Helical Bilayer Nanographenes: Impact of the Helicene Length on the Structural, Electrochemical, Photophysical, and Chiroptical Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37129470
PubMed Central
PMC10236438
DOI
10.1021/jacs.3c01088
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Helical bilayer nanographenes (HBNGs) are chiral π-extended aromatic compounds consisting of two π-π stacked hexabenzocoronenes (HBCs) joined by a helicene, thus resembling van der Waals layered 2D materials. Herein, we compare [9]HBNG, [10]HBNG, and [11]HBNG helical bilayers endowed with [9], [10], and [11]helicenes embedded in their structure, respectively. Interestingly, the helicene length defines the overlapping degree between the two HBCs (number of benzene rings involved in π-π interactions between the two layers), being 26, 14, and 10 benzene rings, respectively, according to the X-ray analysis. Unexpectedly, the electrochemical study shows that the lesser π-extended system [9]HBNG shows the strongest electron donor character, in part by interlayer exchange resonance, and more red-shifted values of emission. Furthermore, [9]HBNG also shows exceptional chiroptical properties with the biggest values of gabs and glum (3.6 × 10-2) when compared to [10]HBNG and [11]HBNG owing to the fine alignment in the configuration of [9]HBNG between its electric and magnetic dipole transition moments. Furthermore, spectroelectrochemical studies as well as the fluorescence spectroscopy support the aforementioned experimental findings, thus confirming the strong impact of the helicene length on the properties of this new family of bilayer nanographenes.
Departament of Physical Chemistry Facultad de Ciencias Universidad de Málaga 29071 Málaga Spain
Department of Physics and Astronomy University of Sheffield S3 7RH Sheffield U K
IMDEA Nanociencia C Faraday 9 Campus de Cantoblanco 28049 Madrid Spain
Institut des Sciences Chimiques de Rennes UMR 6226 CNRS─Univ Rennes 35000 Rennes France
Laboratorio DRX Monocristal SIdI Universidad Autónoma de Madrid 28049 Madrid Spain
Zobrazit více v PubMed
Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. 10.1126/science.1102896. PubMed DOI
Hu Y.; Wu C.; Pan Q.; Jin Y.; Lyu R.; Martínez V.; Huang S.; Wu J.; Wayment L. J.; Clark N. A.; Raschke M. B.; Zhao Y.; Zhang W. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth. 2022, 1, 449–454. 10.1038/s44160-022-00068-7. DOI
Mannix A. J.; Zhou X. F.; Kiraly B.; Wood J. D.; Alducin D.; Myers B. D.; Liu X.; Fisher B. L.; Santiago U.; Guest J. R.; Yacaman M. J.; Ponce A.; Oganov A. R.; Hersam M. C.; Guisinger N. P. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516. 10.1126/science.aad1080. PubMed DOI PMC
Dávila M. E.; Xian L.; Cahangirov S.; Rubio A.; Le Lay G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 2014, 16, 095002.10.1088/1367-2630/16/9/095002. DOI
Vogt P.; De Padova P.; Quaresima C.; Avila J.; Frantzeskakis E.; Asensio M. C.; Resta A.; Ealet B.; Le Lay G. Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 2012, 108, 155501.10.1103/physrevlett.108.155501. PubMed DOI
Zhu F. F.; Chen W. J.; Xu Y.; Gao C. L.; Guan D. D.; Liu C. H.; Qian D.; Zhang S. C.; Jia J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025. 10.1038/nmat4384. PubMed DOI
