Cholinergic transmission from the basal forebrain modulates social memory in male mice
Language English Country France Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
PJT 159781
CIHR - Canada
PJT 162431
CIHR - Canada
PubMed
34308559
DOI
10.1111/ejn.15400
Knihovny.cz E-resources
- Keywords
- acetylcholine, autism, forebrain, schizophrenia, social memory,
- MeSH
- Acetylcholine MeSH
- Cholinergic Agents MeSH
- Hippocampus metabolism MeSH
- Mice MeSH
- Basal Forebrain * MeSH
- Vesicular Acetylcholine Transport Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetylcholine MeSH
- Cholinergic Agents MeSH
- Vesicular Acetylcholine Transport Proteins MeSH
Disruptions in social behaviour are prevalent in many neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism spectrum disorders. However, the underlying neurochemical regulation of social behaviour is still not well understood. The central cholinergic system has been proposed to contribute to the regulation of social behaviour. For instance, decreased global levels of acetylcholine release in the brain leads to decreased social interaction and an impairment of social memory in mice. Nonetheless, it has been difficult to ascertain the specific brain areas where cholinergic signalling influences social preference and social memory. In this study, we investigated the impact of different forebrain cholinergic regions on social behaviour by examining mouse lines that differ in their regional expression level of the vesicular acetylcholine transporter-the protein that regulates acetylcholine secretion. We found that when cholinergic signalling is highly disrupted in the striatum, hippocampus, cortex and amygdala mice have intact social preference but are impaired in social memory, as they cannot remember a familiar conspecific nor recognize a novel one. A similar pattern emerges when acetylcholine release is disrupted mainly in the striatum, cortex, and amygdala; however, the ability to recognize novel conspecifics is retained. In contrast, cholinergic signalling of the striatum and amygdala does not appear to significantly contribute to the modulation of social memory and social preference. Furthermore, we demonstrated that increasing global cholinergic tone does not increase social behaviours. Together, these data suggest that cholinergic transmission from the hippocampus and cortex are important for regulating social memory.
Department of Anatomy Faculty of Medicine Kuwait University Kuwait City Kuwait
Department of Neurochemistry Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Toronto General Hospital Research Institute University Health Network Toronto Ontario Canada
See more in PubMed
Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 42-61. https://doi.org/10.1111/j.1749-6632.2010.05445.x
Al-Onaizi, M. A., Parfitt, G. M., Kolisnyk, B., Law, C. S. H., Guzman, M. S., Barros, D. M., Prado, M. A. M., & Prado, V. F. (2017). Regulation of cognitive processing by hippocampal cholinergic tone. Cerebral Cortex, 27(2), 1615-1628. https://doi.org/10.1093/cercor/bhv349
Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268-277. https://doi.org/10.1038/nrn1884
Avale, M. E., Chabout, J., Pons, S., Serreau, P., De Chaumont, F., Olivo-Marin, J.-C., Bourgeois, J. P., Maskos, U., Changeux, J. P., & Granon, S. (2011). Prefrontal nicotinic receptors control novel social interaction between mice. The FASEB Journal, 25, 2145-2155. https://doi.org/10.1096/fj.10-178558
