Sex differences in blood pressure, free radicals and plasma cholesterol fractions in Ren-2 transgenic rats of various ages

. 2023 Apr 30 ; 72 (2) : 167-175.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37159851

Sex-related cardiovascular differences were observed in humans as well as in experimental animals. Our previous study demonstrated a marked sexual dimorphism in blood pressure (BP) of 9-month-old heterozygous transgenic Ren 2 rats (TGR), in which mouse Ren-2 renin gene was inserted into the genome of normotensive Hannover Sprague-Dawley rats (HanSD). We found significantly elevated BP only in male TGR, whereas BP of TGR females was similar to that of HanSD females. The aim of our present study was to compare BP of 3- and 6-month-old heterozygous TGR with age- and sex-matched HanSD under the same conditions as we measured in 9-month-old rats. We also monitored the amount of oxidative stress marker, thiobarbituric acid-reactive substances (TBARS), and a main intracellular antioxidant, reduced glutathione in the heart, kidneys and liver. We also measured plasma triglycerides and cholesterol levels. We found an increased mean arterial pressure in both female and male 3-month-old TGR (172±17 vs. 187±4 mm Hg, respectively) compared to HanSD (115±5 vs. 133±3 mm Hg, respectively) but there was a marked sexual dimorphism of 6 month-old TGR where only males were hypertensive (145±5 mm Hg) while females became normotensive (123±7 mm Hg). We did not find any relationship between BP values and concentrations of TBARS or glutathione or plasma lipid levels. Our results demonstrated that 6-month-old TGR exhibited a marked sexual BP dimorphism, which was not dependent on the abnormalities in oxidative stress or cholesterol metabolism.

Zobrazit více v PubMed

Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ Res. 2016;118:1294–1312. doi: 10.1161/CIRCRESAHA.116.307509. PubMed DOI PMC

Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;14:7. doi: 10.1186/2042-6410-3-7. PubMed DOI PMC

Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal models of hypertension: A scientific statement from the American Heart Association. Hypertension. 2019;73:e87–e120. doi: 10.1161/HYP.0000000000000090. PubMed DOI PMC

Elmarakby AA, Sullivan JC. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR) Clin Sci (Lond) 2021;135:1791–1804. doi: 10.1042/CS20201017. PubMed DOI PMC

Ouchi Y, Share L, Crofton JT, Iitake K, Brooks DP. Sex difference in the development of deoxycorticosterone-salt hypertension in the rat. Hypertension. 1987;9:172–177. doi: 10.1161/01.HYP.9.2.172. PubMed DOI

Dahl LK, Knudsen KD, Ohanian EV, Muirhead M, Tuthill R. Role of the gonads in hypertension-prone rats. J Exp Med. 1975;142:748–759. doi: 10.1084/jem.142.3.748. PubMed DOI PMC

Sáinz J, Osuna A, Wangensteen R, de Dios Luna J, Rodríguez-Gómez I, Duarte J, Moreno JM, Vargas F. Role of sex, gonadectomy and sex hormones in the development of nitric oxide inhibition-induced hypertension. Exp Physiol. 2004;89:155–162. doi: 10.1113/expphysiol.2003.002652. PubMed DOI

Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI

Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919–929. doi: 10.1152/ajpendo.1996.270.6.E919. PubMed DOI

Vernerová Z, Kujal P, Kramer HJ, Bäcker A, Červenka L, Vanèčková I. End-organ damage in hypertensive transgenic Ren-2 rats: influence of early and late endothelin receptor blockade. Physiol Res. 2009;58(Suppl 2):S69–S78. doi: 10.33549/physiolres.931640. PubMed DOI

Rauchová H, Hojná S, Kadlecová M, Vanèčková I, Zicha J. Sex differences in blood pressure of Ren-2 transgenic rats. Physiol Res. 2020;69:245–252. doi: 10.33549/physiolres.934369. PubMed DOI PMC

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Springate JE, Feld LG, Ganten D. Renal function in hypertensive rats transgenic for mouse renin gene. Am J Physiol. 1994;266:F731–737. doi: 10.1152/ajprenal.1994.266.5.F731. PubMed DOI

Cargnelli G, Rossi GP, Pessina AC, Luciani S, Debetto P, Ganten D, Peters J, Bova S. Changes of blood pressure and aortic strip contractile responses to ET-1 of heterozygous female transgenic rats, TGR(mRen2)27. Pharmacol Res. 1998;37:207–211. doi: 10.1006/phrs.1998.0287. PubMed DOI

Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919–929. doi: 10.1152/ajpendo.1996.270.6.E919. PubMed DOI

Vanèčková I, Husková Z, Vaňourková Z, Cervenka L. Castration has antihypertensive and organoprotective effects in male but not in female heterozygous Ren-2 rats. Kidney Blood Press Res. 2011;34:46–52. doi: 10.1159/000322618. PubMed DOI

Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70:660–667. doi: 10.1161/HYPERTENSIONAHA.117.07802. PubMed DOI

Reckelhoff JF, Romero DG, Yanes Cardozo LL. Sex, oxidative stress, and hypertension: Insights from animal models. Physiology (Bethesda) 2019;34:178–188. doi: 10.1152/physiol.00035.2018. PubMed DOI PMC

Kopkan L, Husková Z, Vaňourková Z, Thumová M, Škaroupková P, Malý J, Kramer HJ, Dvořák P, Červenka L. Reduction of oxidative stress does not attenuate the development of angiotensin II-dependent hypertension in Ren-2 transgenic rats. Vascul Pharmacol. 2009;51:175–181. doi: 10.1016/j.vph.2009.06.001. PubMed DOI

Liu F, Wei CC, Wu SJ, Chenier I, Zhang SL, Filep JG, Ingelfinger JR, Chan JS. Apocynin attenuates tubular apoptosis and tubulointerstitial fibrosis in transgenic mice independent of hypertension. Kidney Int. 2009;75:156–166. doi: 10.1038/ki.2008.509. PubMed DOI

Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens. 2004;22:535–542. doi: 10.1097/00004872-200403000-00016. PubMed DOI

Hu L, Zhang Y, Lim PS, Miao Y, Tan C, McKenzie KU, Schyvens CG, Whitworth JA. Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat. Am J Hypertens. 2006;19:413–418. doi: 10.1016/j.amjhyper.2005.09.023. PubMed DOI

Unger BS, Patil BM. Apocynin improves endothelial function and prevents the development of hypertension in fructose fed rat. Indian J Pharmacol. 2009;41:208–212. doi: 10.4103/0253-7613.58508. PubMed DOI PMC

Tain YL, Hsu CN, Huang LT, Lau YT. Apocynin attenuates oxidative stress and hypertension in young spontaneously hypertensive rats independent of ADMA/NO pathway. Free Radic Res. 2012;46:68–76. doi: 10.3109/10715762.2011.639069. PubMed DOI

Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi: 10.3389/fphar.2014.00196. PubMed DOI PMC

Gould RL, Pazdro R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients. 2019;11:1056. doi: 10.3390/nu11051056. PubMed DOI PMC

Vokurková M, Rauchová H, Řezáčová L, Vanèčková I, Zicha J. NADPH oxidase activity and reactive oxygen species production in brain and kidney of adult male hypertensive Ren-2 transgenic rats. Physiol Res. 2015;64:849–856. doi: 10.33549/physiolres.933254. PubMed DOI

Vettor R, Cusin I, Ganten D, Rohner-Jeanrenaud F, Ferrannini E, Jeanrenaud B. Insulin resistance and hypertension: studies in transgenic hypertensive TGR(mREN-2)27 rats. Am J Physiol. 1994;267:R1503–R1509. doi: 10.1152/ajpregu.1994.267.6.R1503. PubMed DOI

Lee CE, Kang JS, Kim KI. Effects of gender, gonadectomy and sex hormones on growth and plasma cholesterol level in rats. Ann Nutr Metab. 2008;53:1–5. doi: 10.1159/000152867. PubMed DOI

Borbélyová V, Domonkos E, Bábíčková J, Tóthová L, Kačmárová M, Uličná O, Ostatníková D, Hodosy J, Celec P. Does long-term androgen deficiency lead to metabolic syndrome in middle-aged rats? Exp Gerontol. 2017;98:38–46. doi: 10.1016/j.exger.2017.08.016. PubMed DOI

He Q, Su G, Liu K, Zhang F, Jiang Y, Gao J, Liu L, Jiang Z, Jin M, Xie H. Sex-specific reference intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank percentile method. PLoS One. 2017;12:e0189837. doi: 10.1371/journal.pone.0189837. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...