Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice

. 2023 May 11 ; 14 (1) : 2728. [epub] 20230511

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37169746

Grantová podpora
210664/Z/18/Z Wellcome Trust - United Kingdom

Odkazy

PubMed 37169746
PubMed Central PMC10174618
DOI 10.1038/s41467-023-38478-6
PII: 10.1038/s41467-023-38478-6
Knihovny.cz E-zdroje

The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.

Zobrazit více v PubMed

Stejskalova L, Dvorak Z, Pavek P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr. Drug. Metab. 2011;12:198–212. doi: 10.2174/138920011795016818. PubMed DOI

Angelos MG, Kaufman DS. Advances in the role of the aryl hydrocarbon receptor to regulate early hematopoietic development. Curr. Opin. Hematol. 2018;25:273–278. doi: 10.1097/MOH.0000000000000432. PubMed DOI

Bock KW. From TCDD-mediated toxicity to searches of physiologic AHR functions. Biochem. Pharmacol. 2018;155:419–424. doi: 10.1016/j.bcp.2018.07.032. PubMed DOI

Gutierrez-Vazquez C, Quintana FJ. Regulation of the immune response by the aryl hydrocarbon receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012. PubMed DOI PMC

Dvorak Z, et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem. Pharmacol. 2008;75:580–588. doi: 10.1016/j.bcp.2007.09.013. PubMed DOI

Lu YF, et al. Identification of 3′-methoxy-4′-nitroflavone as a pure aryl hydrocarbon (Ah) receptor antagonist and evidence for more than one form of the nuclear Ah receptor in MCF-7 human breast cancer cells. Arch. Biochem. Biophys. 1995;316:470–477. doi: 10.1006/abbi.1995.1062. PubMed DOI

Zhou J, Gasiewicz TA. 3′-methoxy-4′-nitroflavone, a reported aryl hydrocarbon receptor antagonist, enhances Cyp1a1 transcription by a dioxin responsive element-dependent mechanism. Arch. Biochem. Biophys. 2003;416:68–80. doi: 10.1016/S0003-9861(03)00274-1. PubMed DOI

Kim SH, et al. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2,3,7,8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol. Pharmacol. 2006;69:1871–1878. doi: 10.1124/mol.105.021832. PubMed DOI

Choi EY, et al. Development of novel CH223191-based antagonists of the aryl hydrocarbon receptor. Mol. Pharmacol. 2012;81:3–11. doi: 10.1124/mol.111.073643. PubMed DOI PMC

Zhao B, et al. CH223191 is a ligand-selective antagonist of the Ah (Dioxin) receptor. Toxicol. Sci. 2010;117:393–403. doi: 10.1093/toxsci/kfq217. PubMed DOI PMC

Smith KJ, et al. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism. J. Pharmacol. Exp. Ther. 2011;338:318–327. doi: 10.1124/jpet.110.178392. PubMed DOI PMC

Fang ZZ, et al. In vivo effects of the pure aryl hydrocarbon receptor antagonist GNF-351 after oral administration are limited to the gastrointestinal tract. Br. J. Pharmacol. 2014;171:1735–1746. doi: 10.1111/bph.12576. PubMed DOI PMC

Bianchi-Smiraglia A, et al. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J. Clin. Invest. 2018;128:4682–4696. doi: 10.1172/JCI70712. PubMed DOI PMC

Corre S, et al. Sustained activation of the aryl hydrocarbon receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma. Nat. Commun. 2018;9:4775. doi: 10.1038/s41467-018-06951-2. PubMed DOI PMC

Hawerkamp HC, et al. Vemurafenib acts as an aryl hydrocarbon receptor antagonist: implications for inflammatory cutaneous adverse events. Allergy. 2019;74:2437–2448. doi: 10.1111/all.13972. PubMed DOI PMC

Paris, A. et al. AhR and cancer: from gene profiling to targeted therapy. Int. J. Mol. Sci.22, 10.3390/ijms22020752 (2021). PubMed PMC

Giovannoni F, et al. AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nat. Neurosci. 2020;23:939–951. doi: 10.1038/s41593-020-0664-0. PubMed DOI PMC

