• This record comes from PubMed

Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives

. 2021 Mar 24 ; 22 (7) : . [epub] 20210324

Language English Country Switzerland Media electronic

Document type Historical Article, Journal Article, Review

Grant support
VT2019-2021 UHK CEP Register

According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.

See more in PubMed

Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the Iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987;169:5429–5433. doi: 10.1128/JB.169.12.5429-5433.1987. PubMed DOI PMC

Jore M.M., Brouns S.J.J., van der Oost J. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a003657. PubMed DOI PMC

Jansen R., van Embden J.D.A., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002;43:1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x. PubMed DOI

Mojica F.J., Juez G., Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 1993;9:613–621. doi: 10.1111/j.1365-2958.1993.tb01721.x. PubMed DOI

Makarova K.S., Aravind L., Grishin N.V., Rogozin I.B., Koonin E.V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30:482–496. doi: 10.1093/nar/30.2.482. PubMed DOI PMC

Mojica F.J.M., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005;60:174–182. doi: 10.1007/s00239-004-0046-3. PubMed DOI

Pourcel C., Salvignol G., Vergnaud G. CRISPR Elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–663. doi: 10.1099/mic.0.27437-0. PubMed DOI

Makarova K.S., Grishin N.V., Shabalina S.A., Wolf Y.I., Koonin E.V. A Putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 2006;1:7. doi: 10.1186/1745-6150-1-7. PubMed DOI PMC

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–1712. doi: 10.1126/science.1138140. PubMed DOI

Makarova K.S., Haft D.H., Barrangou R., Brouns S.J.J., Charpentier E., Horvath P., Moineau S., Mojica F.J.M., Wolf Y.I., Yakunin A.F., et al. Evolution and classification of the CRISPR-cas systems. Nat. Rev. Microbiol. 2011;9:467–477. doi: 10.1038/nrmicro2577. PubMed DOI PMC

Sapranauskas R., Gasiunas G., Fremaux C., Barrangou R., Horvath P., Siksnys V. The Streptococcus thermophilus CRISPR/cas system provides immunity in Escherichia Coli. Nucleic Acids Res. 2011;39:9275–9282. doi: 10.1093/nar/gkr606. PubMed DOI PMC

Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., Marraffini L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-cas system. Nucleic Acids Res. 2013;41:7429–7437. doi: 10.1093/nar/gkt520. PubMed DOI PMC

McGinn J., Marraffini L.A. Molecular mechanisms of CRISPR-cas spacer acquisition. Nat. Rev. Microbiol. 2019;17:7–12. doi: 10.1038/s41579-018-0071-7. PubMed DOI

Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., et al. Evolutionary classification of CRISPR–cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020;18:67–83. doi: 10.1038/s41579-019-0299-x. PubMed DOI PMC

Hochstrasser M.L., Doudna J.A. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 2015;40:58–66. doi: 10.1016/j.tibs.2014.10.007. PubMed DOI

Gleditzsch D., Pausch P., Müller-Esparza H., Özcan A., Guo X., Bange G., Randau L. PAM identification by CRISPR-cas effector complexes: Diversified mechanisms and structures. RNA Biol. 2018;16:504–517. doi: 10.1080/15476286.2018.1504546. PubMed DOI PMC

Mojica F.J., Díez-Villaseñor C., Soria E., Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and Mitochondria. Mol. Microbiol. 2000;36:244–246. doi: 10.1046/j.1365-2958.2000.01838.x. PubMed DOI

Karginov F.V., Hannon G.J. The CRISPR system: Small RNA-guided defense in Bacteria and Archaea. Mol. Cell. 2010;37:7. doi: 10.1016/j.molcel.2009.12.033. PubMed DOI PMC

Alkhnbashi O.S., Shah S.A., Garrett R.A., Saunders S.J., Costa F., Backofen R. Characterizing leader sequences of CRISPR loci. Bioinformatics. 2016;32:i576–i585. doi: 10.1093/bioinformatics/btw454. PubMed DOI

Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., et al. An updated evolutionary classification of CRISPR–cas systems. Nat. Rev. Microb. 2015;13:722–736. doi: 10.1038/nrmicro3569. PubMed DOI PMC

Clark D.P., Pazdernik N.J., McGehee M.R. Chapter 20-Genome Defense. In: Clark D.P., Pazdernik N.J., McGehee M.R., editors. Molecular Biology. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2019. pp. 622–653.

