Water Adsorption at Pairs of Proximate Brønsted Acid Sites in Zeolites

. 2026 Jan 29 ; 17 (4) : 1201-1206. [epub] 20260114

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41532184

We model water adsorption at pairs of proximate Brønsted acid sites (BASs) in zeolites H-MFI, H-FAU, and H-CHA. We use machine-learning potentials to explore the potential energy surface, combined with quantum mechanical methods for chemically accurate energies of selected structures. We identify BAS pairs that adsorb water cooperatively, forming an H-bonded chain that connects the two BASs and provides additional stabilization. The formation of such a water bridge requires at least two molecules, making the adsorption of the second water molecule stronger than the first, e.g., by 20 and 44 kJ mol-1 for an Al9-Al10 and an Al4-Al6 pair, respectively, in H-MFI, and by 11 kJ mol-1 for H-FAU. The magnitude of this extra-stabilization depends on the relative alignment of the BASs. Both Al pairs separated by just one SiO4 tetrahedron (next-nearest neighbor sites) and pairs across a 10-membered ring are included. The increase of the heat of adsorption with the water loading per BAS contrasts with the decrease obtained for isolated BASs and aligns with observations in some experiments.

Zobrazit více v PubMed

Mortier W. J., Sauer J., Lercher J. A., Noller H.. Bridging and terminal hydroxyls. A structural chemical and quantum chemical discussion. J. Phys. Chem. 1984;88:905–912. doi: 10.1021/j150649a016. DOI

del Campo P., Martínez C., Corma A.. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem. Soc. Rev. 2021;50:8511–8595. doi: 10.1039/D0CS01459A. PubMed DOI

Chizallet C.. Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catal. 2020;10:5579–5601. doi: 10.1021/acscatal.0c01136. DOI

Sierka M., Eichler U., Datka J., Sauer J.. Heterogeneity of Brønsted Acidic Sites in Faujasite Type Zeolites due to Aluminum Content and Framework Structure. J. Phys. Chem. B. 1998;102:6397–6404. doi: 10.1021/jp981670i. DOI

Sazama P., Dědeček J., Gábová V., Wichterlová B., Spoto G., Bordiga S.. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. J. Catal. 2008;254:180–189. doi: 10.1016/j.jcat.2007.12.005. DOI

Yu Z., Zheng A., Wang Q., Chen L., Xu J., Amoureux J.-P., Deng F.. Insights into the Dealumination of Zeolite HY Revealed by Sensitivity-Enhanced 27Al DQ-MAS NMR Spectroscopy at High Field. Angew. Chem., Int. Ed. 2010;49:8657–8661. doi: 10.1002/anie.201004007. PubMed DOI

Dědeček J., Sobalík Z., Wichterlová B.. Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catal. Rev. 2012;54:135–223. doi: 10.1080/01614940.2012.632662. DOI

Song C., Chu Y., Wang M., Shi H., Zhao L., Guo X., Yang W., Shen J., Xue N., Peng L., Ding W.. Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes. J. Catal. 2017;349:163–174. doi: 10.1016/j.jcat.2016.12.024. DOI

Gołąbek K., Tabor E., Pashkova V., Dedecek J., Tarach K., Góra-Marek K.. The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5. Commun. Chem. 2020;3:25. doi: 10.1038/s42004-020-0268-3. PubMed DOI PMC

Schmithorst M. B., Prasad S., Moini A., Chmelka B. F.. Direct Detection of Paired Aluminum Heteroatoms in Chabazite Zeolite Catalysts and Their Significance for Methanol Dehydration Reactivity. J. Am. Chem. Soc. 2023;145:18215–18220. doi: 10.1021/jacs.3c05708. PubMed DOI

Xing M., Chen Y., Cao J., Han Y., Tao Z., Wang F., Hao K., Zhang L., Zheng W., Xiang H., Yang Y., Li Y., Wen X.. Are olefin aromatization reactions structure sensitive over Al pairs and single Al in H-ZSM-5 Zeolite? Fuel. 2023;333:126541. doi: 10.1016/j.fuel.2022.126541. DOI

Sun Y., Liang L., Yang M., Ji Y., Hou G., Chen K.. Identification and Quantification of Al Pairs and Their Impact on Dealumination in Zeolites. J. Am. Chem. Soc. 2025;147:10160–10171. doi: 10.1021/jacs.4c14741. PubMed DOI

Sklenak S., Dědeček J., Li C., Wichterlová B., Gábová V., Sierka M., Sauer J.. Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution 27Al NMR Spectroscopy and Quantum Mechanics/Molecular Mechanics Study of ZSM-5. Angew. Chem., Int. Ed. 2007;46:7286–7289. doi: 10.1002/anie.200702628. PubMed DOI

Perea D. E., Arslan I., Liu J., Ristanović Z., Kovarik L., Arey B. W., Lercher J. A., Bare S. R., Weckhuysen B. M.. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 2015;6:7589. doi: 10.1038/ncomms8589. PubMed DOI PMC

Li G., Foo C., Fan R., Zheng M., Wang Q., Chu Y., Li J., Day S., Steadman P., Tang C., Lo T. W. B., Deng F., Tsang S. C. E.. Atomic locations and adsorbate interactions of Al single and pair sites in H-ZSM-5 zeolite. Science. 2025;387:388–393. doi: 10.1126/science.adq6644. PubMed DOI

Chen K., Damron J., Pearson C., Resasco D., Zhang L., White J. L.. Zeolite Catalysis: Water Can Dramatically Increase or Suppress Alkane C–H Bond Activation. ACS Catal. 2014;4:3039–3044. doi: 10.1021/cs500858d. DOI

Resasco D. E., Crossley S. P., Wang B., White J. L.. Interaction of water with zeolites: a review. Catal. Rev. 2021;63:302–362. doi: 10.1080/01614940.2021.1948301. DOI

Liu Q., van Bokhoven J. A.. Water structures on acidic zeolites and their roles in catalysis. Chem. Soc. Rev. 2024;53:3065–3095. doi: 10.1039/D3CS00404J. PubMed DOI

Liu M., Grajciar L., Heard C. J.. The role of defects in high-silica zeolite hydrolysis and framework healing. Microporous Mesoporous Mater. 2024;377:113219. doi: 10.1016/j.micromeso.2024.113219. DOI

Nuno Almeida J., Song L., Askarli S., Chung S.-H., Ruiz-Martínez J.. Zeolite–Water Chemistry: Characterization Methods to Unveil Zeolite Structure. Chemistry–Methods. 2025;5:e202400076. doi: 10.1002/cmtd.202400076. DOI

Heard C. J., Grajciar L., Uhlík F., Shamzhy M., Opanasenko M., Čejka J., Nachtigall P.. Zeolite (In)­Stability under Aqueous or Steaming Conditions. Adv. Mater. 2020;32:2003264. doi: 10.1002/adma.202003264. PubMed DOI

Heard C. J., Grajciar L., Rice C. M., Pugh S. M., Nachtigall P., Ashbrook S. E., Morris R. E.. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 2019;10:4690. doi: 10.1038/s41467-019-12752-y. PubMed DOI PMC

Huber G. W., Corma A.. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem., Int. Ed. 2007;46:7184–7201. doi: 10.1002/anie.200604504. PubMed DOI

Knott B. C., Nimlos C. T., Robichaud D. J., Nimlos M. R., Kim S., Gounder R.. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catal. 2018;8:770–784. doi: 10.1021/acscatal.7b03676. DOI

Windeck H., Berger F., Sauer J.. Chemically accurate predictions for water adsorption on Brønsted sites of zeolite H-MFI. Phys. Chem. Chem. Phys. 2024;26:23588–23599. doi: 10.1039/D4CP02851A. PubMed DOI

Kulichenko M., Smith J. S., Nebgen B., Li Y. W., Fedik N., Boldyrev A. I., Lubbers N., Barros K., Tretiak S.. The Rise of Neural Networks for Materials and Chemical Dynamics. J. Phys. Chem. Lett. 2021;12:6227–6243. doi: 10.1021/acs.jpclett.1c01357. PubMed DOI

Erlebach A., Nachtigall P., Grajciar L.. Accurate large-scale simulations of siliceous zeolites by neural network potentials. NPJ. Comput. Mater. 2022;8:174. doi: 10.1038/s41524-022-00865-w. DOI

Roy S., Dürholt J. P., Asche T. S., Zipoli F., Gómez-Bombarelli R.. Learning a reactive potential for silica-water through uncertainty attribution. Nat. Commun. 2024;15:6030. doi: 10.1038/s41467-024-50407-9. PubMed DOI PMC

Tuma C., Sauer J.. A hybrid MP2/planewave-DFT scheme for large chemical systems: proton jumps in zeolites. Chem. Phys. Lett. 2004;387:388–394. doi: 10.1016/j.cplett.2004.02.056. DOI