Baez, S., Herrera, E., Villarin, L., Theil, D., Gonzalez-Gadea, M. L., Gomez, P., Mosquera, M., Huepe, D., Strejilevich, S., Vigliecca, N. S., Matthäus, F., Decety, J., Manes, F., & Ibañez, A. M. (2013). Contextual social cognition impairments in schizophrenia and bipolar disorder. PLoS ONE, 8, e57664. https://doi.org/10.1371/journal.pone.0057664
Bannerman, D. M., Lemaire, M., Beggs, S., Rawlins, J. N. P., & Iversen, S. D. (2001). Cytotoxic lesions of the hippocampus increase social investigation but do not impair social-recognition memory. Experimental Brain Research, 138, 100-109. https://doi.org/10.1007/s002210100687
Beery, A. K., & Kaufer, D. (2015). Stress, social behavior, and resilience: Insights from rodents. Neurobiology of Stress, 1, 116-127. https://doi.org/10.1016/j.ynstr.2014.10.004
Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature Neuroscience, 14, 163-164. https://doi.org/10.1038/nn.2724
Bicks, L. K., Koike, H., Akbarian, S., & Morishita, H. (2015). Prefrontal cortex and social cognition in mouse and man. Frontiers in Psychology, 6, 1-15. https://doi.org/10.3389/fpsyg.2015.01805
Bloem, B., Poorthuis, R. B., & Mansvelder, H. D. (2014). Cholinergic modulation of the medial prefrontal cortex: The role of nicotinic receptors in attention and regulation of neuronal activity. Frontiers in Neural Circuits, 8, 1-16. https://doi.org/10.3389/fncir.2014.00017
Bredewold, R., & Veenema, A. H. (2018). Sex differences in the regulation of social and anxiety-related behaviors: Insights from vasopressin and oxytocin brain systems. Current Opinion in Neurobiology, 49, 132-140. https://doi.org/10.1016/j.conb.2018.02.011
Caldwell, H. K. (2017). Oxytocin and vasopressin: Powerful regulators of social behavior. Neuroscientist, 23, 517-528. https://doi.org/10.1177/1073858417708284
Choleris, E., Gustafsson, J.-A., Korach, K. S., Muglia, L. J., Pfaff, D. W., & Ogawa, S. (2003). An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogen receptor-α and -β knockout mice. Proceedings of the National Academy of Sciences, 100, 6192-6197. https://doi.org/10.1073/pnas.0631699100
Coura, R. S., Cressant, A., Xia, J., De Chaumont, F., Olivo-Marin, J. C., Pelloux, Y., Dalley, J. W., & Granon, S. (2013). Nonaggressive and adapted social cognition is controlled by the interplay between noradrenergic and nicotinic receptor mechanisms in the prefrontal cortex. FASEB Journal, 27, 4343-4354. https://doi.org/10.1096/fj.13-231084
Cutuli, D., De Bartolo, P., Caporali, P., Tartaglione, A. M., Oddi, D., D'Amato, F. R., Nobili, A., D'Amelio, M., & Petrosini, L. (2013). Neuroprotective effects of donepezil against cholinergic depletion. Alzheimer's Research and Therapy, 5, 50. https://doi.org/10.1186/alzrt215
de Castro, B. M., De Jaeger, X., Martins-Silva, C., Lima, R. D. F., Amaral, E., Menezes, C., Lima, P., Neves, C. M. L., Pires, R. G., Gould, T. W., Welch, I., Kushmerick, C., Guatimosim, C., Izquierdo, I., Cammarota, M., Rylett, R. J., Gomez, M. V., Caron, M. G., Oppenheim, R. W., … Prado, V. F. (2009). The vesicular acetylcholine transporter is required for neuromuscular development and function. Molecular and Cellular Biology, 29, 5238-5250. https://doi.org/10.1128/mcb.00245-09
Doty, R. L. (1986). Odor-guided behavior in mammals. Experientia, 42, 257-271. https://doi.org/10.1007/BF01942506
Duque, A., Tepper, J. M., Detari, L., Ascoli, G. A., & Zaborszky, L. (2007). Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons. Brain Structure and Function, 212, 55-73. https://doi.org/10.1007/s00429-007-0143-3
Favier, M., Janickova, H., Justo, D., Kljakic, O., Runtz, L., Natsheh, J. Y., Pascoal, T. A., Germann, J., Gallino, D., Kang, J. II, Meng, X. Q., Antinora, C., Raulic, S., Jacobsen, J. P. R., Moquin, L., Vigneault, E., Gratton, A., Caron, M. G., Duriez, P., … El Mestikawy, S. (2020). Cholinergic dysfunction in the dorsal striatum promotes habit formation and maladaptive eating. Journal of Clinical Investigation, 130(12), 6616-6630. https://doi.org/10.1172/JCI138532
Felix-Ortiz, A. C., Burgos-Robles, A., Bhagat, N. D., Leppla, C. A., & Tye, K. M. (2016). Bidirectional modulation of anxiety-related and social behaviors by amygdala projections to the medial prefrontal cortex. Neuroscience, 321, 197-209. https://doi.org/10.1016/j.neuroscience.2015.07.041
Felix-Ortiz, A. C., & Tye, K. M. (2014). Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. Journal of Neuroscience., 34(2), 586-595. https://doi.org/10.1523/JNEUROSCI.4257-13.2014
Ferguson, J. N., Young, L. J., Hearn, E. F., Matzuk, M. M., Insel, T. R., & Winslow, J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284-288. https://doi.org/10.1038/77040
Fremeau, R. T., Burman, J., Qureshi, T., Tran, C. H., Proctor, J., Johnson, J., Zhang, H., Sulzer, D., Copenhagen, D. R., Storm-Mathisen, J., Reimer, R. J., Chaudhry, F. A., & Edwards, R. H. (2002). The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14488-14493. https://doi.org/10.1073/pnas.222546799
Gabor, C. S., Phan, A., Clipperton-Allen, A. E., Kavaliers, M., & Choleris, E. (2012). Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition. Behavioral Neuroscience, 126(1), 97-109. https://doi.org/10.1037/a0026464
Gong, S., Doughty, M., Harbaugh, C. R., Cummins, A., Hatten, M. E., Heintz, N., & Gerfen, C. R. (2007). Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. Journal of Neuroscience, 27(37), 9817-9823. https://doi.org/10.1523/JNEUROSCI.2707-07.2007
Granon, S., Faure, P., & Changeux, J.-P. (2003). Executive and social behaviors under nicotinic receptor regulation. Proceedings of the National Academy of Sciences, 100(16), 9596-9601. https://doi.org/10.1073/pnas.1533498100
Gras, C., Herzog, E., Bellenchi, G. C., Bernard, V., Ravassard, P., Pohl, M., Gasnier, B., Giros, B., & El Mestikawy, S. (2002). A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. The Journal of Neuroscience, 22(13), 5442-5451. https://doi.org/10.1523/JNEUROSCI.22-13-05442.2002
Gregg, C. M. (1985). The compartmentalized hypothalamo-neurohypophysial system: Evidence for a neurohypophysial action of acetylcholine on vasopressin release. Neuroendocrinology, 40, 423-429. https://doi.org/10.1159/000124108
Grimes, W. N., Seal, R. P., Oesch, N., Edwards, R. H., & Diamond, J. S. (2011). Genetic targeting and physiological features of VGLUT3+ amacrine cells. Visual Neuroscience, 28(5), 381-392. https://doi.org/10.1017/S0952523811000290
Guzman, M. S., de Jaeger, X., Raulic, S., Souza, I. A., Li, A. X., Schmid, S., Menon, R. S., Gainetdinov, R. R., Caron, M. G., Bartha, R., Prado, V. F., & Prado, M. A. M. (2011). Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission. PLoS Biology, 9(11), e1001194. https://doi.org/10.1371/journal.pbio.1001194
Hall, B., Limaye, A., & Kulkarni, A. B. (2009). Overview: Generation of gene knockout mice. Current Protocols in Cell Biology, 44, 1-23. https://doi.org/10.1002/0471143030.cb1912s44
Hillhouse, E. W., & Milton, N. G. N. (1989). Effect of acetylcholine and 5-hydroxytryptamine on the secretion of corticotrophin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro. Journal of Endocrinology, 122(3), 713-718. https://doi.org/10.1677/joe.0.1220713
Hitti, F. L., & Siegelbaum, S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature, 508, 88-92. https://doi.org/10.1038/nature13028
Jacobs, S., & Tsien, J. Z. (2017). Adult forebrain NMDA receptors gate social motivation and social memory. Neurobiology of Learning and Memory, 138, 164-172. https://doi.org/10.1016/j.nlm.2016.08.019
Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J., Trinh, S., Wu, R., Zhang, S., Pan, S., Hires, S. A., Xu, M., Li, H., Saksida, L. M., Prado, V. F., … Li, Y. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 17, 1139-1146. https://doi.org/10.1038/s41592-020-0953-2
Karvat, G., & Kimchi, T. (2014). Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism. Neuropsychopharmacology, 39, 831-840. https://doi.org/10.1038/npp.2013.274
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2013). Improving bioscience research reporting: The arrive guidelines for reporting animal research. Animals, 8(6), 35-44. https://doi.org/10.3390/ani4010035
Kim, Y., Venkataraju, K. U., Pradhan, K., Mende, C., Taranda, J., Turaga, S. C., Arganda-Carreras, I., Ng, L., Hawrylycz, M. J., Rockland, K. S., Seung, H. S., & Osten, P. (2015). Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Reports, 10(2), 292-305. https://doi.org/10.1016/j.celrep.2014.12.014
Kogan, J. H., Frankland, P. W., & Silva, A. J. (2000). Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus, 10(1), 47-56. https://doi.org/10.1002/(SICI)1098-1063(2000)10:1%3C47::AID-HIPO5%3E3.0.CO;2-6
Kolisnyk, B., Al-Onaizi, M., Soreq, L., Barbash, S., Bekenstein, U., Haberman, N., Hanin, G., Kish, M. T., da Silva, J. S., Fahnestock, M., Ule, J., Soreq, H., Prado, V. F., & Prado, M. A. M. (2017). Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer's-like pathology. Cerebral Cortex, 27(7), 3553-3567. https://doi.org/10.1093/cercor/bhw177
Kolisnyk, B., Al-Onaizi, M. A., Hirata, P. H. F., Guzman, M. S., Nikolova, S., Barbash, S., Soreq, H., Bartha, R., Prado, M. A. M., & Prado, V. F. (2013). Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex. Journal of Neuroscience, 33(37), 14908-14920. https://doi.org/10.1523/JNEUROSCI.1933-13.2013
Kolisnyk, B., Guzman, M. S., Raulic, S., Fan, J., Magalhaes, A. C., Feng, G., Gros, R., Prado, V. F., & Prado, M. A. M. (2013). ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. Journal of Neuroscience, 33(25), 10427-10438. https://doi.org/10.1523/JNEUROSCI.0395-13.2013
Lewis, A. S., Mineur, Y. S., Smith, P. H., Cahuzac, E. L. M., & Picciotto, M. R. (2015). Modulation of aggressive behavior in mice by nicotinic receptor subtypes. Biochemical Pharmacology, 97(4), 488-497. https://doi.org/10.1016/j.bcp.2015.07.019
Lima, R. D. F., Prado, V. F., Prado, M. A. M., & Kushmerick, C. (2010). Quantal release of acetylcholine in mice with reduced levels of the vesicular acetylcholine transporter. Journal of Neurochemistry, 113(4), 943-951. https://doi.org/10.1111/j.1471-4159.2010.06657.x
Madisen, L., Zwingman, T. A., Sunkin, S. M., Oh, S. W., Zariwala, H. A., Gu, H., Ng, L. L., Palmiter, R. D., Hawrylycz, M. J., Jones, A. R., Lein, E. S., & Zeng, H. (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 13, 133-140. https://doi.org/10.1038/nn.2467
Martins-Silva, C., de Jaeger, X., Guzman, M. S., Lima, R. D. F., Santos, M. S., Kushmerick, C., Gomez M. V., Caron M. G., Prado M. A. M., Prado, V. F. (2011). Novel strains of mice deficient for the vesicular acetylcholine transporter: Insights on transcriptional regulation and control of locomotor behavior. PLOS One, 6(3), e17611. https://doi.org/10.1371/journal.pone.0017611
Martos, Y. V., Braz, B. Y., Beccaria, J. P., Murer, M. G., & Belforte, J. E. (2017). Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons. Journal of Neuroscience, 37(11), 2849-2858. https://doi.org/10.1523/JNEUROSCI.3460-16.2017
Martyn, A. C., De Jaeger, X., Magalhaes, A. C., Kesarwani, R., Goncalves, D. F., Raulic, S., Guzman, M. S., Jackson, M. F., Izquierdo, I., MacDonald, J. F., Prado, M. A. M., & Prado, V. F. (2012). Elimination of the vesicular acetylcholine transporter in the forebrain causes hyperactivity and deficits in spatial memory and long-term potentiation. Proceedings of the National Academy of Sciences, 109(43), 17651-17656. https://doi.org/10.1073/pnas.1215381109
McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J., & Crawley, J. N. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain and Behavior, 7(2), 152-163. https://doi.org/10.1111/j.1601-183X.2007.00330.x
McTighe, S. M., Neal, S. J., Lin, Q., Hughes, Z. A., & Smith, D. G. (2013). The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS ONE, 8(4), e62189. https://doi.org/10.1371/journal.pone.0062189
Mineur, Y. S., Obayemi, A., Wigestrand, M. B., Fote, G. M., Calarco, C. A., Li, A. M., & Picciotto, M. R. (2013). Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3573-3578. https://doi.org/10.1073/pnas.1219731110
Misgeld, T., Burgess, R. W., Lewis, R. M., Cunningham, J. M., Lichtman, J. W., & Sanes, J. R. (2002). Roles of neurotransmitter in synapse formation: Development of neuromuscular junctions lacking choline acetyltransferase. Neuron, 36(4), 635-648. https://doi.org/10.1016/S0896-6273(02)01020-6
Montagrin, A., Saiote, C., & Schiller, D. (2018). The social hippocampus. Hippocampus, 28(9), 672-679. https://doi.org/10.1002/hipo.22797
Moy, S. S., Nadler, J. J., Young, N. B., Perez, A., Holloway, L. P., Barbaro, R. P., Barbaro, J. R., Wilson, L. M., Threadgill, D. W., Lauder, J. M., Magnuson, T. R., & Crawley, J. N. (2007). Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behavioural Brain Research, 176(1), 4-20. https://doi.org/10.1016/j.bbr.2006.07.030
Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S., & Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science, 353(6307), 1536-1541. https://doi.org/10.1126/science.aaf7003
Pereira-Caixeta, A. R., Guarnieri, L. O., Medeiros, D. C., Mazoni, E. M. A. M., Ladeira, L. C. D., Pereira, M. T., Moraes, M. F. D., & Pereira, G. S. (2018). Inhibiting constitutive neurogenesis compromises long-term social recognition memory. Neurobiology of Learning and Memory, 155, 92-103. https://doi.org/10.1016/j.nlm.2018.06.014
Pobbe, R. L. H., Pearson, B. L., Defensor, E. B., Bolivar, V. J., Blanchard, D. C., & Blanchard, R. J. (2010). Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. Behavioural Brain Research, 214(2), 443-449. https://doi.org/10.1016/j.bbr.2010.06.025
Poulin, A. N., Guerci, A., El Mestikawy, S., & Semba, K. (2006). Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. Journal of Comparative Neurology, 498(5), 690-711. https://doi.org/10.1002/cne.21081
Prado, V. F., Janickova, H., Al-Onaizi, M. A., & Prado, M. A. M. (2017). Cholinergic circuits in cognitive flexibility. Neuroscience, 345, 130-141. https://doi.org/10.1016/j.neuroscience.2016.09.013
Prado, V. F., Martins-Silva, C., de Castro, B. M., Lima, R. F., Barros, D. M., Amaral, E., Ramsey, A. J., Sotnikova, T. D., Ramirez, M. R., Kim, H. G., Rossato, J. I., Koenen, J., Quan, H., Cota, V. R., Moraes, M. F. D., Gomez, M. V., Guatimosim, C., Wetsel, W. C., Kushmerick, C., … Prado, M. A. M. (2006). Mice deficient for the vesicular acetylcholine transporter are myasthenic and have deficits in object and social recognition. Neuron, 51(5), 601-612. https://doi.org/10.1016/j.neuron.2006.08.005
Prado, V. F., & Prado, M. A. M. (2002). Signals involved in targeting membrane proteins to synaptic vesicles. Cellular and Molecular Neurobiology, 22, 565-577. https://doi.org/10.1023/A:1021884319363
Prado, V. F., Roy, A., Kolisnyk, B., Gros, R., & Prado, M. A. M. (2013). Regulation of cholinergic activity by the vesicular acetylcholine transporter. Biochemical Journal, 450(2), 265-274. https://doi.org/10.1042/BJ20121662
Raber, J., Pich, E. M., Koob, G. F., & Bloom, F. E. (1994). IL-1β potentiates the acetylcholine induced release of vasopressin from the hypothalamus in vitro, but not from the amygdala. Neuroendocrinology, 59, 208-217. https://doi.org/10.1159/000126661
Rapanelli, M., Frick, L. R., Xu, M., Groman, S. M., Jindachomthong, K., Tamamaki, N., Tanahira, C., Taylor, J. R., & Pittenger, C. (2017). Targeted interneuron depletion in the dorsal striatum produces autism-like behavioral abnormalities in male but not female mice. Biological Psychiatry, 82(3), 194-203. https://doi.org/10.1016/j.biopsych.2017.01.020
Riedel, G., Kang, S. H., Choi, D. Y., & Platt, B. (2009). Scopolamine-induced deficits in social memory in mice: Reversal by donepezil. Behavioural Brain Research., 204(1), 217-225. https://doi.org/10.1016/j.bbr.2009.06.012
Robert, V., Therreau, L., Felicia Davatolhagh, M., Javier Bernardo-Garcia, F., Clements, K. N., Chevaleyre, V., & Piskorowski, R. A. (2020). The mechanisms shaping CA2 pyramidal neuron action potential bursting induced by muscarinic acetylcholine receptor activation. Journal of General Physiology, 152(4), 1-27. https://doi.org/10.1085/jgp.201912462
Rudebeck, P. H., Walton, M. E., Millette, B. H. P., Shirley, E., Rushworth, M. F. S., & Bannerman, D. M. (2007). Distinct contributions of frontal areas to emotion and social behaviour in the rat. European Journal of Neuroscience, 26(8), 2315-2326. https://doi.org/10.1111/j.1460-9568.2007.05844.x
Sakae, D. Y., Marti, F., Lecca, S., Vorspan, F., Martín-García, E., Morel, L. J., Henrion, A., Gutiérrez-Cuesta, J., Besnard, A., Heck, N., Herzog, E., Bolte, S., Prado, V. F., Prado, M. A. M., Bellivier, F., Eap, C. B., Crettol, S., Vanhoutte, P., Caboche, J., … El Mestikawy, S. (2015). The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens. Molecular Psychiatry, 20(11), 1148-1159. https://doi.org/10.1038/mp.2015.104
Salas, R., Fung, B., Sturm, R., & De Biasi, M. (2013). Abnormal social behavior in nicotinic acetylcholine receptor β4 subunit-null mice. Nicotine and Tobacco Research, 15(5), 983-986. https://doi.org/10.1093/ntr/nts215
Sanders, H. I., & Warrington, E. K. (1971). Memory for remote events in amnesic patients. Brain, 94(4), 661-668. https://doi.org/10.1093/brain/94.4.661
Savage, S., Kehr, J., Olson, L., & Mattsson, A. (2011). Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation. Neuroscience, 195, 60-69. https://doi.org/10.1016/j.neuroscience.2011.08.027
Squires, A. S., Peddle, R., Milway, S. J., & Harley, C. W. (2006). Cytotoxic lesions of the hippocampus do not impair social recognition memory in socially housed rats. Neurobiology of Learning and Memory, 85(1), 95-101. https://doi.org/10.1016/j.nlm.2005.08.012
Stevenson, E. L., & Caldwell, H. K. (2014). Lesions to the CA2 region of the hippocampus impair social memory in mice. European Journal of Neuroscience, 40(9), 3294-3301. https://doi.org/10.1111/ejn.12689
Suyama, H., Egger, V., & Lukas, M. (2021). Top-down acetylcholine enables social discrimination via unlocking action potential generation in olfactory bulb vasopressin cells. Communications Biology, 4(1), 1-17. https://doi.org/10.1038/s42003-021-02129-7
Tanimizu, T., Kenney, J. W., Okano, E., Kadoma, K., Frankland, P. W., & Kida, S. (2017). Functional connectivity of multiple brain regions required for the consolidation of social recognition memory. Journal of Neuroscience, 37(15), 4103-4116. https://doi.org/10.1523/JNEUROSCI.3451-16.2017
Ting, J. T., & Feng, G. (2014). Recombineering strategies for developing next generation BAC transgenic tools for optogenetics and beyond. Frontiers in Behavioral Neuroscience, 8, 1-13. https://doi.org/10.3389/fnbeh.2014.00111
Trinkler, I., King, J. A., Doeller, C. F., Rugg, M. D., & Burgess, N. (2009). Neural bases of autobiographical support for episodic recollection of faces. Hippocampus, 19(8), 718-730. https://doi.org/10.1002/hipo.20556
Ueda, D., Yonemochi, N., Kamata, T., Shibasaki, M., Kamei, J., Waddington, J. L., & Ikeda, H. (2020). Increase in neuropeptide Y activity impairs social behaviour in association with glutamatergic dysregulation in diabetic mice. British Journal of Pharmacology, 178(3), 726-740. https://doi.org/10.1111/bph.15326
van der Kooij, M. A., & Sandi, C. (2012). Social memories in rodents: Methods, mechanisms and modulation by stress. Neuroscience and Biobehavioral Reviews, 36(7), 1763-1772. https://doi.org/10.1016/j.neubiorev.2011.10.006
Van Kampen, M., Selbach, K., Schneider, R., Schiegel, E., Boess, F., & Schreiber, R. (2004). AR-R 17779 improves social recognition in rats by activation of nicotinic α 7 receptors. Psychopharmacology, 172, 375-383. https://doi.org/10.1007/s00213-003-1668-7
Viskontas, I. V., Quiroga, R. Q., & Fried, I. (2009). Human medial temporal lobe neurons respond preferentially to personally relevant images. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21329-21334. https://doi.org/10.1073/pnas.0902319106
von Heimendahl, M., Rao, R. P., & Brecht, M. (2012). Weak and nondiscriminative responses to conspecifics in the rat hippocampus. Journal of Neuroscience, 32(6), 2129-2141. https://doi.org/10.1523/JNEUROSCI.3812-11.2012
Winslow, J. T., & Camacho, F. (1995). Cholinergic modulation of a decrement in social investigation following repeated contacts between mice. Psychopharmacology, 121, 164-172. https://doi.org/10.1007/BF02245626
Yang, C., McKenna, J. T., Zant, J. C., Winston, S., Basheer, R., & Brown, R. E. (2014). Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. Journal of Neuroscience, 34(8), 2832-2844. https://doi.org/10.1523/JNEUROSCI.3235-13.2014
Yang, M., & Crawley, J. N. (2009). Simple behavioral assessment of mouse olfaction. Current Protocols in Neuroscience, 48, 1-14. https://doi.org/10.1002/0471142301.ns0824s48
Yang, M., Zhodzishsky, V., & Crawley, J. N. (2007). Social deficits in BTBR T + tf/J mice are unchanged by cross-fostering with C57BL/6J mothers. International Journal of Developmental Neuroscience, 25(8), 515-521. https://doi.org/10.1016/j.ijdevneu.2007.09.008
Zaborszky, L., & Duque, A. (2000). Local synaptic connections of basal forebrain neurons. Behavioural Brain Research, 115(2), 143-158. https://doi.org/10.1016/S0166-4328(00)00255-2
Zant, J. C., Kim, T., Prokai, L., Szarka, S., McNally, J., McKenna, J. T., Shukla, C., Yang, C., Kalinchuk, A. V., McCarley, R. W., Brown, R. E., & Basheer, R. (2016). Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: An opto-dialysis study. Journal of Neuroscience, 36(6), 2057-2067. https://doi.org/10.1523/JNEUROSCI.3318-15.2016
Zhao, S., Ting, J. T., Atallah, H. E., Qiu, L., Tan, J., Gloss, B., Augustine, G. J., Deisseroth, K., Luo, M., Graybiel, A. M., & Feng, G. (2011). Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nature Methods, 8, 745-752. https://doi.org/10.1038/nmeth.1668
figshare
10.6084/m9.figshare.13336703, 10.6084/m9.figshare.13336769, 10.6084/m9.figshare.13336808, 10.6084/m9.figshare.13336853, 10.6084/m9.figshare.14316005