Charpentier E., Richter H., van der Oost J., White M.F. Biogenesis pathways of RNA guides in Archaeal and Bacterial CRISPR-cas adaptive immunity. FEMS Microbiol. Rev. 2015;39:428–441. doi: 10.1093/femsre/fuv023. PubMed DOI PMC

Özcan A., Pausch P., Linden A., Wulf A., Schühle K., Heider J., Urlaub H., Heimerl T., Bange G., Randau L. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nat. Microbiol. 2019;4:89–96. doi: 10.1038/s41564-018-0274-8. PubMed DOI

Hille F., Richter H., Wong S.P., Bratovič M., Ressel S., Charpentier E. The biology of CRISPR-cas: Backward and forward. Cell. 2018;172:1239–1259. doi: 10.1016/j.cell.2017.11.032. PubMed DOI

Zhou Y., Bravo J.P.K., Taylor H.N., Steens J., Jackson R.N., Staals R.H.J., Taylor D.W. Structure of a type IV CRISPR-cas effector complex. bioRxiv. 2020 doi: 10.1101/2020.07.31.231399. PubMed DOI PMC

Schindele P., Wolter F., Puchta H. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett. 2018;592:1954–1967. doi: 10.1002/1873-3468.13073. PubMed DOI

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC

Li Y., Glass Z., Huang M., Chen Z.-Y., Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials. 2020;234:119711. doi: 10.1016/j.biomaterials.2019.119711. PubMed DOI PMC

Rees H.A., Liu D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018;19:770–788. doi: 10.1038/s41576-018-0059-1. PubMed DOI PMC

Miao J., Guo D., Zhang J., Huang Q., Qin G., Zhang X., Wan J., Gu H., Qu L.-J. Targeted mutagenesis in rice using CRISPR-cas system. Cell Res. 2013;23:1233–1236. doi: 10.1038/cr.2013.123. PubMed DOI PMC

Shan Q., Wang Y., Li J., Gao C. Genome editing in rice and wheat using the CRISPR/cas system. Nat. Protoc. 2014;9:2395–2410. doi: 10.1038/nprot.2014.157. PubMed DOI

Zhang Y., Li D., Zhang D., Zhao X., Cao X., Dong L., Liu J., Chen K., Zhang H., Gao C., et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J. 2018;94:857–866. doi: 10.1111/tpj.13903. PubMed DOI

Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., et al. A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant. 2015;8:1274–1284. doi: 10.1016/j.molp.2015.04.007. PubMed DOI

Jiang W.Z., Henry I.M., Lynagh P.G., Comai L., Cahoon E.B., Weeks D.P. Significant enhancement of fatty acid composition in seeds of the allohexaploid, cCamelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 2017;15:648–657. doi: 10.1111/pbi.12663. PubMed DOI PMC

Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC

Aznar-Moreno J.A., Durrett T.P. Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol. 2017;58:1260–1267. doi: 10.1093/pcp/pcx058. PubMed DOI

Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00298. PubMed DOI PMC

Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., et al. Targeted genome modification of crop plants using a CRISPR-cas system. Nat. Biotechnol. 2013;31:686–688. doi: 10.1038/nbt.2650. PubMed DOI

Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y., Barg R. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 2017;15:634–647. doi: 10.1111/pbi.12662. PubMed DOI PMC

Lu H.-P., Luo T., Fu H.-W., Wang L., Tan Y.-Y., Huang J.-Z., Wang Q., Ye G.-Y., Gatehouse A.M.R., Lou Y.-G., et al. Resistance of Rice to Insect Pests Mediated by Suppression of Serotonin Biosynthesis. Nat. Plants. 2018;4:338–344. doi: 10.1038/s41477-018-0152-7. PubMed DOI

Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics. 2010;186:757–761. doi: 10.1534/genetics.110.120717. PubMed DOI PMC

Chen K., Wang Y., Zhang R., Zhang H., Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;70:667–697. doi: 10.1146/annurev-arplant-050718-100049. PubMed DOI

Kim H., Kim S.-T., Ryu J., Kang B.-C., Kim J.-S., Kim S.-G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406. doi: 10.1038/ncomms14406. PubMed DOI PMC

Xu R., Li H., Qin R., Wang L., Li L., Wei P., Yang J. Gene targeting using the Agrobacterium Ttumefaciens-mediated CRISPR-cas system in rice. Rice. 2014;7:5. doi: 10.1186/s12284-014-0005-6. PubMed DOI PMC

Yin K., Han T., Liu G., Chen T., Wang Y., Yu A.Y.L., Liu Y. A Geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015;5:14926. doi: 10.1038/srep14926. PubMed DOI PMC

Baltes N.J., Hummel A.W., Konecna E., Cegan R., Bruns A.N., Bisaro D.M., Voytas D.F. Conferring resistance to geminiviruses with the CRISPR-cas prokaryotic immune System. Nat. Plants. 2015;1:15145. doi: 10.1038/nplants.2015.145. PubMed DOI PMC

Feng Z., Mao Y., Xu N., Zhang B., Wei P., Yang D.-L., Wang Z., Zhang Z., Zheng R., Yang L., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/cas-induced gene modifications in arabidopsis. Proc. Natl. Acad. Sci. USA. 2014;111:4632–4637. doi: 10.1073/pnas.1400822111. PubMed DOI PMC

Puchta H. Using CRISPR/cas in three dimensions: Towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. 2016;87:5–15. doi: 10.1111/tpj.13100. PubMed DOI

Aman R., Ali Z., Butt H., Mahas A., Aljedaani F., Khan M.Z., Ding S., Mahfouz M. RNA Virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018;19:1. doi: 10.1186/s13059-017-1381-1. PubMed DOI PMC

Abudayyeh O.O., Gootenberg J.S., Essletzbichler P., Han S., Joung J., Belanto J.J., Verdine V., Cox D.B.T., Kellner M.J., Regev A., et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–284. doi: 10.1038/nature24049. PubMed DOI PMC

Zhou H., He M., Li J., Chen L., Huang Z., Zheng S., Zhu L., Ni E., Jiang D., Zhao B., et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-Mediated TMS5 editing system. Sci. Rep. 2016;6:37395. doi: 10.1038/srep37395. PubMed DOI PMC

Svitashev S., Schwartz C., Lenderts B., Young J.K., Mark Cigan A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 2016;7:13274. doi: 10.1038/ncomms13274. PubMed DOI PMC

Singh M., Kumar M., Albertsen M.C., Young J.K., Cigan A.M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum Aaestivum, L.) Plant. Mol. Biol. 2018;97:371–383. doi: 10.1007/s11103-018-0749-2. PubMed DOI

Yao L., Zhang Y., Liu C., Liu Y., Wang Y., Liang D., Liu J., Sahoo G., Kelliher T. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants. 2018;4:530–533. doi: 10.1038/s41477-018-0193-y. PubMed DOI

Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017;35:441–443. doi: 10.1038/nbt.3833. PubMed DOI

Chen Y., Wang Z., Ni H., Xu Y., Chen Q., Jiang L. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in arabidopsis. Sci. China Life Sci. 2017;60:520–523. doi: 10.1007/s11427-017-9021-5. PubMed DOI

Tian S., Jiang L., Cui X., Zhang J., Guo S., Li M., Zhang H., Ren Y., Gong G., Zong M., et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 2018;37:1353–1356. doi: 10.1007/s00299-018-2299-0. PubMed DOI