Yuhara J.; He B.; Matsunami N.; Nakatake M.; Le Lay G. Graphene’s Latest Cousin: Plumbene Epitaxial Growth on a “Nano WaterCube”. Adv. Mater. 2019, 31, 1901017.10.1002/adma.201901017. PubMed DOI
Liu H.; Neal A. T.; Zhu Z.; Luo Z.; Xu X.; Tománek D.; Ye P. D. Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano 2014, 8, 4033–4041. 10.1021/nn501226z. PubMed DOI
Martínez-Periñán E.; Down M. P.; Gibaja C.; Lorenzo E.; Zamora F.; Banks C. E. Antimonene: A Novel 2D Nanomaterial for Supercapacitor Applications. Adv. Energy Mater. 2018, 8, 1702606.10.1002/aenm.201702606. DOI
Reis F.; Li G.; Dudy L.; Bauernfeind M.; Glass S.; Hanke W.; Thomale R.; Schäfer J.; Claessen R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290. 10.1126/science.aai8142. PubMed DOI
Xiao X.; Wang H.; Urbankowski P.; Gogotsi Y. Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744–8765. 10.1039/c8cs00649k. PubMed DOI
Chowdhury T.; Sadler E. C.; Kempa T. J. Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chem. Rev. 2020, 120, 12563–12591. 10.1021/acs.chemrev.0c00505. PubMed DOI
VahidMohammadi A.; Rosen J.; Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf158110.1126/science.abf1581. PubMed DOI
Wu G.; Liang R.; Ge M.; Sun G.; Zhang Y.; Xing G. Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2022, 34, 2105635.10.1002/adma.202105635. PubMed DOI
Anichini C.; Czepa W.; Pakulski D.; Aliprandi A.; Ciesielski A.; Samorì P. Chemical Sensing with 2D Materials. Chem. Soc. Rev. 2018, 47, 4860–4908. 10.1039/c8cs00417j. PubMed DOI
Das S.; Pandey D.; Thomas J.; Roy T. The Role of Graphene and Other 2D Materials in Solar Photovoltaics. Adv. Mater. 2019, 31, 1802722.10.1002/adma.201802722. PubMed DOI
Wang Z.; Jingjing Q.; Wang X.; Zhang Z.; Chen Y.; Huang X.; Huang W. Two-dimensional light-emitting materials: preparation, properties and applications. Chem. Soc. Rev. 2018, 47, 6128–6174. 10.1039/c8cs00332g. PubMed DOI
Iannaccone G.; Bonaccorso F.; Colombo L.; Fiori G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191. 10.1038/s41565-018-0082-6. PubMed DOI
Sherrell P. C.; Fronzi M.; Shepelin N. A.; Corletto A.; Winkler D. A.; Ford M.; Shapter J. G.; Ellis A. V. A bright future for engineering piezoelectric 2D crystals. Chem. Soc. Rev. 2022, 51, 650–671. 10.1039/d1cs00844g. PubMed DOI
Qiu D.; Gong C.; Wang S.; Zhang M.; Yang C.; Wang X.; Xiong J. Recent Advances in 2D Superconductors. Adv. Mater. 2021, 33, 2006124.10.1002/adma.202006124. PubMed DOI
Gibertini M.; Koperski M.; Morpurgo A. F.; Novoselov K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. 10.1038/s41565-019-0438-6. PubMed DOI
Terrones H.; López-Urías F.; Terrones M. Novel Hetero-Layered Materials with Tunable Direct Band Gaps by Sandwiching Different Metal Disulfides and Diselenides. Sci. Rep. 2013, 3, 1549.10.1038/srep01549. PubMed DOI PMC
Robinson J. A. Growing Vertical in the Flatland. ACS Nano 2016, 10, 42–45. 10.1021/acsnano.5b08117. PubMed DOI
Lam D.; Lebedev D.; Hersam M. C. Morphotaxy of Layered van der Waals Materials. ACS Nano 2022, 16, 7144–7167. 10.1021/acsnano.2c00243. PubMed DOI
