Exosome/Liposome-like Nanoparticles: New Carriers for CRISPR Genome Editing in Plants
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
UHK project VT2019-2021
Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
PubMed
34299081
PubMed Central
PMC8304373
DOI
10.3390/ijms22147456
PII: ijms22147456
Knihovny.cz E-resources
- Keywords
- CRISPR, exosomes and liposomes, genome editing, nanoparticles,
- MeSH
- CRISPR-Cas Systems * MeSH
- Gene Editing * MeSH
- Exosomes chemistry MeSH
- Genetic Therapy * MeSH
- Genome, Plant MeSH
- Liposomes chemistry MeSH
- Nanoparticles chemistry MeSH
- Plants genetics MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Liposomes MeSH
Rapid developments in the field of plant genome editing using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) systems necessitate more detailed consideration of the delivery of the CRISPR system into plants. Successful and safe editing of plant genomes is partly based on efficient delivery of the CRISPR system. Along with the use of plasmids and viral vectors as cargo material for genome editing, non-viral vectors have also been considered for delivery purposes. These non-viral vectors can be made of a variety of materials, including inorganic nanoparticles, carbon nanotubes, liposomes, and protein- and peptide-based nanoparticles, as well as nanoscale polymeric materials. They have a decreased immune response, an advantage over viral vectors, and offer additional flexibility in their design, allowing them to be functionalized and targeted to specific sites in a biological system with low cytotoxicity. This review is dedicated to describing the delivery methods of CRISPR system into plants with emphasis on the use of non-viral vectors.
Agricultural Research Center Plant Pathology Research Institute 9 Gamaa St Giza 12619 Egypt
Biology Department Science and Humanities College Shaqra University Alquwayiyah 19245 Saudi Arabia
Biotechnology English Program Faculty of Agriculture Cairo University Giza 12613 Egypt
Department of Biochemistry University of Agriculture Faisalabad 38040 Pakistan
Department of Plant Breeding and Genetics University of Haripur Haripur 22620 Pakistan
Institute of Plant Breeding and Biotechnology MNS University of Agriculture Multan 60000 Pakistan
See more in PubMed
Demirer G.S., Chang R., Zhang H., Chio L., Landry M.P. Nanoparticle-Guided Biomolecule Delivery for Transgene Expression and Gene Silencing in Mature Plants. BioRxiv. 2017:179549. doi: 10.1016/j.bpj.2017.11.1209. DOI
Nidhi S., Anand U., Oleksak P., Tripathi P., Lal J.A., Thomas G., Kuca K., Tripathi V. Novel CRISPR–Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. Int. J. Mol. Sci. 2021;22:3327. doi: 10.3390/ijms22073327. PubMed DOI PMC
Rai M., Bansod S., Bawaskar M., Gade A., Dos Santos C.A., Seabra A.B., Duran N. Nanotechnologies in Food and Agriculture. Springer; Cham, Switzerland: 2015. Nanoparticles-based delivery systems in plant genetic transformation; pp. 209–239.
Rai M., Deshmukh S., Gade A., Abd-Elsalam K.A. Strategic nanoparticle-mediated gene transfer in plants and animals—A novel approach. Curr. Nanosci. 2012;8:170–179. doi: 10.2174/1573413711208010170. DOI
Chandrasekaran R., Rajiv P., Abd-Elsalam K.A. Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier; Amsterdam, The Netherlands: 2020. Carbon nanotubes: Plant gene delivery and genome editing; pp. 279–296.
Demirer G.S., Zhang H., Goh N.S., González-Grandío E., Landry M.P. Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nat. Protoc. 2019;14:2954–2971. doi: 10.1038/s41596-019-0208-9. PubMed DOI PMC
Mohamed M.A., Abd-Elsalam K.A. Magnetic Nanostructures. Springer; Cham, Switzerland: 2019. Magnetic Nanoparticles: A Unique Gene Delivery System in Plant Science; pp. 95–108.
Manna I., Bandyopadhyay M. A review on the biotechnological aspects of utilizing engineered nanoparticles as delivery systems in plants. Plant Gene. 2019;17:100167. doi: 10.1016/j.plgene.2018.100167. DOI
Ha D., Yang N., Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm. Sin. 2017;6:287–296. doi: 10.1016/j.apsb.2016.02.001. PubMed DOI PMC
Lane R.E., Korbie D., Anderson W., Vaidyanathan R., Trau M. Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 2015;5:7639. doi: 10.1038/srep07639. PubMed DOI PMC
Seow Y., Wood M.J. Biological gene delivery vehicles: Beyond viral vectors. Mol. Ther. 2009;17:767–777. doi: 10.1038/mt.2009.41. PubMed DOI PMC
Johnsen K.B., Gudbergsson J.M., Skov M.N., Pilgaard L., Moos T., Duroux M. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy. Biochim. Biophys. Acta Rev. Cancer. 2014;1846:75–87. doi: 10.1016/j.bbcan.2014.04.005. PubMed DOI
Al-Najar B.T., Bououdina M. Emerging Research on Bioinspired Materials Engineering. IGI Global; Hershey, PA, USA: 2017. Bioinspired Nanoparticles for Efficient Drug Delivery System; pp. 69–103.
