Sex differences in blood pressure, free radicals and plasma cholesterol fractions in Ren-2 transgenic rats of various ages
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37159851
PubMed Central
PMC10226407
DOI
10.33549/physiolres.935059
PII: 935059
Knihovny.cz E-zdroje
- MeSH
- cholesterol MeSH
- glutathion MeSH
- hypertenze * MeSH
- krevní tlak MeSH
- krysa rodu Rattus MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
- ledviny MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- renin * genetika MeSH
- sexuální faktory MeSH
- volné radikály MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cholesterol MeSH
- glutathion MeSH
- látky reagující s kyselinou thiobarbiturovou MeSH
- renin * MeSH
- volné radikály MeSH
Sex-related cardiovascular differences were observed in humans as well as in experimental animals. Our previous study demonstrated a marked sexual dimorphism in blood pressure (BP) of 9-month-old heterozygous transgenic Ren 2 rats (TGR), in which mouse Ren-2 renin gene was inserted into the genome of normotensive Hannover Sprague-Dawley rats (HanSD). We found significantly elevated BP only in male TGR, whereas BP of TGR females was similar to that of HanSD females. The aim of our present study was to compare BP of 3- and 6-month-old heterozygous TGR with age- and sex-matched HanSD under the same conditions as we measured in 9-month-old rats. We also monitored the amount of oxidative stress marker, thiobarbituric acid-reactive substances (TBARS), and a main intracellular antioxidant, reduced glutathione in the heart, kidneys and liver. We also measured plasma triglycerides and cholesterol levels. We found an increased mean arterial pressure in both female and male 3-month-old TGR (172±17 vs. 187±4 mm Hg, respectively) compared to HanSD (115±5 vs. 133±3 mm Hg, respectively) but there was a marked sexual dimorphism of 6 month-old TGR where only males were hypertensive (145±5 mm Hg) while females became normotensive (123±7 mm Hg). We did not find any relationship between BP values and concentrations of TBARS or glutathione or plasma lipid levels. Our results demonstrated that 6-month-old TGR exhibited a marked sexual BP dimorphism, which was not dependent on the abnormalities in oxidative stress or cholesterol metabolism.
Zobrazit více v PubMed
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ Res. 2016;118:1294–1312. doi: 10.1161/CIRCRESAHA.116.307509. PubMed DOI PMC
Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ. 2012;14:7. doi: 10.1186/2042-6410-3-7. PubMed DOI PMC
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal models of hypertension: A scientific statement from the American Heart Association. Hypertension. 2019;73:e87–e120. doi: 10.1161/HYP.0000000000000090. PubMed DOI PMC
Elmarakby AA, Sullivan JC. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR) Clin Sci (Lond) 2021;135:1791–1804. doi: 10.1042/CS20201017. PubMed DOI PMC
Ouchi Y, Share L, Crofton JT, Iitake K, Brooks DP. Sex difference in the development of deoxycorticosterone-salt hypertension in the rat. Hypertension. 1987;9:172–177. doi: 10.1161/01.HYP.9.2.172. PubMed DOI
Dahl LK, Knudsen KD, Ohanian EV, Muirhead M, Tuthill R. Role of the gonads in hypertension-prone rats. J Exp Med. 1975;142:748–759. doi: 10.1084/jem.142.3.748. PubMed DOI PMC
Sáinz J, Osuna A, Wangensteen R, de Dios Luna J, Rodríguez-Gómez I, Duarte J, Moreno JM, Vargas F. Role of sex, gonadectomy and sex hormones in the development of nitric oxide inhibition-induced hypertension. Exp Physiol. 2004;89:155–162. doi: 10.1113/expphysiol.2003.002652. PubMed DOI
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI
Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919–929. doi: 10.1152/ajpendo.1996.270.6.E919. PubMed DOI
Vernerová Z, Kujal P, Kramer HJ, Bäcker A, Červenka L, Vanèčková I. End-organ damage in hypertensive transgenic Ren-2 rats: influence of early and late endothelin receptor blockade. Physiol Res. 2009;58(Suppl 2):S69–S78. doi: 10.33549/physiolres.931640. PubMed DOI
Rauchová H, Hojná S, Kadlecová M, Vanèčková I, Zicha J. Sex differences in blood pressure of Ren-2 transgenic rats. Physiol Res. 2020;69:245–252. doi: 10.33549/physiolres.934369. PubMed DOI PMC
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Springate JE, Feld LG, Ganten D. Renal function in hypertensive rats transgenic for mouse renin gene. Am J Physiol. 1994;266:F731–737. doi: 10.1152/ajprenal.1994.266.5.F731. PubMed DOI
Cargnelli G, Rossi GP, Pessina AC, Luciani S, Debetto P, Ganten D, Peters J, Bova S. Changes of blood pressure and aortic strip contractile responses to ET-1 of heterozygous female transgenic rats, TGR(mRen2)27. Pharmacol Res. 1998;37:207–211. doi: 10.1006/phrs.1998.0287. PubMed DOI
Lee MA, Böhm M, Paul M, Bader M, Ganten U, Ganten D. Physiological characterization of the hypertensive transgenic rat TGR(mREN2)27. Am J Physiol. 1996;270:E919–929. doi: 10.1152/ajpendo.1996.270.6.E919. PubMed DOI
Vanèčková I, Husková Z, Vaňourková Z, Cervenka L. Castration has antihypertensive and organoprotective effects in male but not in female heterozygous Ren-2 rats. Kidney Blood Press Res. 2011;34:46–52. doi: 10.1159/000322618. PubMed DOI
Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70:660–667. doi: 10.1161/HYPERTENSIONAHA.117.07802. PubMed DOI
Reckelhoff JF, Romero DG, Yanes Cardozo LL. Sex, oxidative stress, and hypertension: Insights from animal models. Physiology (Bethesda) 2019;34:178–188. doi: 10.1152/physiol.00035.2018. PubMed DOI PMC
Kopkan L, Husková Z, Vaňourková Z, Thumová M, Škaroupková P, Malý J, Kramer HJ, Dvořák P, Červenka L. Reduction of oxidative stress does not attenuate the development of angiotensin II-dependent hypertension in Ren-2 transgenic rats. Vascul Pharmacol. 2009;51:175–181. doi: 10.1016/j.vph.2009.06.001. PubMed DOI
Liu F, Wei CC, Wu SJ, Chenier I, Zhang SL, Filep JG, Ingelfinger JR, Chan JS. Apocynin attenuates tubular apoptosis and tubulointerstitial fibrosis in transgenic mice independent of hypertension. Kidney Int. 2009;75:156–166. doi: 10.1038/ki.2008.509. PubMed DOI
Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens. 2004;22:535–542. doi: 10.1097/00004872-200403000-00016. PubMed DOI
Hu L, Zhang Y, Lim PS, Miao Y, Tan C, McKenzie KU, Schyvens CG, Whitworth JA. Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat. Am J Hypertens. 2006;19:413–418. doi: 10.1016/j.amjhyper.2005.09.023. PubMed DOI
Unger BS, Patil BM. Apocynin improves endothelial function and prevents the development of hypertension in fructose fed rat. Indian J Pharmacol. 2009;41:208–212. doi: 10.4103/0253-7613.58508. PubMed DOI PMC
Tain YL, Hsu CN, Huang LT, Lau YT. Apocynin attenuates oxidative stress and hypertension in young spontaneously hypertensive rats independent of ADMA/NO pathway. Free Radic Res. 2012;46:68–76. doi: 10.3109/10715762.2011.639069. PubMed DOI
Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi: 10.3389/fphar.2014.00196. PubMed DOI PMC
Gould RL, Pazdro R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients. 2019;11:1056. doi: 10.3390/nu11051056. PubMed DOI PMC
Vokurková M, Rauchová H, Řezáčová L, Vanèčková I, Zicha J. NADPH oxidase activity and reactive oxygen species production in brain and kidney of adult male hypertensive Ren-2 transgenic rats. Physiol Res. 2015;64:849–856. doi: 10.33549/physiolres.933254. PubMed DOI
Vettor R, Cusin I, Ganten D, Rohner-Jeanrenaud F, Ferrannini E, Jeanrenaud B. Insulin resistance and hypertension: studies in transgenic hypertensive TGR(mREN-2)27 rats. Am J Physiol. 1994;267:R1503–R1509. doi: 10.1152/ajpregu.1994.267.6.R1503. PubMed DOI
Lee CE, Kang JS, Kim KI. Effects of gender, gonadectomy and sex hormones on growth and plasma cholesterol level in rats. Ann Nutr Metab. 2008;53:1–5. doi: 10.1159/000152867. PubMed DOI
Borbélyová V, Domonkos E, Bábíčková J, Tóthová L, Kačmárová M, Uličná O, Ostatníková D, Hodosy J, Celec P. Does long-term androgen deficiency lead to metabolic syndrome in middle-aged rats? Exp Gerontol. 2017;98:38–46. doi: 10.1016/j.exger.2017.08.016. PubMed DOI
He Q, Su G, Liu K, Zhang F, Jiang Y, Gao J, Liu L, Jiang Z, Jin M, Xie H. Sex-specific reference intervals of hematologic and biochemical analytes in Sprague-Dawley rats using the nonparametric rank percentile method. PLoS One. 2017;12:e0189837. doi: 10.1371/journal.pone.0189837. PubMed DOI PMC
Hypertension after the Menopause: What Can We Learn from Experimental Studies?