Size Evolution of Photoabsorption Spectra of Small Clusters: A Computational Study
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
Ministry of Education, Youth and Sports of the Czech Republic
LQ1602
National Programme of Sustainability
90140
National Programme of Sustainability
SP2023/067
National Programme of Sustainability
IT4I-10-5
IT4Innovations National Supercomputing Center of the Czech Republic
OPEN-8-8
IT4Innovations National Supercomputing Center of the Czech Republic
OPEN-25-33
IT4Innovations National Supercomputing Center of the Czech Republic
OPEN-25-37
IT4Innovations National Supercomputing Center of the Czech Republic
DD-23-39
IT4Innovations National Supercomputing Center of the Czech Republic
- Keywords
- charged helium clusters, diatomics-in-molecules, geometric structure, path-integral Monte Carlo, photoabsorption spectra,
- Publication type
- Journal Article MeSH
Photoabsorption spectra of He N + ${{\rm{He}}_N^ + }$ clusters, N=5-9, have been calculated using a diatomics-in-molecules like electronic structure model and a path-integral Monte Carlo sampling method. A qualitative change in the calculated spectra has been observed at N=9, which has been interpreted in terms of a structural transformation in the clusters consisting in a transition from trimer-like ionic cores observed for N≤7 to dimer-like ionic cores prevailing in He 9 + ${{\rm{He}}_9^ + }$ through an intermediate state (comparable abundances of both types of ionic cores) observed in He 8 + ${{\rm{He}}_8^ + }$ . The calculated spectra have been thoroughly compared with an earlier calculation on He 3 + ${{\rm{He}}_3^ + }$ , He 4 + ${{\rm{He}}_4^ + }$ , and He 10 + ${{\rm{He}}_{10}^ + }$ reported from our group and data available for the same cluster sizes from an experiment.
See more in PubMed
F. Grandinetti, Int. J. Mass Spectrom. 2004, 237, 243.
S. Yang, A. M. Ellis, Chem. Soc. Rev. 2013, 42, 472.
P. Bartl, C. Leidlmair, S. Denifl, P. Scheier, O. Echt, J. Phys. Chem. A 2014, 118, 8050.
F. Calvo, J. Phys. Chem. 2015, 119, 5959.
P. J. Knowles, J. M. Murrell, Mol. Phys. 1996, 87, 827.
K. Oleksy, F. Karlický, R. Kalus, J. Chem. Phys. 2010, 133, 164314.
H. Haberland, B. von Issendorff, J. Chem. Phys. 1995, 102, 8773.
R. Kalus, F. Karlický, B. Lepetit, I. Paidarová, F. X. Gadéa, J. Chem. Phys. 2013, 139, 204310.
R. Ćosić, F. Karlický, R. Kalus, Chem. Phys. Lett. 2018, 700, 96.
M. Ončák, R. Ćosić, R. Kalus, Chem. Phys. 2021, 549.
D. M. Ceperley, Rev. Mod. Phys. 1995, 67, 279.
P. J. Knowles, J. M. Murrell, E. J. Hodge, Mol. Phys. 1995, 85, 243.
F. O. Ellison, J. Am. Chem. Soc. 1963, 85, 3540.
T. Ikegami, S. Iwata, J. Chem. Phys. 1996, 105, 10734.
F. Y. Naumkin, Chem. Phys. 2000, 252, 301.
R. Feynman, Rev. Mod. Phys. 1948, 20, 367.
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, J. Chem. Phys. 1953, 21, 1087.
R. H. Swendsen, J. S. Wang, Phys. Rev. Lett. 1986, 57, 2607.
C. J. Geyer, in Computing Science and Statistics Proceedings of the 23rd Symposium on the Interface, American Statistical Association, New York 1991 page 156.
J. A. Gascón, R. W. Hall, C. Ludewigt, H. Haberland, J. Chem. Phys. 2002, 117, 8391.