Water Adsorption at Pairs of Proximate Brønsted Acid Sites in Zeolites
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41532184
PubMed Central
PMC12862806
DOI
10.1021/acs.jpclett.5c03794
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We model water adsorption at pairs of proximate Brønsted acid sites (BASs) in zeolites H-MFI, H-FAU, and H-CHA. We use machine-learning potentials to explore the potential energy surface, combined with quantum mechanical methods for chemically accurate energies of selected structures. We identify BAS pairs that adsorb water cooperatively, forming an H-bonded chain that connects the two BASs and provides additional stabilization. The formation of such a water bridge requires at least two molecules, making the adsorption of the second water molecule stronger than the first, e.g., by 20 and 44 kJ mol-1 for an Al9-Al10 and an Al4-Al6 pair, respectively, in H-MFI, and by 11 kJ mol-1 for H-FAU. The magnitude of this extra-stabilization depends on the relative alignment of the BASs. Both Al pairs separated by just one SiO4 tetrahedron (next-nearest neighbor sites) and pairs across a 10-membered ring are included. The increase of the heat of adsorption with the water loading per BAS contrasts with the decrease obtained for isolated BASs and aligns with observations in some experiments.
Department of Chemistry Humboldt University Berlin 10099 Berlin Germany
Department of Physical and Macromolecular Chemistry Charles University 12843 Prague Czech Republic
Zobrazit více v PubMed
Mortier W. J., Sauer J., Lercher J. A., Noller H.. Bridging and terminal hydroxyls. A structural chemical and quantum chemical discussion. J. Phys. Chem. 1984;88:905–912. doi: 10.1021/j150649a016. DOI
del Campo P., Martínez C., Corma A.. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem. Soc. Rev. 2021;50:8511–8595. doi: 10.1039/D0CS01459A. PubMed DOI
Chizallet C.. Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catal. 2020;10:5579–5601. doi: 10.1021/acscatal.0c01136. DOI
Sierka M., Eichler U., Datka J., Sauer J.. Heterogeneity of Brønsted Acidic Sites in Faujasite Type Zeolites due to Aluminum Content and Framework Structure. J. Phys. Chem. B. 1998;102:6397–6404. doi: 10.1021/jp981670i. DOI
Sazama P., Dědeček J., Gábová V., Wichterlová B., Spoto G., Bordiga S.. Effect of aluminium distribution in the framework of ZSM-5 on hydrocarbon transformation. Cracking of 1-butene. J. Catal. 2008;254:180–189. doi: 10.1016/j.jcat.2007.12.005. DOI
Yu Z., Zheng A., Wang Q., Chen L., Xu J., Amoureux J.-P., Deng F.. Insights into the Dealumination of Zeolite HY Revealed by Sensitivity-Enhanced 27Al DQ-MAS NMR Spectroscopy at High Field. Angew. Chem., Int. Ed. 2010;49:8657–8661. doi: 10.1002/anie.201004007. PubMed DOI
Dědeček J., Sobalík Z., Wichterlová B.. Siting and Distribution of Framework Aluminium Atoms in Silicon-Rich Zeolites and Impact on Catalysis. Catal. Rev. 2012;54:135–223. doi: 10.1080/01614940.2012.632662. DOI
Song C., Chu Y., Wang M., Shi H., Zhao L., Guo X., Yang W., Shen J., Xue N., Peng L., Ding W.. Cooperativity of adjacent Brønsted acid sites in MFI zeolite channel leads to enhanced polarization and cracking of alkanes. J. Catal. 2017;349:163–174. doi: 10.1016/j.jcat.2016.12.024. DOI
Gołąbek K., Tabor E., Pashkova V., Dedecek J., Tarach K., Góra-Marek K.. The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5. Commun. Chem. 2020;3:25. doi: 10.1038/s42004-020-0268-3. PubMed DOI PMC
Schmithorst M. B., Prasad S., Moini A., Chmelka B. F.. Direct Detection of Paired Aluminum Heteroatoms in Chabazite Zeolite Catalysts and Their Significance for Methanol Dehydration Reactivity. J. Am. Chem. Soc. 2023;145:18215–18220. doi: 10.1021/jacs.3c05708. PubMed DOI
Xing M., Chen Y., Cao J., Han Y., Tao Z., Wang F., Hao K., Zhang L., Zheng W., Xiang H., Yang Y., Li Y., Wen X.. Are olefin aromatization reactions structure sensitive over Al pairs and single Al in H-ZSM-5 Zeolite? Fuel. 2023;333:126541. doi: 10.1016/j.fuel.2022.126541. DOI
Sun Y., Liang L., Yang M., Ji Y., Hou G., Chen K.. Identification and Quantification of Al Pairs and Their Impact on Dealumination in Zeolites. J. Am. Chem. Soc. 2025;147:10160–10171. doi: 10.1021/jacs.4c14741. PubMed DOI
Sklenak S., Dědeček J., Li C., Wichterlová B., Gábová V., Sierka M., Sauer J.. Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution 27Al NMR Spectroscopy and Quantum Mechanics/Molecular Mechanics Study of ZSM-5. Angew. Chem., Int. Ed. 2007;46:7286–7289. doi: 10.1002/anie.200702628. PubMed DOI
Perea D. E., Arslan I., Liu J., Ristanović Z., Kovarik L., Arey B. W., Lercher J. A., Bare S. R., Weckhuysen B. M.. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 2015;6:7589. doi: 10.1038/ncomms8589. PubMed DOI PMC
Li G., Foo C., Fan R., Zheng M., Wang Q., Chu Y., Li J., Day S., Steadman P., Tang C., Lo T. W. B., Deng F., Tsang S. C. E.. Atomic locations and adsorbate interactions of Al single and pair sites in H-ZSM-5 zeolite. Science. 2025;387:388–393. doi: 10.1126/science.adq6644. PubMed DOI
Chen K., Damron J., Pearson C., Resasco D., Zhang L., White J. L.. Zeolite Catalysis: Water Can Dramatically Increase or Suppress Alkane C–H Bond Activation. ACS Catal. 2014;4:3039–3044. doi: 10.1021/cs500858d. DOI
Resasco D. E., Crossley S. P., Wang B., White J. L.. Interaction of water with zeolites: a review. Catal. Rev. 2021;63:302–362. doi: 10.1080/01614940.2021.1948301. DOI
Liu Q., van Bokhoven J. A.. Water structures on acidic zeolites and their roles in catalysis. Chem. Soc. Rev. 2024;53:3065–3095. doi: 10.1039/D3CS00404J. PubMed DOI
Liu M., Grajciar L., Heard C. J.. The role of defects in high-silica zeolite hydrolysis and framework healing. Microporous Mesoporous Mater. 2024;377:113219. doi: 10.1016/j.micromeso.2024.113219. DOI
Nuno Almeida J., Song L., Askarli S., Chung S.-H., Ruiz-Martínez J.. Zeolite–Water Chemistry: Characterization Methods to Unveil Zeolite Structure. Chemistry–Methods. 2025;5:e202400076. doi: 10.1002/cmtd.202400076. DOI
Heard C. J., Grajciar L., Uhlík F., Shamzhy M., Opanasenko M., Čejka J., Nachtigall P.. Zeolite (In)Stability under Aqueous or Steaming Conditions. Adv. Mater. 2020;32:2003264. doi: 10.1002/adma.202003264. PubMed DOI
Heard C. J., Grajciar L., Rice C. M., Pugh S. M., Nachtigall P., Ashbrook S. E., Morris R. E.. Fast room temperature lability of aluminosilicate zeolites. Nat. Commun. 2019;10:4690. doi: 10.1038/s41467-019-12752-y. PubMed DOI PMC
Huber G. W., Corma A.. Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem., Int. Ed. 2007;46:7184–7201. doi: 10.1002/anie.200604504. PubMed DOI
Knott B. C., Nimlos C. T., Robichaud D. J., Nimlos M. R., Kim S., Gounder R.. Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catal. 2018;8:770–784. doi: 10.1021/acscatal.7b03676. DOI
Windeck H., Berger F., Sauer J.. Chemically accurate predictions for water adsorption on Brønsted sites of zeolite H-MFI. Phys. Chem. Chem. Phys. 2024;26:23588–23599. doi: 10.1039/D4CP02851A. PubMed DOI
Kulichenko M., Smith J. S., Nebgen B., Li Y. W., Fedik N., Boldyrev A. I., Lubbers N., Barros K., Tretiak S.. The Rise of Neural Networks for Materials and Chemical Dynamics. J. Phys. Chem. Lett. 2021;12:6227–6243. doi: 10.1021/acs.jpclett.1c01357. PubMed DOI
Erlebach A., Nachtigall P., Grajciar L.. Accurate large-scale simulations of siliceous zeolites by neural network potentials. NPJ. Comput. Mater. 2022;8:174. doi: 10.1038/s41524-022-00865-w. DOI
Roy S., Dürholt J. P., Asche T. S., Zipoli F., Gómez-Bombarelli R.. Learning a reactive potential for silica-water through uncertainty attribution. Nat. Commun. 2024;15:6030. doi: 10.1038/s41467-024-50407-9. PubMed DOI PMC
Tuma C., Sauer J.. A hybrid MP2/planewave-DFT scheme for large chemical systems: proton jumps in zeolites. Chem. Phys. Lett. 2004;387:388–394. doi: 10.1016/j.cplett.2004.02.056. DOI
Stanciakova K., Louwen J. N., Weckhuysen B. M., Bulo R. E., Göltl F.. Understanding Water–Zeolite Interactions: On the Accuracy of Density Functionals. J. Phys. Chem. C. 2021;125:20261–20274. doi: 10.1021/acs.jpcc.1c04270. DOI
Berger F., Sauer J.. Dimerization of Linear Butenes and Pentenes in an Acidic Zeolite (H-MFI) Angew. Chem., Int. Ed. 2021;60:3529–3533. doi: 10.1002/anie.202013671. PubMed DOI PMC
Enss A. E., Huber P., Plessow P. N., Studt F.. Methanol-Mediated Hydrogen Transfer Reactions at Surface Lewis Acid Sites of H-SSZ-13. J. Phys. Chem. C. 2024;128:15367–15379. doi: 10.1021/acs.jpcc.4c03408. DOI
Erlebach A., Šípka M., Saha I., Nachtigall P., Heard C. J., Grajciar L.. A reactive neural network framework for water-loaded acidic zeolites. Nat. Commun. 2024;15:4215. doi: 10.1038/s41467-024-48609-2. PubMed DOI PMC
Willimetz D., Erlebach A., Heard C. J., Grajciar L.. 27Al NMR chemical shifts in zeolite MFI via machine learning acceleration of structure sampling and shift prediction. Digit. Discovery. 2025;4:275–288. doi: 10.1039/D4DD00306C. DOI
Willimetz D., Grajciar L.. A Simple and Scalable Kernel Density Approach for Reliable Uncertainty Quantification in Atomistic Machine Learning. J. Phys. Chem. Lett. 2025;16:11081–11086. doi: 10.1021/acs.jpclett.5c02595. PubMed DOI PMC
Urban M., Noga J., Cole S. J., Bartlett R. J.. Towards a full CCSDT model for electron correlation. J. Chem. Phys. 1985;83:4041–4046. doi: 10.1063/1.449067. DOI
Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989;157:479–483. doi: 10.1016/S0009-2614(89)87395-6. DOI
Sauer J.. Ab Initio Calculations for Molecule–Surface Interactions with Chemical Accuracy. Acc. Chem. Res. 2019;52:3502–3510. doi: 10.1021/acs.accounts.9b00506. PubMed DOI
Ryder J. A., Chakraborty A. K., Bell A. T.. Density Functional Theory Study of Proton Mobility in Zeolites: Proton Migration and Hydrogen Exchange in ZSM-5. J. Phys. Chem. B. 2000;104:6998–7011. doi: 10.1021/jp9943427. DOI
Vener M. V., Rozanska X., Sauer J.. Protonation of water clusters in the cavities of acidic zeolites: (H2O)n·H-chabazite, n = 1–4. Phys. Chem. Chem. Phys. 2009;11:1702–1712. doi: 10.1039/b817905k. PubMed DOI
Berger F., Rybicki M., Sauer J.. Molecular Dynamics with Chemical AccuracyAlkane Adsorption in Acidic Zeolites. ACS Catal. 2023;13:2011–2024. doi: 10.1021/acscatal.2c05493. DOI
Windeck H., Berger F., Sauer J.. Spectroscopic Signatures of Internal Hydrogen Bonds of Brønsted-Acid Sites in the Zeolite H-MFI. Angew. Chem., Int. Ed. 2023;62:e202303204. doi: 10.1002/anie.202303204. PubMed DOI
Pople J. A., Binkley J. S., Seeger R.. Theoretical models incorporating electron correlation. Int. J. Quantum Chem. 1976;10:1–19. doi: 10.1002/qua.560100802. DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S.. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
Rehak F. R., Piccini G., Alessio M., Sauer J.. Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal–organic frameworks and in acidic zeolites. Phys. Chem. Chem. Phys. 2020;22:7577–7585. doi: 10.1039/D0CP00394H. PubMed DOI
Eckstein S., Hintermeier P. H., Zhao R., Baráth E., Shi H., Liu Y., Lercher J. A.. Influence of Hydronium Ions in Zeolites on Sorption. Angew. Chem., Int. Ed. 2019;58:3450–3455. doi: 10.1002/anie.201812184. PubMed DOI
Baerlocher, C. ; McCusker, L. B. . Database of Zeolite Structures. http://www.iza-structure.org/databases/ (accessed 05.06.2020).
Olson D. H., Haag W. O., Borghard W. S.. Use of water as a probe of zeolitic properties: interaction of water with HZSM-5. Microporous Mesoporous Mater. 2000;35–36:435–446. doi: 10.1016/S1387-1811(99)00240-1. DOI