Caranta C., Aranda M.A., Tepfer M., Lopez-Moya J.J. Recent Advances in Plant Virology. Caister Academic Press; Norfolk, UK: 2011.
Gleba Y., Klimyuk V., Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotech. 2007;18:134–141. doi: 10.1016/j.copbio.2007.03.002. PubMed DOI
Mohammadinejad R., Karimi S., Iravani S., Varma R.S. Plant-derived nanostructures: Types and applications. Green Chem. 2017;18:20–52. doi: 10.1039/C5GC01403D. DOI
Kim H., Kim J.S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 2014;15:321–334. doi: 10.1038/nrg3686. PubMed DOI
Yudovich D., Bäckström A., Schmiderer L., Žemaitis K., Subramaniam A., Larsson J. Combined lentiviral-and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells. Sci. Rep. 2020;10:22393. doi: 10.1038/s41598-020-79724-x. PubMed DOI PMC
Fu S., Wang Y., Xia X., Zheng J.C. Exosome engineering: Current progress in cargo loading and targeted delivery. NanoImpact. 2020;20:100261. doi: 10.1016/j.impact.2020.100261. DOI
Brunner E., Yagi R., Debrunner M., Beck-Schneider D., Burger A., Escher E., Mosimann C., Hausmann G., Basler K. CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life Sci. Alliance. 2019;2:3. doi: 10.26508/lsa.201800267. PubMed DOI PMC
La Russa M.F., Qi L.S. The new state of the art: Cas9 for gene activation and repression. Mol. Cell. Biol. 2015;35:3800–3809. doi: 10.1128/MCB.00512-15. PubMed DOI PMC
Paul B., Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomed. J. 2020;43:8–17. doi: 10.1016/j.bj.2019.10.005. PubMed DOI PMC
Yang Z., Edwards H., Xu P. CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metab. Eng. Commun. 2020;10:e00112. doi: 10.1016/j.mec.2019.e00112. PubMed DOI PMC
Burmistrz M., Krakowski K., Krawczyk-Balska A. RNA-targeting CRISPR–Cas systems and their applications. Int. J. Mol. Sci. 2020;21:1122. doi: 10.3390/ijms21031122. PubMed DOI PMC
Lee H., Park S.Y., Zhang Z.J. An overview of genetic transformation of soybean. In: Board J., editor. A Comprehensive Survey of International Soybean Research-Genetics, Physiology, Agronomy and Nitrogen Relationships. IntechOpen; London, UK: 2013.
Liang Z., Zhang K., Chen K., Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 2014;41:63–68. doi: 10.1016/j.jgg.2013.12.001. PubMed DOI
Woo J.W., Kim J., Kwon S.I., Corvalán C., Cho S.W., Kim H., Kim S.G., Kim S.T., Choe S., Kim J.S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 2015;33:1162–1164. doi: 10.1038/nbt.3389. PubMed DOI
Kim H., Kim S.T., Ryu J., Kang B.C., Kim J.S., Kim S.G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406. doi: 10.1038/ncomms14406. PubMed DOI PMC
Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169:931–945. doi: 10.1104/pp.15.00793. PubMed DOI PMC
Andersson M., Turesson H., Olsson N., Fält A.S., Ohlsson P., Gonzalez M.N., Samuelsson M., Hofvander P. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol. Plant. 2018;164:378–384. doi: 10.1111/ppl.12731. PubMed DOI
Castel B., Tomlinson L., Locci F., Yang Y., Jones J.D. Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. PLoS ONE. 2019;14:e0204778. doi: 10.1371/journal.pone.0204778. PubMed DOI PMC
Naim F., Dugdale B., Kleidon J., Brinin A., Shand K., Waterhouse P., Dale J. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic. Res. 2018;27:451–460. doi: 10.1007/s11248-018-0083-0. PubMed DOI PMC
Zhou X., Jacobs T.B., Xue L.J., Harding S.A., Tsai C.J. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol. 2015;208:298–301. doi: 10.1111/nph.13470. PubMed DOI
Ibrahim A., Marbán E. Exosomes: Fundamental biology and roles in cardiovascular physiology. Annu. Rev. Physiol. 2017;78:67–83. doi: 10.1146/annurev-physiol-021115-104929. PubMed DOI PMC
Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI
Li D., Liu J., Guo B., Liang C., Dang L., Lu C., He B. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat. Commun. 2017;7:10872. doi: 10.1038/ncomms10872. PubMed DOI PMC
