Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
210664/Z/18/Z
Wellcome Trust - United Kingdom
PubMed
37169746
PubMed Central
PMC10174618
DOI
10.1038/s41467-023-38478-6
PII: 10.1038/s41467-023-38478-6
Knihovny.cz E-zdroje
- MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- kůže * metabolismus účinky záření MeSH
- ligandy MeSH
- myši MeSH
- promotorové oblasti (genetika) MeSH
- receptory aromatických uhlovodíků - jaderný translokátor * genetika metabolismus MeSH
- receptory aromatických uhlovodíků * genetika metabolismus MeSH
- ultrafialové záření škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochrom P-450 CYP1A1 MeSH
- ligandy MeSH
- receptory aromatických uhlovodíků - jaderný translokátor * MeSH
- receptory aromatických uhlovodíků * MeSH
The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.
Department of Biochemistry Faculty of Science Palacký University Olomouc Czech Republic
Department of Cell Biology and Genetics Faculty of Science Palacký University Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Palacký University Olomouc Czech Republic
Department of Microbiology and Immunology Drexel University College of Medicine Philadelphia PA USA
Department of Organic Chemistry Faculty of Science Palacký University Olomouc Czech Republic
IUF Leibniz Research Institute for Environmental Medicine Düsseldorf Germany
Zobrazit více v PubMed
Stejskalova L, Dvorak Z, Pavek P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr. Drug. Metab. 2011;12:198–212. doi: 10.2174/138920011795016818. PubMed DOI
Angelos MG, Kaufman DS. Advances in the role of the aryl hydrocarbon receptor to regulate early hematopoietic development. Curr. Opin. Hematol. 2018;25:273–278. doi: 10.1097/MOH.0000000000000432. PubMed DOI
Bock KW. From TCDD-mediated toxicity to searches of physiologic AHR functions. Biochem. Pharmacol. 2018;155:419–424. doi: 10.1016/j.bcp.2018.07.032. PubMed DOI
Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012. PubMed DOI PMC
Dvorak Z, et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem. Pharmacol. 2008;75:580–588. doi: 10.1016/j.bcp.2007.09.013. PubMed DOI
Lu YF, et al. Identification of 3′-methoxy-4′-nitroflavone as a pure aryl hydrocarbon (Ah) receptor antagonist and evidence for more than one form of the nuclear Ah receptor in MCF-7 human breast cancer cells. Arch. Biochem. Biophys. 1995;316:470–477. doi: 10.1006/abbi.1995.1062. PubMed DOI
Zhou J, Gasiewicz TA. 3′-methoxy-4′-nitroflavone, a reported aryl hydrocarbon receptor antagonist, enhances Cyp1a1 transcription by a dioxin responsive element-dependent mechanism. Arch. Biochem. Biophys. 2003;416:68–80. doi: 10.1016/S0003-9861(03)00274-1. PubMed DOI
Kim SH, et al. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol. Pharmacol. 2006;69:1871–1878. doi: 10.1124/mol.105.021832. PubMed DOI
Choi EY, et al. Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor. Mol. Pharmacol. 2012;81:3–11. doi: 10.1124/mol.111.073643. PubMed DOI PMC
Zhao B, et al. CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicol. Sci. 2010;117:393–403. doi: 10.1093/toxsci/kfq217. PubMed DOI PMC
Smith KJ, et al. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism. J. Pharmacol. Exp. Ther. 2011;338:318–327. doi: 10.1124/jpet.110.178392. PubMed DOI PMC
Fang ZZ, et al. In vivo effects of the pure aryl hydrocarbon receptor antagonist GNF-351 after oral administration are limited to the gastrointestinal tract. Br. J. Pharmacol. 2014;171:1735–1746. doi: 10.1111/bph.12576. PubMed DOI PMC
Bianchi-Smiraglia A, et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J. Clin. Invest. 2018;128:4682–4696. doi: 10.1172/JCI70712. PubMed DOI PMC