Malnoy M., Viola R., Jung M.-H., Koo O.-J., Kim S., Kim J.-S., Velasco R., Nagamangala Kanchiswamy C. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 2016;7:1904. doi: 10.3389/fpls.2016.01904. PubMed DOI PMC

Ji L., Jordan W.T., Shi X., Hu L., He C., Schmitz R.J. TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat. Commun. 2018;9:895. doi: 10.1038/s41467-018-03289-7. PubMed DOI PMC

Tripathi L., Ntui V.O., Tripathi J.N. CRISPR/Cas9-based genome editing of banana for disease resistance. Curr. Opin. Plant Biol. 2020;56:118–126. doi: 10.1016/j.pbi.2020.05.003. PubMed DOI

Gomez M.A., Lin Z.D., Moll T., Luebbert C., Chauhan R.D., Vijayaraghavan A., Kelley R., Beyene G., Taylor N.J., Carrington J., et al. Simultaneous CRISPR/Cas9-mediated editing of cassava EIF4E isoforms NCBP-1 and NCBP-2 confers elevated resistance to cassava brown streak disease. bioRxiv. 2017:209874. doi: 10.1101/209874. PubMed DOI

Hummel A.W., Chauhan R.D., Cermak T., Mutka A.M., Vijayaraghavan A., Boyher A., Starker C.G., Bart R., Voytas D.F., Taylor N.J. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J. 2018;16:1275–1282. doi: 10.1111/pbi.12868. PubMed DOI PMC

Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017;15:1509–1519. doi: 10.1111/pbi.12733. PubMed DOI PMC

Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC

Fister A.S., Landherr L., Maximova S.N., Guiltinan M.J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in theobroma cacao. Front. Plant Sci. 2018;9:268. doi: 10.3389/fpls.2018.00268. PubMed DOI PMC

Iqbal Z., Sattar M.N., Shafiq M. CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00475. PubMed DOI PMC

Zhang Z., Ge X., Luo X., Wang P., Fan Q., Hu G., Xiao J., Li F., Wu J. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium Dahliae in allotetraploid upland cotton. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.00842. PubMed DOI PMC

Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016;17:1140–1153. doi: 10.1111/mpp.12375. PubMed DOI PMC

Sauer N.J., Narváez-Vásquez J., Mozoruk J., Miller R.B., Warburg Z.J., Woodward M.J., Mihiret Y.A., Lincoln T.A., Segami R.E., Sanders S.L., et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 2016;170:1917–1928. doi: 10.1104/pp.15.01696. PubMed DOI PMC

Wang X., Guo R., Tu M., Wang D., Guo C., Wan R., Li Z., Wang X. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00097. PubMed DOI PMC

Choudhury M.D., Das S., Tarafdar S. Effect of loading history on visco-elastic potato starch Gel. Coll. Surf. A Physicochem. Eng. Asp. 2016;492:47–53. doi: 10.1016/j.colsurfa.2015.12.007. DOI

Makhotenko A.V., Khromov A.V., Snigir E.A., Makarova S.S., Makarov V.V., Suprunova T.P., Kalinina N.O., Taliansky M.E. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Dokl. Biochem. Biophys. 2019;484:88–91. doi: 10.1134/S1607672919010241. PubMed DOI

Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., Cheng Z. Sodmergen, null disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J. Exp. Bot. 2018;69:1051–1064. doi: 10.1093/jxb/erx458. PubMed DOI PMC

Macovei A., Sevilla N.R., Cantos C., Jonson G.B., Slamet-Loedin I., Čermák T., Voytas D.F., Choi I.-R., Chadha-Mohanty P. Novel alleles of rice EIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol. J. 2018;16:1918–1927. doi: 10.1111/pbi.12927. PubMed DOI PMC

Li J., Meng X., Zong Y., Chen K., Zhang H., Liu J., Li J., Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants. 2016;2:16139. doi: 10.1038/nplants.2016.139. PubMed DOI

Mishra R., Joshi R.K., Zhao K. Genome editing in rice: Recent advances, challenges, and future implications. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01361. PubMed DOI PMC

Cai Y., Chen L., Liu X., Sun S., Wu C., Jiang B., Han T., Hou W. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10:e0136064. doi: 10.1371/journal.pone.0136064. PubMed DOI PMC

Ludman M., Burgyán J., Fátyol K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses. Sci. Rep. 2017;7:1010. doi: 10.1038/s41598-017-01050-6. PubMed DOI PMC

Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017;7:482. doi: 10.1038/s41598-017-00578-x. PubMed DOI PMC

Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 2019;17:665–673. doi: 10.1111/pbi.13006. PubMed DOI PMC

Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017;91:714–724. doi: 10.1111/tpj.13599. PubMed DOI

Acevedo-Garcia J., Spencer D., Thieron H., Reinstädler A., Hammond-Kosack K., Phillips A.L., Panstruga R. Mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 2017;15:367–378. doi: 10.1111/pbi.12631. PubMed DOI PMC

Li W., Nguyen K.H., Chu H.D., Ha C.V., Watanabe Y., Osakabe Y., Leyva-González M.A., Sato M., Toyooka K., Voges L., et al. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet. 2017;13:e1007076. doi: 10.1371/journal.pgen.1007076. PubMed DOI PMC

Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable Genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:540. doi: 10.3389/fpls.2017.00540. PubMed DOI PMC

Ren C., Liu X., Zhang Z., Wang Y., Duan W., Li S., Liang Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in chardonnay (Vitis Vinifera, L.) Sci. Rep. 2016;6:32289. doi: 10.1038/srep32289. PubMed DOI PMC

Wang L., Wang L., Tan Q., Fan Q., Zhu H., Hong Z., Zhang Z., Duanmu D. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front. Plant Sci. 2016;7:1333. doi: 10.3389/fpls.2016.01333. PubMed DOI PMC

Zuo Y., Feng F., Qi W., Song R. Dek42 encodes an RNA-binding protein that affects alternative Pre-MRNA splicing and maize kernel development. J. Integr. Plant Biol. 2019;61:728–748. doi: 10.1111/jipb.12798. PubMed DOI

Waltz E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 2016;34:582. doi: 10.1038/nbt0616-582. PubMed DOI

Alagoz Y., Gurkok T., Zhang B., Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep. 2016;6:30910. doi: 10.1038/srep30910. PubMed DOI PMC

Kui L., Chen H., Zhang W., He S., Xiong Z., Zhang Y., Yan L., Zhong C., He F., Chen J., et al. Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front. Plant Sci. 2017;7 doi: 10.3389/fpls.2016.02036. PubMed DOI PMC

Semiarti E., Nopitasari S., Setiawati Y., Lawrie M.D., Purwantoro A., Widada J., Yoshioka Y., Matsumoto S., Ninomiya K., Asano Y. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indones. J. Biotechnol. 2020;25:61–68. doi: 10.22146/ijbiotech.39485. DOI

Andersson M., Turesson H., Nicolia A., Fält A.-S., Samuelsson M., Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum Ttuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant. Cell Rep. 2017;36:117–128. doi: 10.1007/s00299-016-2062-3. PubMed DOI PMC

Zhou X., Zha M., Huang J., Li L., Imran M., Zhang C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J. Exp. Bot. 2017;68:1265–1281. doi: 10.1093/jxb/erx026. PubMed DOI PMC

Veillet F., Perrot L., Chauvin L., Kermarrec M.-P., Guyon-Debast A., Chauvin J.-E., Nogué F., Mazier M. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci. 2019;20:402. doi: 10.3390/ijms20020402. PubMed DOI PMC

Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., Li H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00377. PubMed DOI PMC

Xu R., Yang Y., Qin R., Li H., Qiu C., Li L., Wei P., Yang J. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genom. 2016;43:529–532. doi: 10.1016/j.jgg.2016.07.003. PubMed DOI

Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N., et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 2014;12:797–807. doi: 10.1111/pbi.12200. PubMed DOI

Nieves-Cordones M., Mohamed S., Tanoi K., Kobayashi N.I., Takagi K., Vernet A., Guiderdoni E., Périn C., Sentenac H., Véry A.-A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-cas system. Plant J. 2017;92:43–56. doi: 10.1111/tpj.13632. PubMed DOI

Mao X., Zheng Y., Xiao K., Wei Y., Zhu Y., Cai Q., Chen L., Xie H., Zhang J. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem. Biophys. Res. Commun. 2018;495:461–467. doi: 10.1016/j.bbrc.2017.11.045. PubMed DOI

Shen C., Que Z., Xia Y., Tang N., Li D., He R., Cao M. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J. Plant Biol. 2017;60:539–547. doi: 10.1007/s12374-016-0400-1. DOI

Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R., Gao C. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59. doi: 10.1186/s13059-018-1443-z. PubMed DOI PMC

Iaffaldano B., Zhang Y., Cornish K. CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Ind. Crops Prod. 2016;89:356–362. doi: 10.1016/j.indcrop.2016.05.029. DOI

Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., Qiu D., Shan Z., Yang Z., Yuan S., et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 2019;19:131. doi: 10.1186/s12870-019-1746-6. PubMed DOI PMC

Ueta R., Abe C., Watanabe T., Sugano S.S., Ishihara R., Ezura H., Osakabe Y., Osakabe K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep. 2017;7:507. doi: 10.1038/s41598-017-00501-4. PubMed DOI PMC

Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M., Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 2015;467:76–82. doi: 10.1016/j.bbrc.2015.09.117. PubMed DOI

Wang R., Tavano E.C.D.R., Lammers M., Martinelli A.P., Angenent G.C., de Maagd R.A. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci. Rep. 2019;9:1696. doi: 10.1038/s41598-018-38170-6. PubMed DOI PMC

Brooks C., Nekrasov V., Lippman Z.B., Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system1. Plant Physiol. 2014;166:1292–1297. doi: 10.1104/pp.114.247577. PubMed DOI PMC

Li R., Liu C., Zhao R., Wang L., Chen L., Yu W., Zhang S., Sheng J., Shen L. CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. 2019;19:38. doi: 10.1186/s12870-018-1627-4. PubMed DOI PMC

Zhang S., Zhang R., Song G., Gao J., Li W., Han X., Chen M., Li Y., Li G. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 2018;18:302. doi: 10.1186/s12870-018-1496-x. PubMed DOI PMC

Liu H., Wang K., Jia Z., Gong Q., Lin Z., Du L., Pei X., Ye X. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized agrobacterium-mediated CRISPR System. J. Exp. Bot. 2020;71:1337–1349. doi: 10.1093/jxb/erz529. PubMed DOI PMC

Von Caemmerer S., Quick W.P., Furbank R.T. The development of C4 rice: Current progress and future challenges. Science. 2012;336:1671–1672. doi: 10.1126/science.1220177. PubMed DOI

Salesse-Smith C.E., Sharwood R.E., Busch F.A., Kromdijk J., Bardal V., Stern D.B. Overexpression of rubisco subunits with RAF1 increases rubisco content in maize. Nat. Plants. 2018;4:802–810. doi: 10.1038/s41477-018-0252-4. PubMed DOI

Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., Dong W., Gao C., Xu C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018 doi: 10.1038/nbt.4273. PubMed DOI

Kosicki M., Tomberg K., Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018;36:765–771. doi: 10.1038/nbt.4192. PubMed DOI PMC

Khan M.Z., Amin I., Hameed A., Mansoor S. CRISPR-Cas13a: Prospects for plant virus resistance. Trends Biotechnol. 2018;36:1207–1210. doi: 10.1016/j.tibtech.2018.05.005. PubMed DOI

Min Y.-L., Li H., Rodriguez-Caycedo C., Mireault A.A., Huang J., Shelton J.M., McAnally J.R., Amoasii L., Mammen P.P.A., Bassel-Duby R., et al. CRISPR-Cas9 corrects duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci. Adv. 2019;5:eaav4324. doi: 10.1126/sciadv.aav4324. PubMed DOI PMC