Stanciakova K., Louwen J. N., Weckhuysen B. M., Bulo R. E., Göltl F.. Understanding Water–Zeolite Interactions: On the Accuracy of Density Functionals. J. Phys. Chem. C. 2021;125:20261–20274. doi: 10.1021/acs.jpcc.1c04270. DOI

Berger F., Sauer J.. Dimerization of Linear Butenes and Pentenes in an Acidic Zeolite (H-MFI) Angew. Chem., Int. Ed. 2021;60:3529–3533. doi: 10.1002/anie.202013671. PubMed DOI PMC

Enss A. E., Huber P., Plessow P. N., Studt F.. Methanol-Mediated Hydrogen Transfer Reactions at Surface Lewis Acid Sites of H-SSZ-13. J. Phys. Chem. C. 2024;128:15367–15379. doi: 10.1021/acs.jpcc.4c03408. DOI

Erlebach A., Šípka M., Saha I., Nachtigall P., Heard C. J., Grajciar L.. A reactive neural network framework for water-loaded acidic zeolites. Nat. Commun. 2024;15:4215. doi: 10.1038/s41467-024-48609-2. PubMed DOI PMC

Willimetz D., Erlebach A., Heard C. J., Grajciar L.. 27Al NMR chemical shifts in zeolite MFI via machine learning acceleration of structure sampling and shift prediction. Digit. Discovery. 2025;4:275–288. doi: 10.1039/D4DD00306C. DOI

Willimetz D., Grajciar L.. A Simple and Scalable Kernel Density Approach for Reliable Uncertainty Quantification in Atomistic Machine Learning. J. Phys. Chem. Lett. 2025;16:11081–11086. doi: 10.1021/acs.jpclett.5c02595. PubMed DOI PMC

Urban M., Noga J., Cole S. J., Bartlett R. J.. Towards a full CCSDT model for electron correlation. J. Chem. Phys. 1985;83:4041–4046. doi: 10.1063/1.449067. DOI

Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989;157:479–483. doi: 10.1016/S0009-2614(89)87395-6. DOI

Sauer J.. Ab Initio Calculations for Molecule–Surface Interactions with Chemical Accuracy. Acc. Chem. Res. 2019;52:3502–3510. doi: 10.1021/acs.accounts.9b00506. PubMed DOI

Ryder J. A., Chakraborty A. K., Bell A. T.. Density Functional Theory Study of Proton Mobility in Zeolites: Proton Migration and Hydrogen Exchange in ZSM-5. J. Phys. Chem. B. 2000;104:6998–7011. doi: 10.1021/jp9943427. DOI

Vener M. V., Rozanska X., Sauer J.. Protonation of water clusters in the cavities of acidic zeolites: (H2O)­n·H-chabazite, n = 1–4. Phys. Chem. Chem. Phys. 2009;11:1702–1712. doi: 10.1039/b817905k. PubMed DOI

Berger F., Rybicki M., Sauer J.. Molecular Dynamics with Chemical AccuracyAlkane Adsorption in Acidic Zeolites. ACS Catal. 2023;13:2011–2024. doi: 10.1021/acscatal.2c05493. DOI

Windeck H., Berger F., Sauer J.. Spectroscopic Signatures of Internal Hydrogen Bonds of Brønsted-Acid Sites in the Zeolite H-MFI. Angew. Chem., Int. Ed. 2023;62:e202303204. doi: 10.1002/anie.202303204. PubMed DOI

Pople J. A., Binkley J. S., Seeger R.. Theoretical models incorporating electron correlation. Int. J. Quantum Chem. 1976;10:1–19. doi: 10.1002/qua.560100802. DOI

Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S.. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI

Rehak F. R., Piccini G., Alessio M., Sauer J.. Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal–organic frameworks and in acidic zeolites. Phys. Chem. Chem. Phys. 2020;22:7577–7585. doi: 10.1039/D0CP00394H. PubMed DOI

Eckstein S., Hintermeier P. H., Zhao R., Baráth E., Shi H., Liu Y., Lercher J. A.. Influence of Hydronium Ions in Zeolites on Sorption. Angew. Chem., Int. Ed. 2019;58:3450–3455. doi: 10.1002/anie.201812184. PubMed DOI

Baerlocher, C. ; McCusker, L. B. . Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed 05.06.2020).

Olson D. H., Haag W. O., Borghard W. S.. Use of water as a probe of zeolitic properties: interaction of water with HZSM-5. Microporous Mesoporous Mater. 2000;35–36:435–446. doi: 10.1016/S1387-1811(99)00240-1. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...