Giovannoni F, et al. AHR signaling is induced by infection with coronaviruses. Nat. Commun. 2021;12:5148. doi: 10.1038/s41467-021-25412-x. PubMed DOI PMC

Bartonkova I, Dvorak Z. Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR. Food Chem. Toxicol. 2018;111:374–384. doi: 10.1016/j.fct.2017.11.049. PubMed DOI

Jager W, et al. Percutaneous absorption of the montoterperne carvone: implication of stereoselective metabolism on blood levels. J. Pharm. Pharmacol. 2001;53:637–642. doi: 10.1211/0022357011775965. PubMed DOI

Novotna A, Pavek P, Dvorak Z. Novel stably transfected gene reporter human hepatoma cell line for assessment of aryl hydrocarbon receptor transcriptional activity: construction and characterization. Environ. Sci. Technol. 2011;45:10133–10139. doi: 10.1021/es2029334. PubMed DOI

Chen HSV, et al. Open-channel block of N-methyl-D-aspartate (Nmda) responses by memantine - therapeutic advantage against nmda receptor-mediated neurotoxicity. J. Neurosci. 1992;12:4427–4436. doi: 10.1523/JNEUROSCI.12-11-04427.1992. PubMed DOI PMC

Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: from adverse health effects to chemoprevention and therapeutic options. Pharmacol. Ther. 2018;187:71–87. doi: 10.1016/j.pharmthera.2018.02.012. PubMed DOI

Seok SH, et al. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex. Proc. Natl Acad. Sci. USA. 2017;114:5431–5436. doi: 10.1073/pnas.1617035114. PubMed DOI PMC

Guo Z, et al. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002;74:1637–1641. doi: 10.1021/ac010979m. PubMed DOI

Long WP, et al. Protein kinase C activity is required for aryl hydrocarbon receptor pathway-mediated signal transduction. Mol. Pharmacol. 1998;53:691–700. doi: 10.1124/mol.53.4.691. PubMed DOI

Fabian MA, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 2005;23:329–336. doi: 10.1038/nbt1068. PubMed DOI

Smith KJ, et al. Editor’s highlight: Ah receptor activation potentiates neutrophil chemoattractant (C-X-C Motif) ligand 5 expression in keratinocytes and skin. Toxicol. Sci. 2017;160:83–94. doi: 10.1093/toxsci/kfx160. PubMed DOI PMC

Dawes JM, et al. CXCL5 mediates UVB irradiation-induced pain. Sci. Transl. Med. 2011;3:90ra60. doi: 10.1126/scitranslmed.3002193. PubMed DOI PMC

Yuan J, Adamski R, Chen J. Focus on histone variant H2AX: to be or not to be. FEBS Lett. 2010;584:3717–3724. doi: 10.1016/j.febslet.2010.05.021. PubMed DOI PMC

Sheehan JM, Young AR. The sunburn cell revisited: an update on mechanistic aspects. Photochem. Photobiol. Sci. 2002;1:365–377. doi: 10.1039/b108291d. PubMed DOI

Chen J, et al. Modulation of lymphocyte-mediated tissue repair by rational design of heterocyclic aryl hydrocarbon receptor agonists. Sci. Adv. 2020;6:eaay8230. doi: 10.1126/sciadv.aay8230. PubMed DOI PMC

Backlund M, Ingelman-Sundberg M. Regulation of aryl hydrocarbon receptor signal transduction by protein tyrosine kinases. Cell Signal. 2005;17:39–48. doi: 10.1016/j.cellsig.2004.05.010. PubMed DOI

Oesch-Bartlomowicz B, et al. Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways. Proc. Natl Acad. Sci. USA. 2005;102:9218–9223. doi: 10.1073/pnas.0503488102. PubMed DOI PMC

Giani Tagliabue S, et al. Modeling the binding of diverse ligands within the Ah receptor ligand binding domain. Sci. Rep. 2019;9:10693. doi: 10.1038/s41598-019-47138-z. PubMed DOI PMC

Scheuermann TH, et al. Allosteric inhibition of hypoxia inducible factor-2 with small molecules. Nat. Chem. Biol. 2013;9:271–276. doi: 10.1038/nchembio.1185. PubMed DOI PMC