Corre S, et al. Sustained activation of the aryl hydrocarbon receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nat. Commun. 2018;9:4775. doi: 10.1038/s41467-018-06951-2. PubMed DOI PMC
Hawerkamp HC, et al. Vemurafenib acts as an aryl hydrocarbon receptor antagonist: implications for inflammatory cutaneous adverse events. Allergy. 2019;74:2437–2448. doi: 10.1111/all.13972. PubMed DOI PMC
Paris, A. et al. AhR and cancer: from gene profiling to targeted therapy. Int. J. Mol. Sci.22, 10.3390/ijms22020752 (2021). PubMed PMC
Giovannoni F, et al. AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nat. Neurosci. 2020;23:939–951. doi: 10.1038/s41593-020-0664-0. PubMed DOI PMC
Giovannoni F, et al. AHR signaling is induced by infection with coronaviruses. Nat. Commun. 2021;12:5148. doi: 10.1038/s41467-021-25412-x. PubMed DOI PMC
Bartonkova I, Dvorak Z. Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR. Food Chem. Toxicol. 2018;111:374–384. doi: 10.1016/j.fct.2017.11.049. PubMed DOI
Jager W, et al. Percutaneous absorption of the montoterperne carvone: implication of stereoselective metabolism on blood levels. J. Pharm. Pharmacol. 2001;53:637–642. doi: 10.1211/0022357011775965. PubMed DOI
Novotna A, Pavek P, Dvorak Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: construction and characterization. Environ. Sci. Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI
Chen HSV, et al. Open-channel block of N-methyl-D-aspartate (Nmda) responses by memantine - therapeutic advantage against nmda receptor-mediated neurotoxicity. J. Neurosci. 1992;12:4427–4436. doi: 10.1523/JNEUROSCI.12-11-04427.1992. PubMed DOI PMC
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: from adverse health effects to chemoprevention and therapeutic options. Pharmacol. Ther. 2018;187:71–87. doi: 10.1016/j.pharmthera.2018.02.012. PubMed DOI
Seok SH, et al. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc. Natl Acad. Sci. USA. 2017;114:5431–5436. doi: 10.1073/pnas.1617035114. PubMed DOI PMC
Guo Z, et al. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002;74:1637–1641. doi: 10.1021/ac010979m. PubMed DOI
Long WP, et al. Protein kinase C activity is required for aryl hydrocarbon receptor pathway-mediated signal transduction. Mol. Pharmacol. 1998;53:691–700. doi: 10.1124/mol.53.4.691. PubMed DOI
Fabian MA, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 2005;23:329–336. doi: 10.1038/nbt1068. PubMed DOI
Smith KJ, et al. Editor’s highlight: Ah receptor activation potentiates neutrophil chemoattractant (C-X-C Motif) ligand 5 expression in keratinocytes and skin. Toxicol. Sci. 2017;160:83–94. doi: 10.1093/toxsci/kfx160. PubMed DOI PMC
Dawes JM, et al. CXCL5 mediates UVB irradiation-induced pain. Sci. Transl. Med. 2011;3:90ra60. doi: 10.1126/scitranslmed.3002193. PubMed DOI PMC
Yuan J, Adamski R, Chen J. Focus on histone variant H2AX: to be or not to be. FEBS Lett. 2010;584:3717–3724. doi: 10.1016/j.febslet.2010.05.021. PubMed DOI PMC
Sheehan JM, Young AR. The sunburn cell revisited: an update on mechanistic aspects. Photochem. Photobiol. Sci. 2002;1:365–377. doi: 10.1039/b108291d. PubMed DOI
Chen J, et al. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci. Adv. 2020;6:eaay8230. doi: 10.1126/sciadv.aay8230. PubMed DOI PMC
Backlund M, Ingelman-Sundberg M. Regulation of aryl hydrocarbon receptor signal transduction by protein tyrosine kinases. Cell Signal. 2005;17:39–48. doi: 10.1016/j.cellsig.2004.05.010. PubMed DOI
Oesch-Bartlomowicz B, et al. Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways. Proc. Natl Acad. Sci. USA. 2005;102:9218–9223. doi: 10.1073/pnas.0503488102. PubMed DOI PMC