Liu S., Liu D., Chen C., Hamamura K., Moshaverinia A., Yang R., Liu Y., Jin Y., Shi S. MSC transplantation improves osteopenia via epigenetic regulation of notch signaling in lupus. Cell Met. 2015;22:606–618. doi: 10.1016/j.cmet.2015.08.018. PubMed DOI PMC
Van Den Boorn J.G., Schlee M., Coch C., Hartmann G. SiRNA delivery with exosome nanoparticles. Nat. Biotechnol. 2011;29:325–326. doi: 10.1038/nbt.1830. PubMed DOI
Akuma P., Okagu O.D., Udenigwe C.C. Naturally occurring exosome vesicles as potential delivery vehicle for bioactive compounds. Front. Sustain. Food Syst. 2019;3:23. doi: 10.3389/fsufs.2019.00023. DOI
Dad H.A., Gu T.W., Zhu A.Q., Huang L.Q., Peng L.H. Plant exosome like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms. Mol. Ther. 2020;29:13–31. doi: 10.1016/j.ymthe.2020.11.030. PubMed DOI PMC
Cai Q., Qiao L., Wang M., He B., Lin F.M., Palmquist J., Huang S.D., Jin H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science. 2018;360:1126–1129. doi: 10.1126/science.aar4142. PubMed DOI PMC
Rani M., Tyagi K., Jha G. Advancements in Plant Disease Control Strategies. Adv. Crop. Imp. Tech. 2020:141–157. doi: 10.1016/B978-0-12-818581-0.00010-3. DOI
Huotari J., Helenius A. Endosome maturation. EMBO J. 2011;30:3481–3500. doi: 10.1038/emboj.2011.286. PubMed DOI PMC
Kwon S., Tisserant C., Tulinski M., Weiberg A., Feldbrügge M. Inside-out: From endosomes to extracellular vesicles in fungal RNA transport. Fungal. Biol. Rev. 2020;34:89–99. doi: 10.1016/j.fbr.2020.01.001. DOI
An Q., Van Bel A.J., Hückelhoven R. Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal. Behav. 2007;2:4–7. doi: 10.4161/psb.2.1.3596. PubMed DOI PMC
Snetselaar K.M., Mims C.W. Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 1994;98:347–355. doi: 10.1016/S0953-7562(09)80463-2. DOI
An Q., Hückelhoven R., Kogel K.H., Van Bel A.J. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell. Microbiol. 2006;8:1009–1019. doi: 10.1111/j.1462-5822.2006.00683.x. PubMed DOI
Bohlenius H., Morch S.M., Godfrey D., Nielsen M.E., Thordal-Christensen H. The multivesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent preinvasive basal defense in barley. Plant Cell. 2010;22:3831–3844. doi: 10.1105/tpc.110.078063. PubMed DOI PMC
Meyer D., Pajonk S., Micali C., O’Connell R., Schulze-Lefert P. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J. 2009;57:986–999. doi: 10.1111/j.1365-313X.2008.03743.x. PubMed DOI
Qamar S.A., Asgher M., Khalid N., Sadaf M. Nanobiotechnology in health sciences: Current applications and future perspectives. Biocatal. Agric. Biotechnol. 2019;22:101388. doi: 10.1016/j.bcab.2019.101388. DOI
Wiesman Z., Dom N.B., Sharvit E., Grinberg S., Linder C., Heldman E., Zaccai M. Novel cationic vesicle platform derived from vernonia oil for efficient delivery of DNA through plant cuticle membranes. J. Biotechnol. 2007;130:85–94. doi: 10.1016/j.jbiotec.2007.01.040. PubMed DOI
Gad A.E., Rosenberg N., Altman A. Liposome-mediated gene delivery into plant cells. Physiol. Plant. 1990;79:177–183. doi: 10.1111/j.1399-3054.1990.tb05883.x. DOI
Sellamuthu R., Umbright C., Chapman R., Leonard S., Li S., Kashon M., Joseph P. Transcriptomics evaluation of hexavalent chromium toxicity in human dermal fibroblasts. J. Carcinog. Mutagen. 2011;2:116–117. doi: 10.4172/2157-2518.1000116. DOI
Qiu M., Glass Z., Chen J., Haas M., Jin X., Zhao X., Rui X., Ye Z., Li Y., Zhang F., et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl. Acad. Sci. USA. 2021;118:e2020401118. doi: 10.1073/pnas.2020401118. PubMed DOI PMC
Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. doi: 10.1186/1556-276X-8-102. PubMed DOI PMC
Taylor T.M., Weiss J., Davidson P.M., Bruce B.D. Liposomal nanocapsules in food science and agriculture. Crit. Rev. Food Sci. Nutr. 2005;45:587–605. doi: 10.1080/10408390591001135. PubMed DOI
Vamvakaki V., Chaniotakis N.A. Pesticide detection with a liposome-based nano-biosensor. Biosen. Bioelect. 2007;22:2848–2853. doi: 10.1016/j.bios.2006.11.024. PubMed DOI
Felgner P.L., Gadek T.R., Holm M., Roman R., Chan H.W., Wenz M., Danielsen M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA. 1987;84:7413–7417. doi: 10.1073/pnas.84.21.7413. PubMed DOI PMC
Eoh J., Gu L. Biomaterials as vectors for the delivery of CRISPR–Cas9. J. Biomater. Sci. 2019;7:1240–1261. doi: 10.1039/C8BM01310A. PubMed DOI
Chesnoy S., Huang L. Structure and function of lipid-DNA complexes for gene delivery. Annu. Rev. Biophys. Biomol. Struct. 2000;29:27–47. doi: 10.1146/annurev.biophys.29.1.27. PubMed DOI
Holmen S.L., Vanbrocklin M.W., Eversole R.R., Stapleton S.R., Ginsberg L.C. Efficient lipid-mediated transfection of DNA into primary rat hepatocytes. In Vitro Cell. Dev. Biol. Anim. 1995;31:347–351. doi: 10.1007/BF02634283. PubMed DOI
Hirko A., Tang F., Hughes J.A. Cationic lipid vectors for plasmid DNA delivery. Curr. Med. Chem. 2003;10:1185–1193. doi: 10.2174/0929867033457412. PubMed DOI
Liu L., Zern M.A., Lizarzaburu M.E., Nantz M.H., Wu J. Poly (cationic lipid)-mediated in vivo gene delivery to mouse liver. Genet. Ther. 2003;10:180–187. doi: 10.1038/sj.gt.3301861. PubMed DOI
Huang S.L., Kee P.H., Kim H., Moody M.R., Chrzanowski S.M., MacDonald R.C., McPherson D.D. Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. JACC. 2009;54:652–659. doi: 10.1016/j.jacc.2009.04.039. PubMed DOI PMC
Seabra A.B., Rai M., Durán N. Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: A mini review. J. Plant Biochem. Biotechnol. 2014;23:1–10. doi: 10.1007/s13562-013-0204-z. DOI
Seabra A.B., Rai M., Durán N. Nanotechnologies in Food and Agriculture. Springer; Cham, Switzerland: 2015. Emerging role of nanocarriers in delivery of nitric oxide for sustainable agriculture; pp. 183–207.
Li M., Fan Y.N., Chen Z.Y., Luo Y.L., Wang Y.C., Lian Z.X., Wang J. Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Res. 2018;11:6270–6282. doi: 10.1007/s12274-018-2150-5. DOI
Zhang L., Wang P., Feng Q., Wang N., Chen Z., Huang Y., Jiang X. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy. NPG Asia Mater. 2017;9:e441. doi: 10.1038/am.2017.185. DOI
Cheng W.J., Chen L.C., Ho H.O., Lin H.L., Sheu M.T. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy. Int. J. Nanomed. 2018;13:7079. doi: 10.2147/IJN.S181440. PubMed DOI PMC
Lee K., Conboy M., Park H.M., Jiang F., Kim H.J., Dewitt M.A., Murthy N. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 2017;1:889–901. doi: 10.1038/s41551-017-0137-2. PubMed DOI PMC
Wang M., Zuris J.A., Meng F., Rees H., Sun S., Deng P., Xu Q. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Nat. Acad. Sci. USA. 2016;113:2868–2873. doi: 10.1073/pnas.1520244113. PubMed DOI PMC
Zuckermann M., Hovestadt V., Knobbe-Thomsen C.B., Zapatka M., Northcott P.A., Schramm K., Belic J., Jones D.T., Tschida B., Moriarity B., et al. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat. Commun. 2015;6:7391. doi: 10.1038/ncomms8391. PubMed DOI PMC
Yu A.Q., Ding Y., Lu Z.Y., Hao Y.Z., Teng Z.P., Yan S.R., Li D.S., Zeng Y. TALENs-mediated homozygous CCR5Δ32 mutations endow CD4 + U87 cells with resistance against HIV-1 infection. Mol. Med. Rep. 2018;17:243–249. doi: 10.3892/mmr.2017.7889. PubMed DOI PMC
Bosnjak B., Permanyer M., Sethi M.K., Galla M., Maetzig T., Heinemann D., Kalies S. CRISPR/Cas9 Genome Editing Using Gold-Nanoparticle-Mediated Laserporation. Adv. Biosyst. 2018;2:1700184. doi: 10.1002/adbi.201700184. DOI
Alsaiari S.K., Patil S., Alyami M., Alamoudi K.O., Aleisa F.A., Merzaban J.S., Li M., Khashab N.M. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 2018;140:143–146. doi: 10.1021/jacs.7b11754. PubMed DOI
Lee B., Lee K., Panda S., Gonzales-Rojas R., Chong A., Bugay V., Lee H.Y. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat. Biomed. Eng. 2018;2:497–507. doi: 10.1038/s41551-018-0252-8. PubMed DOI PMC
Sun W., Ji W., Hall J.M., Hu Q., Wang C., Beisel C.L., Gu Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem. 2015;127:12197–12201. doi: 10.1002/ange.201506030. PubMed DOI PMC
Hryhorowicz M., Grześkowiak B., Mazurkiewicz N., Śledziński P., Lipiński D., Słomski R. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol. Biotech. 2019;61:173–180. doi: 10.1007/s12033-018-0145-9. PubMed DOI
Arguel M.J., Jaouannet M., Magliano M., Abad P., Rosso M.N. Sirnas Trigger Efficient Silencing of a Parasitism Gene in Plant Parasitic Root-Knot Nematodes. Genes. 2012;3:391–408. doi: 10.3390/genes3030391. PubMed DOI PMC
Adams S., Pathak P., Shao H., Lok J.B., Pires-daSilva A. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci. Rep. 2019;9:483. doi: 10.1038/s41598-018-37036-1. PubMed DOI PMC
Lin Y., Wu J., Gu W., Huang Y., Tong Z., Huang L., Tan J. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv. Sci. 2018;5:1700611. doi: 10.1002/advs.201700611. PubMed DOI PMC
Fernandes M., Lopes I., Teixeira J., Botelho C., Gomes A.C. Exosome-like nanoparticles: A new type of nanocarrier. Curr. Med. Chem. 2020;27:3888–3905. doi: 10.2174/0929867326666190129142604. PubMed DOI
Zhang L., Wang L., Xie Y., Wang P., Deng S., Qin A., Zhang J.J., Yu X.Y., Zheng W.F., Jiang X. Triple-Targeting Delivery of CRISPR/Cas9 To Reduce the Risk of Cardiovascular Diseases. Angew. Chem. Int. Ed. 2019;58:12404–12408. doi: 10.1002/anie.201903618. PubMed DOI
Wang L., Zheng W.F., Liu S.Q., Li B., Jiang X.Y. Delivery of CRISPR/Cas9 by novel strategies for gene therapy. Chem. BioChem. 2018;20:634–643. doi: 10.1002/cbic.201800629. PubMed DOI
Makhotenko A., Makarov V., Snigir E., Khromov A., Makarova S., Kalinina N., Taliansky M. Nanoparticle-mediated delivery of the CRISPR/Cas9 system components into plant cell for genome editing. FEBS. 2017;284:168.
Zhang S., Shen J., Li D., Cheng Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics. 2021;11:614. doi: 10.7150/thno.47007. PubMed DOI PMC
Kumar S., Nehra M., Dilbaghi N., Marrazza G., Tuteja S.K., Kim K.H. Nanovehicles for plant modifications towards pest-and disease-resistance traits. Trends Plant Sci. 2019;25:198–212. doi: 10.1016/j.tplants.2019.10.007. PubMed DOI
Jat S.K., Bhattacharya J., Sharma M.K. Nanomaterial based gene delivery: A promising method for plant genome engineering. J. Mater. Chem. 2020;8:4165–4175. doi: 10.1039/D0TB00217H. PubMed DOI
Alagoz Y., Gurkok T., Zhang B., Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep. 2017;6:30910. doi: 10.1038/srep30910. PubMed DOI PMC
Feng Z., Zhang B., Ding W., Liu X., Yang D.L., Wei P., Zhu J.K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 2013;23:1229–1232. doi: 10.1038/cr.2013.114. PubMed DOI PMC
Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013;31:686–688. doi: 10.1038/nbt.2650. PubMed DOI
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC
Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–826. doi: 10.1126/science.1232033. PubMed DOI PMC
Gaj T., Gersbach C.A., Barbas C.F., III ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC
Lino C.A., Harper J.C., Carney J.P., Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018;25:1234–1257. doi: 10.1080/10717544.2018.1474964. PubMed DOI PMC
Souto E.B., Doktorovova S., Boonme P. Lipid-based colloidal systems (nanoparticles, microemulsions) for drug delivery to the skin: Materials and end-product formulations. J. Drug. Deliv. Sci. Technol. 2011;21:43–54. doi: 10.1016/S1773-2247(11)50005-X. DOI
Chandrasekaran R., Seetharaman P.K., Danaraj J., Rajiv P., Abd-Elsalam K.A. CRISPR and RNAi Systems. Elsevier; Amsterdam, The Netherlands: 2021. Polymer and lipid-based nanoparticles to deliver RNAi and CRISPR systems; pp. 635–659.
Bondì M.L., Craparo E.F. Solid lipid nanoparticles for applications in gene therapy: A review of the state of the art. Expert Opin. Drug. Deliv. 2010;7:7–18. doi: 10.1517/17425240903362410. PubMed DOI
Hillman T. A Review: Possible Optimization of Cas9-sgRNA Nuclease Delivery Via Ingested Lipid Nanoparticles Bioencapsulated within Plant Cell-Based Enfolding. TheLAB Inc.; Los Angeles, CA, USA: 2019.
Lv Z., Jiang R., Chen J., Chen W. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J. 2020;104:880–891. doi: 10.1111/tpj.14973. PubMed DOI
Bondi’ M.L., Azzolina A., Craparo E.F., Lampiasi N., Capuano G., Giammona G., Cervello M. Novel cationic solid-lipid nanoparticles as non-viral vectors for gene delivery. J. Drug. Target. 2007;15:295–301. doi: 10.1080/10611860701324698. PubMed DOI
Vighi E., Ruozi B., Montanari M., Battini R., Leo E. Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: Characterization and ability to bind the pEGFP-plasmid. Eur. J. Pharm. Biopharm. 2007;67:320–328. doi: 10.1016/j.ejpb.2007.02.006. PubMed DOI
Xue H.Y., Wong H.L. Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials. 2011;32:2662–2672. doi: 10.1016/j.biomaterials.2010.12.029. PubMed DOI
Del Pozo-Rodríguez A., Delgado D., Solinís M.Á., Pedraz J.L., Echevarría E., Rodríguez J.M., Gascón A.R. Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration. Int. J. Pharm. 2010;385:157–162. doi: 10.1016/j.ijpharm.2009.10.020. PubMed DOI
Bunjes H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 2010;62:1637–1645. doi: 10.1111/j.2042-7158.2010.01024.x. PubMed DOI
Carboni V., Maaliki C., Alyami M., Alsaiari S., Khashab N. Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery. Adv. Ther. 2019;2:1800085. doi: 10.1002/adtp.201800085. DOI
Kotterman M.A., Chalberg T.W., Schaffer D.V. Viral vectors for gene therapy: Translational and clinical outlook. Annu. Rev. Biomed. Eng. 2015;17:63–89. doi: 10.1146/annurev-bioeng-071813-104938. PubMed DOI
Rui Y., Wilson D.R., Green J.J. Non-viral delivery to enable genome editing. Trends. Biotech. 2019;37:281–293. doi: 10.1016/j.tibtech.2018.08.010. PubMed DOI PMC
Wang J.W., Grandio E.G., Newkirk G.M., Demirer G.S., Butrus S., Giraldo J.P., Landry M.P. Nanoparticle-mediated genetic engineering of plants. Mol. Plant. 2019;12:1037–1040. doi: 10.1016/j.molp.2019.06.010. PubMed DOI PMC
Xu X., Wan T., Xin H., Li D., Pan H., Wu J., Ping Y. Delivery of CRISPR/Cas9 for therapeutic genome editing. J. Gene. Med. 2019;21:e3107. doi: 10.1002/jgm.3107. PubMed DOI
Sakuma T., Nishikawa A., Kume S. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci. Rep. 2014;4:5400. doi: 10.1038/srep05400. PubMed DOI PMC
Yin H., Song C.Q., Dorkin J.R., Zhu L.J., Li Y., Wu Q., Park A., Yang J., Suresh S., Bizhanova A., et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016;34:328–333. doi: 10.1038/nbt.3471. PubMed DOI PMC
Miller J.B., Zhang S., Kos P., Xiong H., Zhou K., Perelman S.S., Zhu H., Siegwart D.J. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 2017;56:1059–1063. doi: 10.1002/anie.201610209. PubMed DOI PMC
Aksoy Y.A., Yang B., Chen W., Hung T., Kuchel R.P., Zammit N.W., Deng W. Spatial and Temporal Control of CRISPR-Cas9-Mediated Gene Editing Delivered via a Light-Triggered Liposome System. ACS Appl. Mater. Interfaces. 2020;12:47. doi: 10.1021/acsami.0c16380. PubMed DOI
Horii T., Tamura D., Morita S. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. IJMS. 2013;14:19774–19781. doi: 10.3390/ijms141019774. PubMed DOI PMC
Crispo M., Mulet A.P., Tesson L., Barrera N., Cuadro F., Dos Santos-Neto P.C., Nguyen T.H., Crénéguy A., Brusselle L., Anegón I., et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE. 2015;10:e0136690. doi: 10.1371/journal.pone.0136690. PubMed DOI PMC
Nakagawa Y., Sakuma T., Sakamoto T., Ohmuraya M., Nakagata N., Yamamoto T. Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. BMC Biotechnol. 2015;15:33. doi: 10.1186/s12896-015-0144-x. PubMed DOI PMC
Sato T., Sakuma T., Yokonishi T., Katagiri K., Kamimura S., Ogonuki N., Ogura A., Yamamoto T., Ogawa T. Genome editing in mouse spermatogonial stem cell lines using TALEN and double-nicking CRISPR/Cas9. Stem. Cell Rep. 2015;5:75–82. doi: 10.1016/j.stemcr.2015.05.011. PubMed DOI PMC
Chuang C.K., Chen C.H., Huang C.L., Su Y.H., Peng S.H., Lin T.Y., Tai H.C., Yang T.S., Tu C.F. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors. Anim. Biotechnol. 2017;28:174–181. doi: 10.1080/10495398.2016.1246453. PubMed DOI
Raveux A., Vandormael-Pournin S., Cohen-Tannoudji M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci. Rep. 2017;7:42661. doi: 10.1038/srep42661. PubMed DOI PMC
Abe T., Inoue K.I., Furuta Y., Kiyonari H. Pronuclear microinjection during S-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes. Cell Rep. 2020;31:7. doi: 10.1016/j.celrep.2020.107653. PubMed DOI
Hashimoto M., Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 2015;5:75–90. PubMed PMC
Ousterout D.G., Kabadi A.M., Thakore P.I., Majoros W.H., Reddy T.E., Gersbach C.A. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 2015;6:6244. doi: 10.1038/ncomms7244. PubMed DOI PMC
Hur J.K., Kim K., Been K.W., Baek G., Ye S., Hur J.W., Ryu S.M., Lee Y.S., Kim J.S. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nature Biotechnol. 2016;34:807–808. doi: 10.1038/nbt.3596. PubMed DOI
Chen S., Lee B., Lee A.Y., Modzelewski A.J., He L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 2016;291:14457–14467. doi: 10.1074/jbc.M116.733154. PubMed DOI PMC
Paquet D., Kwart D., Chen A., Sproul A., Jacob S., Teo S., Olsen K.M., Gregg A., Noggle S., Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. 2016;533:125–129. doi: 10.1038/nature17664. PubMed DOI
Tanihara F., Hirata M., Nguyen N.T., Sawamoto O., Kikuchi T., Doi M., Otoi T. Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnol. 2020;20:40. doi: 10.1186/s12896-020-00638-7. PubMed DOI PMC
Cheng R., Peng J., Yan Y., Cao P., Wang J., Qiu C., Tang L., Liu D., Tang L., Jin J., et al. Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9. FEBS Lett. 2014;588:3954–3958. doi: 10.1016/j.febslet.2014.09.008. PubMed DOI
Wang D., Mou H., Li S., Li Y., Hough S., Tran K., Li J., Yin H., Anderson D.G., Sontheimer E.J., et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Human Genet. Ther. 2015;26:432–442. doi: 10.1089/hum.2015.087. PubMed DOI PMC
Maggio I., Liu J., Janssen J.M., Chen X., Gonçalves M.A. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Sci. Rep. 2016;6:37051. doi: 10.1038/srep37051. PubMed DOI PMC
Voets O., Tielen F., Elstak E., Benschop J., Grimbergen M., Stallen J., Janssen R., van Marle A., Essrich C. Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells. PLoS ONE. 2017;12:e0182974. doi: 10.1371/journal.pone.0182974. PubMed DOI PMC
Palmer D.J., Turner D.L., Ng P. A single “all-in-one” helper-dependent adenovirus to deliver donor DNA and CRISPR/Cas9 for efficient homology-directed repair. Mol. Ther. Methods. Clin. Dev. 2020;17:441–447. doi: 10.1016/j.omtm.2020.01.014. PubMed DOI PMC
Sun W., Jiang T., Lu Y., Reiff M., Mo R., Gu Z. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. ACS. 2014;136:14722–14725. doi: 10.1021/ja5088024. PubMed DOI PMC
Sun W., Ji W., Hall J.M., Hu Q., Wang C., Beisel C.L., Gu Z. Efficient delivery of CRISPR-Cas9 for genome editing via self-assembled DNA nanoclews. Angew. Chem. 2015;54:12029. doi: 10.1002/anie.201506030. PubMed DOI PMC
Sun W., Wang J., Hu Q., Zhou X., Khademhosseini A., Gu Z. CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Sci. Adv. 2020;6:21. doi: 10.1126/sciadv.aba2983. PubMed DOI PMC
Xue W., Chen S., Yin H., Tammela T., Papagiannakopoulos T., Joshi N.S., Cai W., Yang G., Bronson R., Crowley D.G., et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380–384. doi: 10.1038/nature13589. PubMed DOI PMC
Dong C., Qu L., Wang H., Wei L., Dong Y., Xiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral. Res. 2015;118:110–117. doi: 10.1016/j.antiviral.2015.03.015. PubMed DOI
Zhen S., Hua L., Liu Y.H., Gao L.C., Fu J., Wan D.Y., Dong L.H., Song H.F., Gao X. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Genet. Ther. 2015;22:404–412. doi: 10.1038/gt.2015.2. PubMed DOI
Guan Y., Ma Y., Li Q., Sun Z., Ma L., Wu L., Wang L., Zeng L., Shao Y., Chen Y., et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 2016;8:477–488. doi: 10.15252/emmm.201506039. PubMed DOI PMC
Nakamura S., Ando N., Watanabe S., Akasaka E., Ishihara M., Sato M. Hydrodynamics-Based Transplacental Delivery as a Useful Noninvasive Tool for Manipulating Fetal Genome. Cells. 2020;9:1744. doi: 10.3390/cells9071744. PubMed DOI PMC
Zhen S., Li X. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther. 2020;27:515–527. doi: 10.1038/s41417-019-0141-7. PubMed DOI
Liang X., Potter J., Kumar S. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotech. 2015;208:44–53. doi: 10.1016/j.jbiotec.2015.04.024. PubMed DOI
Hudzik C., Hou Y., Ma W., Axtell M.J. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 2020;182:51–62. doi: 10.1104/pp.19.00931. PubMed DOI PMC
Deng H., Huang W., Zhang Z. Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. J. Nano Res. 2019;12:2437–2450. doi: 10.1007/s12274-019-2465-x. DOI
Tahir T., Ali Q., Rashid M.S., Malik A. The journey of CRISPR-Cas9 from bacterial defense mechanism to a gene editing tool in both animals and plants. Biol. Clin. Sci. Res. J. 2020;30:e017.
Sandhya D., Jogam P., Allini V.R., Abbagani S., Alok A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J. Genet. Eng. Bitechnol. 2020;18:25. doi: 10.1186/s43141-020-00036-8. PubMed DOI PMC
Elkhoury K., Koçak P., Kang A., Arab-Tehrany E., Ellis Ward J., Shin S.R. Engineering smart targeting nanovesicles and their combination with hydrogels for controlled drug delivery. Pharmaceutics. 2020;12:849. doi: 10.3390/pharmaceutics12090849. PubMed DOI PMC
Kim D., Le Q.V., Wu Y., Park J., Oh Y.K. Nanovesicle-Mediated Delivery Systems for CRISPR/Cas Genome Editing. Pharmaceutics. 2020;12:1233. doi: 10.3390/pharmaceutics12121233. PubMed DOI PMC
Demirer G.S., Zhang H., Matos J.L., Goh N.S., Cunningham F.J., Sung Y., Chang R., Aditham A.J., Chio L., Cho M.J., et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 2019;14:456–464. doi: 10.1038/s41565-019-0382-5. PubMed DOI PMC
Odahara M., Watanabe K., Kawasaki R., Tsuchiya K., Tateishi A., Motoda Y., Kigawa T., Kodama Y., Numata K. Nanoscale Polyion Complex Vesicles for Delivery of Cargo Proteins and Cas9 Ribonucleoprotein Complexes to Plant Cells. ACS Appl. Nano Mater. 2021;4:5630–5635. doi: 10.1021/acsanm.1c00695. DOI