Vogeley C, et al. The aryl hydrocarbon receptor in the pathogenesis of environmentally-induced squamous cell carcinomas of the skin. Front Oncol. 2022;12:841721. doi: 10.3389/fonc.2022.841721. PubMed DOI PMC

Tigges J, et al. The new aryl hydrocarbon receptor antagonist E/Z-2-benzylindene-5,6-dimethoxy-3,3-dimethylindan-1-one protects against UVB-induced signal transduction. J. Invest. Dermatol. 2014;134:556–559. doi: 10.1038/jid.2013.362. PubMed DOI PMC

Corrada D, et al. Deciphering dimerization modes of PAS domains: computational and experimental analyses of the AhR:ARNT complex reveal new insights into the mechanisms of AhR transformation. PLoS Comput. Biol. 2016;12:e1004981. doi: 10.1371/journal.pcbi.1004981. PubMed DOI PMC

Corrada D, Denison MS, Bonati L. Structural modeling of the AhR:ARNT complex in the bHLH-PASA-PASB region elucidates the key determinants of dimerization. Mol. Biosyst. 2017;13:981–990. doi: 10.1039/C7MB00005G. PubMed DOI PMC

Wu D, et al. Structure and dimerization properties of the aryl hydrocarbon receptor PAS-A domain. Mol. Cell Biol. 2013;33:4346–4356. doi: 10.1128/MCB.00698-13. PubMed DOI PMC

Sanchez-Linares I, et al. High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics. 2012;13:S13. doi: 10.1186/1471-2105-13-S14-S13. PubMed DOI PMC

Mascher H, Kikuta C, Schiel H. Pharmacokinetics of menthol and carvone after administration of an enteric coated formulation containing peppermint oil and caraway oil. Arzneimittelforschung. 2001;51:465–469. PubMed

Bartonkova I, Dvorak Z. Essential oils of culinary herbs and spices activate PXR and induce CYP3A4 in human intestinal and hepatic in vitro models. Toxicol Lett. 2018;296:1–9. doi: 10.1016/j.toxlet.2018.07.023. PubMed DOI

Maier L, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–628. doi: 10.1038/nature25979. PubMed DOI PMC

Denison, M. S. et al. Analysis of the aryl hydrocarbon receptor (AhR) signal transduction pathway. Curr. Protoc. Toxicol.10.1002/0471140856.tx0408s11 (2002). PubMed

Stepankova M, et al. Methylindoles and methoxyindoles are agonists and antagonists of human aryl hydrocarbon receptor. Mol. Pharmacol. 2018;93:631–644. doi: 10.1124/mol.118.112151. PubMed DOI PMC

Gruszczyk J, et al. Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex. Nat. Commun. 2022;13:7010. doi: 10.1038/s41467-022-34773-w. PubMed DOI PMC

Schulte KW, et al. Structural basis for aryl hydrocarbon receptor-mediated gene activation. Structure. 2017;25:1025–1033.e3. doi: 10.1016/j.str.2017.05.008. PubMed DOI

Wu, D. et al. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors. Elife, 510.7554/eLife.18790 (2016). PubMed PMC

Jones G, Willett P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 1995;245:43–53. doi: 10.1016/S0022-2836(95)80037-9. PubMed DOI

Puyskens A, et al. Aryl hydrocarbon receptor modulation by tuberculosis drugs impairs host defense and treatment outcomes. Cell Host Microbe. 2020;27:238–248.e7. doi: 10.1016/j.chom.2019.12.005. PubMed DOI

Shevchenko A, et al. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006;1:2856–2860. doi: 10.1038/nprot.2006.468. PubMed DOI

Petrovska B, et al. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 2014;143:78–86. doi: 10.1159/000365311. PubMed DOI

Xu B, et al. Total Synthesis of (-)-Daphenylline. Angew. Chem. Int. Ed. Engl. 2019;58:5754–5757. doi: 10.1002/anie.201902268. PubMed DOI

Percie du Sert N, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. BMJ Open Sci. 2020;4:e100115. PubMed PMC

Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR)

. 2023 Oct 27 ; 24 (21) : . [epub] 20231027

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace