Spectroscopic Signatures of Internal Hydrogen Bonds of Brønsted-Acid Sites in the Zeolite H-MFI

. 2023 Jun 19 ; 62 (25) : e202303204. [epub] 20230509

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159109

Grantová podpora
Deutsche Forschungsgemeinschaft
Fonds der Chemischen Industrie
CZ.02.1.01/0.0/0.0/15_003/0000417 OP VVV Excellent Research Teams
Studienstiftung des Deutschen Volkes
bec00241 North German Supercomputing Alliance (HLRN)

The location of Brønsted-acid sites (bridging OH groups, b-OH) at different crystallographic positions of zeolite catalysts influences their reactivity due to varying confinement. Selecting the most stable b-OH conformers at each of the 12 T-sites (T=Si/Al) of H-MFI, a representative set of 26 conformers is obtained which includes free b-OH groups pointing into the empty pore space and b-OH groups forming H-bonds across five- or six-membered rings of TO4 tetrahedra. Chemically accurate coupled-cluster-quality calculations for periodic models show that the strength of internal H-bonds and, hence, the OH bond length vary substantially with the framework position. For 11 of the 19 H-bonded b-OH groups examined, our predictions fall into the full width at half maximum range of the experimental signals at 3250±175 cm-1 and 7.0±1.4 ppm which supports previously debated assignments of these signals to H-bonded b-OH sites.

Zobrazit více v PubMed

P. Del Campo, C. Martínez, A. Corma, Chem. Soc. Rev. 2021, 50, 8511-8595.

Y. V. Kissin, Catal. Rev. 2001, 43, 85-146.

C. D. Chang, Catal. Rev. 1983, 25, 1-118.

R. J. Argauer, G. R. Landolt (Mobil Oil Corp), US3702886A, 1972;

K. Tanabe, W. F. Hölderich, Appl. Catal. A 1999, 181, 399-434;

C. Baerlocher, L. B. McCusker, “Database of Zeolite Structures”, can be found under http://www.iza-structure.org/databases/, 2017, (accessed 1 March 2023).

W. J. Mortier, J. Sauer, J. A. Lercher, H. Noller, J. Phys. Chem. 1984, 88, 905-912.

H. van Koningsveld, Acta Crystallogr. Sect. B 1990, 46, 731-735.

T. Yokoi, H. Mochizuki, T. Biligetu, Y. Wang, T. Tatsumi, Chem. Lett. 2017, 46, 798-800.

B. C. Knott, C. T. Nimlos, D. J. Robichaud, M. R. Nimlos, S. Kim, R. Gounder, ACS Catal. 2018, 8, 770-784.

S. Sklenak, J. Dědeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Angew. Chem. Int. Ed. 2007, 46, 7286-7289;

O. H. Han, C.-S. Kim, S. B. Hong, Angew. Chem. Int. Ed. 2002, 41, 469-472.

G. Engelhardt, H. G. Jerschkewitz, U. Lohse, P. Sarv, A. Samoson, E. Lippmaa, Zeolites 1987, 7, 289-292;

D. Freude, M. Hunger, H. Pfeifer, Z. Phys. Chem. 1987, 152, 171-182;

P. A. Jacobs, W. J. Mortier, Zeolites 1982, 2, 226-230.

V. L. Zholobenko, L. M. Kustov, V. Y. Borovkov, V. B. Kazansky, Zeolites 1988, 8, 175-178;

L. W. Beck, J. L. White, J. F. Haw, J. Am. Chem. Soc. 1994, 116, 9657-9661;

E. Brunner, K. Beck, M. Koch, L. Heeribout, H. G. Karge, Microporous Mesoporous Mater. 1995, 3, 395-399.

M. Abdolrahmani, K. Chen, J. L. White, J. Phys. Chem. C 2018, 122, 15520-15528;

K. Chen, M. Abdolrahmani, S. Horstmeier, T. N. Pham, V. T. Nguyen, M. Zeets, B. Wang, S. Crossley, J. L. White, ACS Catal. 2019, 9, 6124-6136;

K. Chen, M. Abdolrhamani, E. Sheets, J. Freeman, G. Ward, J. L. White, J. Am. Chem. Soc. 2017, 139, 18698-18704;

K. Chen, S. Horstmeier, V. T. Nguyen, B. Wang, S. P. Crossley, T. Pham, Z. Gan, I. Hung, J. L. White, J. Am. Chem. Soc. 2020, 142, 7514-7523.

H. Huo, L. Peng, C. P. Grey, J. Phys. Chem. C 2009, 113, 8211-8219.

C. Schroeder, V. Siozios, M. Hunger, M. R. Hansen, H. Koller, J. Phys. Chem. C 2020, 124, 23380-23386.

L. Treps, C. Demaret, D. Wisser, B. Harbuzaru, A. Méthivier, E. Guillon, D. V. Benedis, A. Gomez, T. de Bruin, M. Rivallan, L. Catita, A. Lesage, C. Chizallet, J. Phys. Chem. C 2021, 125, 2163-2181;

L. Treps, A. Gomez, T. de Bruin, C. Chizallet, ACS Catal. 2020, 10, 3297-3312.

C. Schroeder, V. Siozios, C. Mück-Lichtenfeld, M. Hunger, M. R. Hansen, H. Koller, Chem. Mater. 2020, 32, 1564-1574.

C. Schroeder, S. I. Zones, M. R. Hansen, H. Koller, Angew. Chem. Int. Ed. 2022, 61, e202109313;

L. A. Villaescusa, P. A. Barrett, M. Kalwei, H. Koller, M. A. Camblor, Chem. Mater. 2001, 13, 2332-2341.

U. Eichler, M. Brändle, J. Sauer, J. Phys. Chem. B 1997, 101, 10035-10050;

M. Sierka, J. Sauer, J. Phys. Chem. B 2001, 105, 1603-1613.

K. Sillar, P. Burk, J. Phys. Chem. B 2004, 108, 9893-9899.

J. Sauer, Acc. Chem. Res. 2019, 52, 3502-3510;

C. Tuma, J. Sauer, Chem. Phys. Lett. 2004, 387, 388-394.

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.

S. Grimme, J. Comput. Chem. 2006, 27, 1787-1799;

F. R. Rehak, G. Piccini, M. Alessio, J. Sauer, Phys. Chem. Chem. Phys. 2020, 22, 7577-7585.

C. Møller, M. S. Plesset, Phys. Rev. 1934, 46, 618-622.

J. A. Anderson, K. Crager, L. Fedoroff, G. S. Tschumper, J. Chem. Phys. 2004, 121, 11023-11029.

G. D. Purvis III, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910-1918.

F. Berger, J. Sauer, Angew. Chem. Int. Ed. 2021, 60, 3529-3533;

Q. Ren, M. Rybicki, J. Sauer, J. Phys. Chem. C 2020, 124, 10067-10078.

R. M. Badger, J. Chem. Phys. 1934, 2, 128-131;

K. R. Asmis, G. Meijer, M. Brümmer, C. Kaposta, G. Santambrogio, L. Wöste, J. Sauer, J. Chem. Phys. 2004, 120, 6461-6470.

F. Haase, J. Sauer, J. Am. Chem. Soc. 1995, 117, 3780-3789.

M. Sierka, U. Eichler, J. Datka, J. Sauer, J. Phys. Chem. B 1998, 102, 6397-6404;

H. Kriegsmann, Z. Phys. Chem. 1988, 269O, 178-180.

C. M. Huggins, G. C. Pimentel, J. Phys. Chem. 1956, 60, 1615-1619.

L. S. Dent, J. V. Smith, Nature 1958, 181, 1794-1796.

L. J. Smith, A. Davidson, A. K. Cheetham, Catal. Lett. 1997, 49, 143-146.

P. M. Kester, J. T. Crum, S. Li, W. F. Schneider, R. Gounder, J. Catal. 2021, 395, 210-226.

S. Bordiga, L. Regli, D. Cocina, C. Lamberti, M. Bjørgen, K. P. Lillerud, J. Phys. Chem. B 2005, 109, 2779-2784.

B. A. Aufdembrink, D. P. Dee, P. L. McDaniel, T. Mebrahtu, T. L. Slager, J. Phys. Chem. B 2003, 107, 10025-10031.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...