Andrei E. Y.; Efetov D. K.; Jarillo-Herrero P.; MacDonald A. H.; Mak K. F.; Senthil T.; Tutuc E.; Yazdani A.; Young A. F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206. 10.1038/s41578-021-00284-1. DOI
Cao Y.; Fatemi V.; Demir A.; Fang S.; Tomarken S. L.; Luo J. Y.; Sanchez-Yamagishi J. D.; Watanabe K.; Taniguchi T.; Kaxiras E.; Ashoori R. C.; Jarillo-Herrero P. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. 10.1038/nature26154. PubMed DOI
Lilia B.; Hennig R.; Hirschfeld P.; Profeta G.; Sanna A.; Zurek E.; Pickett W. E.; Amsler M.; Dias R.; Eremets M. I.; Heil C.; Hemley R. J.; Liu H.; Ma Y.; Pierleoni C.; Kolmogorov A. N.; Rybin N.; Novoselov D.; Anisimov V.; Oganov A. R.; Pickard C. J.; Bi T.; Arita R.; Errea I.; Pellegrini C.; Requist R.; Gross E. K. U.; Margine E. R.; Xie S. R.; Quan Y.; Hire A.; Fanfarillo L.; Stewart G. R.; Hamlin J. J.; Stanev V.; Gonnelli R. S.; Piatti E.; Romanin D.; Daghero D.; Valenti R. The 2021 room-temperature superconductivity roadmap. J. Phys.: Condens. Matter 2022, 34, 183002.10.1088/1361-648x/ac2864. PubMed DOI
Liu J.; Feng X. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Angew. Chem., Int. Ed. 2020, 59, 23386–23401. 10.1002/anie.202008838. PubMed DOI PMC
González-Herrero H.; Mendieta-Moreno J. I.; Edalatmanesh S.; Santos J.; Martín N.; Écija D.; Torre B.; Jelinek P. Atomic Scale Control and Visualization of Topological Quantum Phase Transition in π-Conjugated Polymers Driven by Their Length. Adv. Mat. 2021, 33, 2104495.10.1002/adma.202104495. PubMed DOI
Li S.-Y.; He L. Recent progresses of quantum confinement in graphene quantum dots. Front. Phys. 2021, 17, 33201.10.1007/s11467-021-1125-2. DOI
Wang H.; Wang H. S.; Ma C.; Chen L.; Jiang C.; Chen C.; Xie X.; Li A.-P.; Wang X. Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 2021, 3, 791–802. 10.1038/s42254-021-00370-x. DOI
Gu Y.; Qiu Z.; Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J. Am. Chem. Soc. 2022, 144, 11499–11524. 10.1021/jacs.2c02491. PubMed DOI PMC
Liu Z.; Fu S.; Liu X.; Narita A.; Samorì P.; Bonn M.; Wang H. I. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Adv. Sci. 2022, 9, 2106055.10.1002/advs.202106055. PubMed DOI PMC
Narita A.; Wang X. Y.; Feng X.; Müllen K. New advances in nanographene chemistry. Chem. Soc. Rev. 2015, 44, 6616–6643. 10.1039/c5cs00183h. PubMed DOI
Grzybowski M.; Sadowski B.; Butenschon H.; Gryko D. T. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew. Chem., Int. Ed. 2020, 59, 2998–3027. 10.1002/anie.201904934. PubMed DOI PMC
Jassas R. S.; Mughal E. U.; Sadiq A.; Alsantali R. I.; Al-Rooqi M. M.; Naeem N.; Moussa Z.; Ahmed S. A. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Adv. 2021, 11, 32158–32202. 10.1039/d1ra05910f. PubMed DOI PMC
Rickhaus M.; Mayor M.; Juríček M. Chirality in curved polyaromatic systems. Chem. Soc. Rev. 2017, 46, 1643–1660. 10.1039/c6cs00623j. PubMed DOI
Pun S. H.; Miao Q. Toward Negatively Curved Carbons. Acc. Chem. Res. 2018, 51, 1630–1642. 10.1021/acs.accounts.8b00140. PubMed DOI
Fernández-García J. M.; Evans P. J.; Medina Rivero S.; Fernández I.; García-Fresnadillo D.; Perles J.; Casado J.; Martín N. π-Extended Corannulene-Based Nanographenes: Selective Formation of Negative Curvature. J. Am. Chem. Soc. 2018, 140, 17188–17196. 10.1021/jacs.8b09992. PubMed DOI
Majewski M. A.; Stępień M. Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. Angew. Chem., Int. Ed. 2019, 58, 86–116. 10.1002/anie.201807004. PubMed DOI
Urieta-Mora J.; Krug M.; Alex W.; Perles J.; Fernandez I.; Molina-Ontoria A.; Guldi D. M.; Martin N. Homo and Hetero Molecular 3D Nanographenes Employing a Cyclooctatetraene Scaffold. J. Am. Chem. Soc. 2020, 142, 4162–4172. 10.1021/jacs.9b10203. PubMed DOI
Stuparu M. C. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc. Chem. Res. 2021, 54, 2858–2870. 10.1021/acs.accounts.1c00207. PubMed DOI
Chaolumen; Stepek I. A.; Yamada K. E.; Ito H.; Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew. Chem., Int. Ed. 2021, 60, 23508–23532. 10.1002/anie.202100260. PubMed DOI
Zank S.; Fernández-García J. M.; Stasyuk A. J.; Voityuk A. A.; Krug M.; Solà M.; Guldi D. M.; Martín N. Initiating Electron Transfer in Doubly Curved Nanographene Upon Supramolecular Complexation of C60. Angew. Chem., Int. Ed. 2022, 61, e20211283410.1002/anie.202112834. PubMed DOI PMC
Zhou Z.; Zhu Y.; Fernández-García J. M.; Wei Z.; Fernández I.; Petrukhina M. A.; Martín N. Stepwise reduction of a corannulene-based helical molecular nanographene with Na metal. Chem. Commun. 2022, 58, 5574–5577. 10.1039/d2cc00971d. PubMed DOI
González Miera G.; Matsubara S.; Kono H.; Murakami K.; Itami K. Synthesis of octagon-containing molecular nanocarbons. Chem. Sci. 2022, 13, 1848–1868. 10.1039/d1sc05586k. PubMed DOI PMC
Rickhaus M.; Mayor M.; Juríček M. Strain-induced helical chirality in polyaromatic systems. Chem. Soc. Rev. 2016, 45, 1542–1556. 10.1039/c5cs00620a. PubMed DOI
Cruz C. M.; Márquez I. R.; Mariz I. F. A.; Blanco V.; Sánchez-Sánchez C.; Sobrado J. M.; Martín-Gago J. A.; Cuerva J. M.; Maçoas E.; Campaña A. G. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence. Chem. Sci. 2018, 9, 3917–3924. 10.1039/c8sc00427g. PubMed DOI PMC
Ma S.; Gu J.; Lin C.; Luo Z.; Zhu Y.; Wang J. Supertwistacene: A Helical Graphene Nanoribbon. J. Am. Chem. Soc. 2020, 142, 16887–16893. 10.1021/jacs.0c08555. PubMed DOI
Izquierdo-García P.; Fernández-García J. M.; Fernández I.; Perles J.; Martín N. Helically Arranged Chiral Molecular Nanographenes. J. Am. Chem. Soc. 2021, 143, 11864–11870. 10.1021/jacs.1c05977. PubMed DOI PMC
Izquierdo-García P.; Fernández-García J. M.; Perles J.; Fernández I.; Martín N. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angew. Chem., Int. Ed. 2023, 62, e20221565510.1002/anie.202215655. PubMed DOI PMC
Zhu Y.; Guo X.; Li Y.; Wang J. Fusing of Seven HBCs toward a Green Nanographene Propeller. J. Am. Chem. Soc. 2019, 141, 5511–5517. 10.1021/jacs.9b01266. PubMed DOI
Medel M. A.; Cruz C. M.; Miguel D.; Blanco V.; Morcillo S. P.; Campaña A. G. Chiral Distorted Hexa-peri-hexabenzocoronenes Bearing a Nonagon-Embedded Carbohelicene. Angew. Chem., Int. Ed. 2021, 60, 22051–22056. 10.1002/anie.202109310. PubMed DOI PMC
Reger D.; Haines P.; Amsharov K. Y.; Schmidt J. A.; Ullrich T.; Bonisch S.; Hampel F.; Gorling A.; Nelson J.; Jelfs K. E.; Guldi D. M.; Jux N. A Family of Superhelicenes: Easily Tunable, Chiral Nanographenes by Merging Helicity with Planar π Systems. Angew. Chem., Int. Ed. 2021, 60, 18073–18081. 10.1002/anie.202103253. PubMed DOI PMC
Zhou Z.; Fernández-García J. M.; Zhu Y.; Evans P. J.; Rodríguez R.; Crassous J.; Wei Z.; Fernández I.; Petrukhina M. A.; Martín N. Site-Specific Reduction-Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb(+) Complexation. Angew. Chem., Int. Ed. 2022, 61, e20211574710.1002/anie.202115747. PubMed DOI PMC
Fernández-García J. M.; Evans P. J.; Filippone S.; Herranz M. A.; Martín N. Chiral Molecular Carbon Nanostructures. Acc. Chem. Res. 2019, 52, 1565–1574. 10.1021/acs.accounts.9b00144. PubMed DOI
Fernández-García J. M.; Izquierdo-García P.; Buendia M.; Filippone S.; Martín N. Synthetic chiral molecular nanographenes: the key figure of the racemization barrier. Chem. Commun. 2022, 58, 2634–2645. 10.1039/d1cc06561k. PubMed DOI
Brandt J. R.; Salerno F.; Fuchter M. J. The added value of small-molecule chirality in technological applications. Nat. Rev. Chem. 2017, 1, 0045.10.1038/s41570-017-0045. DOI
Qiu Z. J.; Ju C. W.; Frederic L.; Hu Y. B.; Schollmeyer D.; Pieters G.; Müllen K.; Narita A. Amplification of Dissymmetry Factors in pi-Extended [7]- and [9]Helicenes. J. Am. Chem. Soc. 2021, 143, 4661–4667. 10.1021/jacs.0c13197. PubMed DOI PMC
Mori T. Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes. Chem. Rev. 2021, 121, 2373–2412. 10.1021/acs.chemrev.0c01017. PubMed DOI
Xiao X.; Pedersen S. K.; Aranda D.; Yang J.; Wiscons R. A.; Pittelkow M.; Steigerwald M. L.; Santoro F.; Schuster N. J.; Nuckolls C. Chirality Amplified: Long, Discrete Helicene Nanoribbons. J. Am. Chem. Soc. 2021, 143, 983–991. 10.1021/jacs.0c11260. PubMed DOI
Zhao X. J.; Hou H.; Fan X. T.; Wang Y.; Liu Y. M.; Tang C.; Liu S. H.; Ding P. P.; Cheng J.; Lin D. H.; Wang C.; Yang Y.; Tan Y. Z. Molecular bilayer graphene. Nat. Commun. 2019, 10, 3057.10.1038/s41467-019-11098-9. PubMed DOI PMC
Milton M.; Schuster N. J.; Paley D. W.; Hernández Sánchez R.; Ng F.; Steigerwald M. L.; Nuckolls C. Defying strain in the synthesis of an electroactive bilayer helicene. Chem. Sci. 2019, 10, 1029–1034. 10.1039/c8sc04216k. PubMed DOI PMC
Zhao X. J.; Hou H.; Ding P. P.; Deng Z. Y.; Ju Y. Y.; Liu S. H.; Liu Y. M.; Tang C.; Feng L. B.; Tan Y. Z. Molecular defect-containing bilayer graphene exhibiting brightened luminescence. Sci. Adv. 2020, 6, eaay854110.1126/sciadv.aay8541. PubMed DOI PMC
Buchta M.; Rybáček J.; Jančařík A.; Kudale A. A.; Buděšínský M.; Vacek Chocholoušová J.; Vacek J.; Bednárová L.; Císařová I.; Bodwell G. J.; Starý I.; Stará I. G. Chimerical Pyrene-based [7]Helicenes: A New Class of Twisted Polycondensed Aromatics. Chem.—Eur. J. 2015, 21, 8910–8917. 10.1002/chem.201500826. PubMed DOI
Evans P. J.; Ouyang J.; Favereau L.; Crassous J.; Fernández I.; Perles J.; Martín N. Synthesis of a Helical Bilayer Nanographene. Angew. Chem., Int. Ed. 2018, 57, 6774–6779. 10.1002/anie.201800798. PubMed DOI
Stará I. G.; Starý I.. Synthesis of Helicenes by [2+2+2] Cycloisomerization of Alkynes and Related Systems Helicenes: Synthesis, Properties, and Applications; Crassous J., Stará I. G., Starý I., Eds.; Wiley-VCH: Weinheim, Germany, 2022; Chapter 2, pp 53–101.
Nejedlý J.; Šámal M.; Rybáček J.; Gay Sánchez I.; Houska V.; Warzecha T.; Vacek J.; Sieger L.; Buděšínský M.; Bednárová L.; Fiedler P.; Císařová I.; Starý I.; Stará I. G. Synthesis of Racemic, Diastereopure, and Enantiopure Carba- or Oxa[5]-, [6]-, [7]-, and -[19]helicene (Di)thiol Derivatives. J. Org. Chem. 2020, 85, 248–276. 10.1021/acs.joc.9b02965. PubMed DOI
Stetsovych O.; Mutombo P.; Švec M.; Šámal M.; Nejedlý J.; Císařová I.; Vazquez H.; Moro-Lagares M.; Berger J.; Vacek J.; Stará I. G.; Starý I.; Jelínek P. Large Converse Piezoelectric Effect Measured on a Single Molecule on a Metallic Surface. J. Am. Chem. Soc. 2018, 140, 940–946. 10.1021/jacs.7b08729. PubMed DOI
Stará I. G.; Starý I. Helically Chiral Aromatics: The Synthesis of Helicenes by [2 + 2 + 2] Cycloisomerization of π-Electron Systems. Acc. Chem. Res. 2020, 53, 144–158. 10.1021/acs.accounts.9b00364. PubMed DOI
Salari A. A. Detection of NO2 by hexa-peri-hexabenzocoronene nanographene: A DFT study. C. R. Chim. 2017, 20, 758–764. 10.1016/j.crci.2017.01.002. DOI
Chang L.; Cui W.; Vahabi V. A density functional theory study on the Hexa-peri-hexabenzocoronene nanographene oxide. J. Phys. Chem. Solids 2020, 140, 109373.10.1016/j.jpcs.2020.109373. DOI
Sillen A.; Engelborghs Y. The Correct Use of “Average” Fluorescence Parameters. Photochem. Photobiol. 1998, 67, 475–486. 10.1562/0031-8655(1998)067<0475:tcuofp>2.3.co;2. DOI
Han J.; Guo S.; Lu H.; Liu S.; Zhao Q.; Huang W. Recent Progress on Circularly Polarized Luminescent Materials for Organic Optoelectronic Devices. Adv. Opt. Mater. 2018, 6, 1800538.10.1002/adom.201800538. DOI
Zhao W.-L.; Li M.; Lu H.-Y.; Chen C.-F. Advances in helicene derivatives with circularly polarized luminescence. Chem. Commun. 2019, 55, 13793–13803. 10.1039/c9cc06861a. PubMed DOI
Crassous J.Circularly Polarized Luminescence of Isolated Small Organic Molecules; Springer, 2020; p 53.
Kaseyama T.; Furumi S.; Zhang X.; Tanaka K.; Takeuchi M. Hierarchical Assembly of a Phthalhydrazide-Functionalized Helicene. Angew. Chem., Int. Ed. 2011, 50, 3684–3687. 10.1002/anie.201007849. PubMed DOI
Shen C.; Anger E.; Srebro M.; Vanthuyne N.; Deol K. K.; Jefferson T. D.; Muller G.; Williams J. A. G.; Toupet L.; Roussel C.; Autschbach J.; Réau R.; Crassous J. Straightforward access to mono- and bis-cycloplatinated helicenes displaying circularly polarized phosphorescence by using crystallization resolution methods. Chem. Sci. 2014, 5, 1915–1927. 10.1039/c3sc53442a. PubMed DOI PMC
Nakamura K.; Furumi S.; Takeuchi M.; Shibuya T.; Tanaka K. Enantioselective Synthesis and Enhanced Circularly Polarized Luminescence of S-Shaped Double Azahelicenes. J. Am. Chem. Soc. 2014, 136, 5555–5558. 10.1021/ja500841f. PubMed DOI
Murayama K.; Oike Y.; Furumi S.; Takeuchi M.; Noguchi K.; Tanaka K. Enantioselective Synthesis, Crystal Structure, and Photophysical Properties of a 1,1′-Bitriphenylene-Based Sila[7]helicene. Eur. J. Org. Chem. 2015, 2015, 1409–1414. 10.1002/ejoc.201403565. DOI
Schaack C.; Arrico L.; Sidler E.; Górecki M.; Di Bari L.; Diederich F. Helicene Monomers and Dimers: Chiral Chromophores Featuring Strong Circularly Polarized Luminescence. Chem.—Eur. J. 2019, 25, 8003–8007. 10.1002/chem.201901248. PubMed DOI
Dhbaibi K.; Favereau L.; Srebro-Hooper M.; Quinton C.; Vanthuyne N.; Arrico L.; Roisnel T.; Jamoussi B.; Poriel C.; Cabanetos C.; Autschbach J.; Crassous J. Modulation of circularly polarized luminescence through excited-state symmetry breaking and interbranched exciton coupling in helical push–pull organic systems. Chem. Sci. 2020, 11, 567–576. 10.1039/c9sc05231c. PubMed DOI PMC
Otani T.; Sasayama T.; Iwashimizu C.; Kanyiva K. S.; Kawai H.; Shibata T. Short-step synthesis and chiroptical properties of polyaza[5]–[9]helicenes with blue to green-colour emission. Chem. Commun. 2020, 56, 4484–4487. 10.1039/d0cc01194k. PubMed DOI
Dhbaibi K.; Abella L.; Meunier-Della-Gatta S.; Roisnel T.; Vanthuyne N.; Jamoussi B.; Pieters G.; Racine B.; Quesnel E.; Autschbach J.; Crassous J.; Favereau L. Achieving high circularly polarized luminescence with push–pull helicenic systems: from rationalized design to top-emission CP-OLED applications. Chem. Sci. 2021, 12, 5522–5533. 10.1039/d0sc06895k. PubMed DOI PMC
Zhao F.; Zhao J.; Wang Y.; Liu H.-T.; Shang Q.; Wang N.; Yin X.; Zheng X.; Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10–2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans. 2022, 51, 6226–6234. 10.1039/d2dt00677d. PubMed DOI
Rodríguez R.; Naranjo C.; Kumar A.; Matozzo P.; Das T. K.; Zhu Q.; Vanthuyne N.; Gómez R.; Naaman R.; Sánchez L.; Crassous J. Mutual Monomer Orientation To Bias the Supramolecular Polymerization of [6]Helicenes and the Resulting Circularly Polarized Light and Spin Filtering Properties. J. Am. Chem. Soc. 2022, 144, 7709–7719. 10.1021/jacs.2c00556. PubMed DOI PMC
Dhbaibi K.; Favereau L.; Crassous J. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chem. Rev. 2019, 119, 8846–8953. 10.1021/acs.chemrev.9b00033. PubMed DOI
Sawada Y.; Furumi S.; Takai A.; Takeuchi M.; Noguchi K.; Tanaka K. Rhodium-Catalyzed Enantioselective Synthesis, Crystal Structures, and Photophysical Properties of Helically Chiral 1,1′-Bitriphenylenes. J. Am. Chem. Soc. 2012, 134, 4080–4083. 10.1021/ja300278e. PubMed DOI
Shen C.; Gan F.; Zhang G.; Ding Y.; Wang J.; Wang R.; Crassous J.; Qiu H. Helicene-derived aggregation-induced emission conjugates with highly tunable circularly polarized luminescence. Mater. Chem. Front. 2020, 4, 837–844. 10.1039/c9qm00652d. DOI
Xu Q.; Wang C.; He J.; Li X.; Wang Y.; Chen X.; Sun D.; Jiang H. Corannulene-based nanographene containing helical motifs. Org. Chem. Front. 2021, 8, 2970–2976. 10.1039/d1qo00366f. DOI
Shen C.; Zhang G.; Ding Y.; Yang N.; Gan F.; Crassous J.; Qiu H. Oxidative cyclo-rearrangement of helicenes into chiral nanographenes. Nat. Commun. 2021, 12, 2786.10.1038/s41467-021-22992-6. PubMed DOI PMC
Arrico L.; Di Bari L.; Zinna F. Quantifying the Overall Efficiency of Circularly Polarized Emitters. Chem.—Eur. J. 2021, 27, 2920–2934. 10.1002/chem.202002791. PubMed DOI