Giani Tagliabue S, et al. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci. Rep. 2019;9:10693. doi: 10.1038/s41598-019-47138-z. PubMed DOI PMC
Scheuermann TH, et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 2013;9:271–276. doi: 10.1038/nchembio.1185. PubMed DOI PMC
Vogeley C, et al. The aryl hydrocarbon receptor in the pathogenesis of environmentally-induced squamous cell carcinomas of the skin. Front Oncol. 2022;12:841721. doi: 10.3389/fonc.2022.841721. PubMed DOI PMC
Tigges J, et al. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5,6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J. Invest. Dermatol. 2014;134:556–559. doi: 10.1038/jid.2013.362. PubMed DOI PMC
Corrada D, et al. Deciphering dimerization modes of PAS domains: computational and experimental analyses of the AhR:ARNT complex reveal new insights into the mechanisms of AhR transformation. PLoS Comput. Biol. 2016;12:e1004981. doi: 10.1371/journal.pcbi.1004981. PubMed DOI PMC
Corrada D, Denison MS, Bonati L. Structural modeling of the AhR:ARNT complex in the bHLH-PASA-PASB region elucidates the key determinants of dimerization. Mol. Biosyst. 2017;13:981–990. doi: 10.1039/C7MB00005G. PubMed DOI PMC
Wu D, et al. Structure and dimerization properties of the aryl hydrocarbon receptor PAS-A domain. Mol. Cell Biol. 2013;33:4346–4356. doi: 10.1128/MCB.00698-13. PubMed DOI PMC
Sanchez-Linares I, et al. High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics. 2012;13:S13. doi: 10.1186/1471-2105-13-S14-S13. PubMed DOI PMC
Mascher H, Kikuta C, Schiel H. Pharmacokinetics of menthol and carvone after administration of an enteric coated formulation containing peppermint oil and caraway oil. Arzneimittelforschung. 2001;51:465–469. PubMed
Bartonkova I, Dvorak Z. Essential oils of culinary herbs and spices activate PXR and induce CYP3A4 in human intestinal and hepatic in vitro models. Toxicol Lett. 2018;296:1–9. doi: 10.1016/j.toxlet.2018.07.023. PubMed DOI
Maier L, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628. doi: 10.1038/nature25979. PubMed DOI PMC
Denison, M. S. et al. Analysis of the aryl hydrocarbon receptor (AhR) signal transduction pathway. Curr. Protoc. Toxicol.10.1002/0471140856.tx0408s11 (2002). PubMed
Stepankova M, et al. Methylindoles and methoxyindoles are agonists and antagonists of human aryl hydrocarbon receptor. Mol. Pharmacol. 2018;93:631–644. doi: 10.1124/mol.118.112151. PubMed DOI PMC
Gruszczyk J, et al. Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. Nat. Commun. 2022;13:7010. doi: 10.1038/s41467-022-34773-w. PubMed DOI PMC
Schulte KW, et al. Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure. 2017;25:1025–1033.e3. doi: 10.1016/j.str.2017.05.008. PubMed DOI
Wu, D. et al. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors. Elife, 510.7554/eLife.18790 (2016). PubMed PMC
Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995;245:43–53. doi: 10.1016/S0022-2836(95)80037-9. PubMed DOI
Puyskens A, et al. Aryl hydrocarbon receptor modulation by tuberculosis drugs impairs host defense and treatment outcomes. Cell Host Microbe. 2020;27:238–248.e7. doi: 10.1016/j.chom.2019.12.005. PubMed DOI
Shevchenko A, et al. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006;1:2856–2860. doi: 10.1038/nprot.2006.468. PubMed DOI
Petrovska B, et al. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 2014;143:78–86. doi: 10.1159/000365311. PubMed DOI
Xu B, et al. Total Synthesis of (-)-Daphenylline. Angew. Chem. Int. Ed. Engl. 2019;58:5754–5757. doi: 10.1002/anie.201902268. PubMed DOI
Percie du Sert N, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020;4:e100115. PubMed PMC
Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI
Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR)