisimov V.; Oganov A. R.; Pickard C. J.; Bi T.; Arita R.; Errea I.; Pellegrini C.; Requist R.; Gross E. K. U.; Margine E. R.; Xie S. R.; Quan Y.; Hire A.; Fanfarillo L.; Stewart G. R.; Hamlin J. J.; Stanev V.; Gonnelli R. S.; Piatti E.; Romanin D.; Daghero D.; Valenti R. The 2021 room-temperature superconductivity roadmap. J. Phys.: Condens. Matter 2022, 34, 183002.10.1088/1361-648x/ac2864. PubMed DOI

Liu J.; Feng X. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Angew. Chem., Int. Ed. 2020, 59, 23386–23401. 10.1002/anie.202008838. PubMed DOI PMC

González-Herrero H.; Mendieta-Moreno J. I.; Edalatmanesh S.; Santos J.; Martín N.; Écija D.; Torre B.; Jelinek P. Atomic Scale Control and Visualization of Topological Quantum Phase Transition in π-Conjugated Polymers Driven by Their Length. Adv. Mat. 2021, 33, 2104495.10.1002/adma.202104495. PubMed DOI

Li S.-Y.; He L. Recent progresses of quantum confinement in graphene quantum dots. Front. Phys. 2021, 17, 33201.10.1007/s11467-021-1125-2. DOI

Wang H.; Wang H. S.; Ma C.; Chen L.; Jiang C.; Chen C.; Xie X.; Li A.-P.; Wang X. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 2021, 3, 791–802. 10.1038/s42254-021-00370-x. DOI

Gu Y.; Qiu Z.; Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J. Am. Chem. Soc. 2022, 144, 11499–11524. 10.1021/jacs.2c02491. PubMed DOI PMC

Liu Z.; Fu S.; Liu X.; Narita A.; Samorì P.; Bonn M.; Wang H. I. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Adv. Sci. 2022, 9, 2106055.10.1002/advs.202106055. PubMed DOI PMC

Narita A.; Wang X. Y.; Feng X.; Müllen K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643. 10.1039/c5cs00183h. PubMed DOI

Grzybowski M.; Sadowski B.; Butenschon H.; Gryko D. T. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew. Chem., Int. Ed. 2020, 59, 2998–3027. 10.1002/anie.201904934. PubMed DOI PMC

Jassas R. S.; Mughal E. U.; Sadiq A.; Alsantali R. I.; Al-Rooqi M. M.; Naeem N.; Moussa Z.; Ahmed S. A. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Adv. 2021, 11, 32158–32202. 10.1039/d1ra05910f. PubMed DOI PMC

Rickhaus M.; Mayor M.; Juríček M. Chirality in curved polyaromatic systems. Chem. Soc. Rev. 2017, 46, 1643–1660. 10.1039/c6cs00623j. PubMed DOI

Pun S. H.; Miao Q. Toward Negatively Curved Carbons. Acc. Chem. Res. 2018, 51, 1630–1642. 10.1021/acs.accounts.8b00140. PubMed DOI

Fernández-García J. M.; Evans P. J.; Medina Rivero S.; Fernández I.; García-Fresnadillo D.; Perles J.; Casado J.; Martín N. π-Extended Corannulene-Based Nanographenes: Selective Formation of Negative Curvature. J. Am. Chem. Soc. 2018, 140, 17188–17196. 10.1021/jacs.8b09992. PubMed DOI

Majewski M. A.; Stępień M. Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. Angew. Chem., Int. Ed. 2019, 58, 86–116. 10.1002/anie.201807004. PubMed DOI

Urieta-Mora J.; Krug M.; Alex W.; Perles J.; Fernandez I.; Molina-Ontoria A.; Guldi D. M.; Martin N. Homo and Hetero Molecular 3D Nanographenes Employing a Cyclooctatetraene Scaffold. J. Am. Chem. Soc. 2020, 142, 4162–4172. 10.1021/jacs.9b10203. PubMed DOI

Stuparu M. C. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc. Chem. Res. 2021, 54, 2858–2870. 10.1021/acs.accounts.1c00207. PubMed DOI

Chaolumen; Stepek I. A.; Yamada K. E.; Ito H.; Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew. Chem., Int. Ed. 2021, 60, 23508–23532. 10.1002/anie.202100260. PubMed DOI

Zank S.; Fernández-García J. M.; Stasyuk A. J.; Voityuk A. A.; Krug M.; Solà M.; Guldi D. M.; Martín N. Initiating Electron Transfer in Doubly Curved Nanographene Upon Supramolecular Complexation of C60. Angew. Chem., Int. Ed. 2022, 61, e20211283410.1002/anie.202112834. PubMed DOI PMC

Zhou Z.; Zhu Y.; Fernández-García J. M.; Wei Z.; Fernández I.; Petrukhina M. A.; Martín N. Stepwise reduction of a corannulene-based helical molecular nanographene with Na metal. Chem. Commun. 2022, 58, 5574–5577. 10.1039/d2cc00971d. PubMed DOI

González Miera G.; Matsubara S.; Kono H.; Murakami K.; Itami K. Synthesis of octagon-containing molecular nanocarbons. Chem. Sci. 2022, 13, 1848–1868. 10.1039/d1sc05586k. PubMed DOI PMC

Rickhaus M.; Mayor M.; Juríček M. Strain-induced helical chirality in polyaromatic systems. Chem. Soc. Rev. 2016, 45, 1542–1556. 10.1039/c5cs00620a. PubMed DOI

Cruz C. M.; Márquez I. R.; Mariz I. F. A.; Blanco V.; Sánchez-Sánchez C.; Sobrado J. M.; Martín-Gago J. A.; Cuerva J. M.; Maçoas E.; Campaña A. G. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence. Chem. Sci. 2018, 9, 3917–3924. 10.1039/c8sc00427g. PubMed DOI PMC

Ma S.; Gu J.; Lin C.; Luo Z.; Zhu Y.; Wang J. Supertwistacene: A Helical Graphene Nanoribbon. J. Am. Chem. Soc. 2020, 142, 16887–16893. 10.1021/jacs.0c08555. PubMed DOI

Izquierdo-García P.; Fernández-García J. M.; Fernández I.; Perles J.; Martín N. Helically Arranged Chiral Molecular Nanographenes. J. Am. Chem. Soc. 2021, 143, 11864–11870. 10.1021/jacs.1c05977. PubMed DOI PMC

Izquierdo-García P.; Fernández-García J. M.; Perles J.; Fernández I.; Martín N. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angew. Chem., Int. Ed. 2023, 62, e20221565510.1002/anie.202215655. PubMed DOI PMC

Zhu Y.; Guo X.; Li Y.; Wang J. Fusing of Seven HBCs toward a Green Nanographene Propeller. J. Am. Chem. Soc. 2019, 141, 5511–5517. 10.1021/jacs.9b01266. PubMed DOI

Medel M. A.; Cruz C. M.; Miguel D.; Blanco V.; Morcillo S. P.; Campaña A. G. Chiral Distorted Hexa-peri-hexabenzocoronenes Bearing a Nonagon-Embedded Carbohelicene. Angew. Chem., Int. Ed. 2021, 60, 22051–22056. 10.1002/anie.202109310. PubMed DOI PMC

Reger D.; Haines P.; Amsharov K. Y.; Schmidt J. A.; Ullrich T.; Bonisch S.; Hampel F.; Gorling A.; Nelson J.; Jelfs K. E.; Guldi D. M.; Jux N. A Family of Superhelicenes: Easily Tunable, Chiral Nanographenes by Merging Helicity with Planar π Systems. Angew. Chem., Int. Ed. 2021, 60, 18073–18081. 10.1002/anie.202103253. PubMed DOI PMC

Zhou Z.; Fernández-García J. M.; Zhu Y.; Evans P. J.; Rodríguez R.; Crassous J.; Wei Z.; Fernández I.; Petrukhina M. A.; Martín N. Site-Specific Reduction-Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb(+) Complexation. Angew. Chem., Int. Ed. 2022, 61, e20211574710.1002/anie.202115747. PubMed DOI PMC

Fernández-García J. M.; Evans P. J.; Filippone S.; Herranz M. A.; Martín N. Chiral Molecular Carbon Nanostructures. Acc. Chem. Res. 2019, 52, 1565–1574. 10.1021/acs.accounts.9b00144. PubMed DOI

Fernández-García J. M.; Izquierdo-García P.; Buendia M.; Filippone S.; Martín N. Synthetic chiral molecular nanographenes: the key figure of the racemization barrier. Chem. Commun. 2022, 58, 2634–2645. 10.1039/d1cc06561k. PubMed DOI

Brandt J. R.; Salerno F.; Fuchter M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045.10.1038/s41570-017-0045. DOI

Qiu Z. J.; Ju C. W.; Frederic L.; Hu Y. B.; Schollmeyer D.; Pieters G.; Müllen K.; Narita A. Amplification of Dissymmetry Factors in pi-Extended [7]- and [9]Helicenes. J. Am. Chem. Soc. 2021, 143, 4661–4667. 10.1021/jacs.0c13197. PubMed DOI PMC

Mori T. Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes. Chem. Rev. 2021, 121, 2373–2412. 10.1021/acs.chemrev.0c01017. PubMed DOI

Xiao X.; Pedersen S. K.; Aranda D.; Yang J.; Wiscons R. A.; Pittelkow M.; Steigerwald M. L.; Santoro F.; Schuster N. J.; Nuckolls C. Chirality Amplified: Long, Discrete Helicene Nanoribbons. J. Am. Chem. Soc. 2021, 143, 983–991. 10.1021/jacs.0c11260. PubMed DOI

Zhao X. J.; Hou H.; Fan X. T.; Wang Y.; Liu Y. M.; Tang C.; Liu S. H.; Ding P. P.; Cheng J.; Lin D. H.; Wang C.; Yang Y.; Tan Y. Z. Molecular bilayer graphene. Nat. Commun. 2019, 10, 3057.10.1038/s41467-019-11098-9. PubMed DOI PMC

Milton M.; Schuster N. J.; Paley D. W.; Hernández Sánchez R.; Ng F.; Steigerwald M. L.; Nuckolls C. Defying strain in the synthesis of an electroactive bilayer helicene. Chem. Sci. 2019, 10, 1029–1034. 10.1039/c8sc04216k. PubMed DOI PMC

Zhao X. J.; Hou H.; Ding P. P.; Deng Z. Y.; Ju Y. Y.; Liu S. H.; Liu Y. M.; Tang C.; Feng L. B.; Tan Y. Z. Molecular defect-containing bilayer graphene exhibiting brightened luminescence. Sci. Adv. 2020, 6, eaay854110.1126/sciadv.aay8541. PubMed DOI PMC

Buchta M.; Rybáček J.; Jančařík A.; Kudale A. A.; Buděšínský M.; Vacek Chocholoušová J.; Vacek J.; Bednárová L.; Císařová I.; Bodwell G. J.; Starý I.; Stará I. G. Chimerical Pyrene-based [7]Helicenes: A New Class of Twisted Polycondensed Aromatics. Chem.—Eur. J. 2015, 21, 8910–8917. 10.1002/chem.201500826. PubMed DOI

Evans P. J.; Ouyang J.; Favereau L.; Crassous J.; Fernández I.; Perles J.; Martín N. Synthesis of a Helical Bilayer Nanographene. Angew. Chem., Int. Ed. 2018, 57, 6774–6779. 10.1002/anie.201800798. PubMed DOI

Stará I. G.; Starý I.. Synthesis of Helicenes by [2+2+2] Cycloisomerization of Alkynes and Related Systems Helicenes: Synthesis, Properties, and Applications; Crassous J., Stará I. G., Starý I., Eds.; Wiley-VCH: Weinheim, Germany, 2022; Chapter 2, pp 53–101.

Nejedlý J.; Šámal M.; Rybáček J.; Gay Sánchez I.; Houska V.; Warzecha T.; Vacek J.; Sieger L.; Buděšínský M.; Bednárová L.; Fiedler P.; Císařová I.; Starý I.; Stará I. G. Synthesis of Racemic, Diastereopure, and Enantiopure Carba- or Oxa[5]-, [6]-, [7]-, and -[19]helicene (Di)thiol Derivatives. J. Org. Chem. 2020, 85, 248–276. 10.1021/acs.joc.9b02965. PubMed DOI

Stetsovych O.; Mutombo P.; Švec M.; Šámal M.; Nejedlý J.; Císařová I.; Vazquez H.; Moro-Lagares M.; Berger J.; Vacek J.; Stará I. G.; Starý I.; Jelínek P. Large Converse Piezoelectric Effect Measured on a Single Molecule on a Metallic Surface. J. Am. Chem. Soc. 2018, 140, 940–946. 10.1021/jacs.7b08729. PubMed DOI

Stará I. G.; Starý I. Helically Chiral Aromatics: The Synthesis of Helicenes by [2 + 2 + 2] Cycloisomerization of π-Electron Systems. Acc. Chem. Res. 2020, 53, 144–158. 10.1021/acs.accounts.9b00364. PubMed DOI

Salari A. A. Detection of NO2 by hexa-peri-hexabenzocoronene nanographene: A DFT study. C. R. Chim. 2017, 20, 758–764. 10.1016/j.crci.2017.01.002. DOI

Chang L.; Cui W.; Vahabi V. A density functional theory study on the Hexa-peri-hexabenzocoronene nanographene oxide. J. Phys. Chem. Solids 2020, 140, 109373.10.1016/j.jpcs.2020.109373. DOI

Sillen A.; Engelborghs Y. The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol. 1998, 67, 475–486. 10.1562/0031-8655(1998)067<0475:tcuofp>2.3.co;2. DOI

Han J.; Guo S.; Lu H.; Liu S.; Zhao Q.; Huang W. Recent Progress on Circularly Polarized Luminescent Materials for Organic Optoelectronic Devices. Adv. Opt. Mater. 2018, 6, 1800538.10.1002/adom.201800538. DOI

Zhao W.-L.; Li M.; Lu H.-Y.; Chen C.-F. Advances in helicene derivatives with circularly polarized luminescence. Chem. Commun. 2019, 55, 13793–13803. 10.1039/c9cc06861a. PubMed DOI

Crassous J.Circularly Polarized Luminescence of Isolated Small Organic Molecules; Springer, 2020; p 53.

Kaseyama T.; Furumi S.; Zhang X.; Tanaka K.; Takeuchi M. Hierarchical Assembly of a Phthalhydrazide-Functionalized Helicene. Angew. Chem., Int. Ed. 2011, 50, 3684–3687. 10.1002/anie.201007849. PubMed DOI

Shen C.; Anger E.; Srebro M.; Vanthuyne N.; Deol K. K.; Jefferson T. D.; Muller G.; Williams J. A. G.; Toupet L.; Roussel C.; Autschbach J.; Réau R.; Crassous J. Straightforward access to mono- and bis-cycloplatinated helicenes displaying circularly polarized phosphorescence by using crystallization resolution methods. Chem. Sci. 2014, 5, 1915–1927. 10.1039/c3sc53442a. PubMed DOI PMC

Nakamura K.; Furumi S.; Takeuchi M.; Shibuya T.; Tanaka K. Enantioselective Synthesis and Enhanced Circularly Polarized Luminescence of S-Shaped Double Azahelicenes. J. Am. Chem. Soc. 2014, 136, 5555–5558. 10.1021/ja500841f. PubMed DOI

Murayama K.; Oike Y.; Furumi S.; Takeuchi M.; Noguchi K.; Tanaka K. Enantioselective Synthesis, Crystal Structure, and Photophysical Properties of a 1,1′-Bitriphenylene-Based Sila[7]helicene. Eur. J. Org. Chem. 2015, 2015, 1409–1414. 10.1002/ejoc.201403565. DOI

Schaack C.; Arrico L.; Sidler E.; Górecki M.; Di Bari L.; Diederich F. Helicene Monomers and Dimers: Chiral Chromophores Featuring Strong Circularly Polarized Luminescence. Chem.—Eur. J. 2019, 25, 8003–8007. 10.1002/chem.201901248. PubMed DOI

Dhbaibi K.; Favereau L.; Srebro-Hooper M.; Quinton C.; Vanthuyne N.; Arrico L.; Roisnel T.; Jamoussi B.; Poriel C.; Cabanetos C.; Autschbach J.; Crassous J. Modulation of circularly polarized luminescence through excited-state symmetry breaking and interbranched exciton coupling in helical push–pull organic systems. Chem. Sci. 2020, 11, 567–576. 10.1039/c9sc05231c. PubMed DOI PMC

Otani T.; Sasayama T.; Iwashimizu C.; Kanyiva K. S.; Kawai H.; Shibata T. Short-step synthesis and chiroptical properties of polyaza[5]–[9]helicenes with blue to green-colour emission. Chem. Commun. 2020, 56, 4484–4487. 10.1039/d0cc01194k. PubMed DOI

Dhbaibi K.; Abella L.; Meunier-Della-Gatta S.; Roisnel T.; Vanthuyne N.; Jamoussi B.; Pieters G.; Racine B.; Quesnel E.; Autschbach J.; Crassous J.; Favereau L. Achieving high circularly polarized luminescence with push–pull helicenic systems: from rationalized design to top-emission CP-OLED applications. Chem. Sci. 2021, 12, 5522–5533. 10.1039/d0sc06895k. PubMed DOI PMC

Zhao F.; Zhao J.; Wang Y.; Liu H.-T.; Shang Q.; Wang N.; Yin X.; Zheng X.; Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10–2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans. 2022, 51, 6226–6234. 10.1039/d2dt00677d. PubMed DOI

Rodríguez R.; Naranjo C.; Kumar A.; Matozzo P.; Das T. K.; Zhu Q.; Vanthuyne N.; Gómez R.; Naaman R.; Sánchez L.; Crassous J. Mutual Monomer Orientation To Bias the Supramolecular Polymerization of [6]Helicenes and the Resulting Circularly Polarized Light and Spin Filtering Properties. J. Am. Chem. Soc. 2022, 144, 7709–7719. 10.1021/jacs.2c00556. PubMed DOI PMC

Dhbaibi K.; Favereau L.; Crassous J. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chem. Rev. 2019, 119, 8846–8953. 10.1021/acs.chemrev.9b00033. PubMed DOI

Sawada Y.; Furumi S.; Takai A.; Takeuchi M.; Noguchi K.; Tanaka K. Rhodium-Catalyzed Enantioselective Synthesis, Crystal Structures, and Photophysical Properties of Helically Chiral 1,1′-Bitriphenylenes. J. Am. Chem. Soc. 2012, 134, 4080–4083. 10.1021/ja300278e. PubMed DOI

Shen C.; Gan F.; Zhang G.; Ding Y.; Wang J.; Wang R.; Crassous J.; Qiu H. Helicene-derived aggregation-induced emission conjugates with highly tunable circularly polarized luminescence. Mater. Chem. Front. 2020, 4, 837–844. 10.1039/c9qm00652d. DOI

Xu Q.; Wang C.; He J.; Li X.; Wang Y.; Chen X.; Sun D.; Jiang H. Corannulene-based nanographene containing helical motifs. Org. Chem. Front. 2021, 8, 2970–2976. 10.1039/d1qo00366f. DOI

Shen C.; Zhang G.; Ding Y.; Yang N.; Gan F.; Crassous J.; Qiu H. Oxidative cyclo-rearrangement of helicenes into chiral nanographenes. Nat. Commun. 2021, 12, 2786.10.1038/s41467-021-22992-6. PubMed DOI PMC

Arrico L.; Di Bari L.; Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chem.—Eur. J. 2021, 27, 2920–2934. 10.1002/chem.202002791. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carbonyl mediated fluorescence in aceno[n]helicenones and fluoreno[n]helicenes

. 2024 Jun 26 ; 15 (25) : 9842-9850. [epub] 20240501

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...