Bjursell M., Porritt M.J., Ericson E., Taheri-Ghahfarokhi A., Clausen M., Magnusson L., Admyre T., Nitsch R., Mayr L., Aasehaug L., et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates A1-antitrypsin deficiency phenotype. EBioMedicine. 2018;29:104–111. doi: 10.1016/j.ebiom.2018.02.015. PubMed DOI PMC

Ohmori T., Mizukami H., Ozawa K., Sakata Y., Nishimura S. New approaches to gene and cell therapy for hemophilia. J. Thromb. Haemost. 2015;13:S133–S142. doi: 10.1111/jth.12926. PubMed DOI

Khosravi M.A., Abbasalipour M., Concordet J.-P., Berg J.V., Zeinali S., Arashkia A., Azadmanesh K., Buch T., Karimipoor M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol. 2019;854:398–405. doi: 10.1016/j.ebiom.2018.02.015. PubMed DOI

György B., Nist-Lund C., Pan B., Asai Y., Karavitaki K.D., Kleinstiver B.P., Garcia S.P., Zaborowski M.P., Solanes P., Spataro S., et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat. Med. 2019;25:1123–1130. doi: 10.1038/s41591-019-0500-9. PubMed DOI PMC

Dever D.P., Bak R.O., Reinisch A., Camarena J., Washington G., Nicolas C.E., Pavel-Dinu M., Saxena N., Wilkens A.B., Mantri S., et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–389. doi: 10.1038/nature20134. PubMed DOI PMC

Isgrò A., Gaziev J., Sodani P., Lucarelli G. Progress in hematopoietic stem cell transplantation as allogeneic cellular gene therapy in thalassemia. Ann. N. Y. Acad. Sci. 2010;1202:149–154. doi: 10.1111/j.1749-6632.2010.05543.x. PubMed DOI

Traylen C.M., Patel H.R., Fondaw W., Mahatme S., Williams J.F., Walker L.R., Dyson O.F., Arce S., Akula S.M. Virus reactivation: A panoramic view in human infections. Future Virol. 2011;6:451–463. doi: 10.2217/fvl.11.21. PubMed DOI PMC

Craigie R., Bushman F.D. HIV DNA integration. Cold Spring Harb. Perspect. Med. 2012;2:a006890. doi: 10.1101/cshperspect.a006890. PubMed DOI PMC

Finzi D., Blankson J., Siliciano J.D., Margolick J.B., Chadwick K., Pierson T., Smith K., Lisziewicz J., Lori F., Flexner C., et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 1999;5:512–517. doi: 10.1038/8394. PubMed DOI

Hu W., Kaminski R., Yang F., Zhang Y., Cosentino L., Li F., Luo B., Alvarez-Carbonell D., Garcia-Mesa Y., Karn J., et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA. 2014;111:11461–11466. doi: 10.1073/pnas.1405186111. PubMed DOI PMC

Cho S.W., Kim S., Kim J.M., Kim J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:230–232. doi: 10.1038/nbt.2507. PubMed DOI

Hou P., Chen S., Wang S., Yu X., Chen Y., Jiang M., Zhuang K., Ho W., Hou W., Huang J., et al. Genome editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Sci. Rep. 2015;5:15577. doi: 10.1038/srep15577. PubMed DOI PMC

Liu Z., Chen S., Jin X., Wang Q., Yang K., Li C., Xiao Q., Hou P., Liu S., Wu S., et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci. 2017;7:1–15. doi: 10.1186/s13578-017-0174-2. PubMed DOI PMC

Yu S., Yao Y., Xiao H., Li J., Liu Q., Yang Y., Adah D., Lu J., Zhao S., Qin L., et al. Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both X4- and R5-tropic human immunodeficiency virus type 1 infection. Hum. Gene. Ther. 2018;29:51–67. doi: 10.1089/hum.2017.032. PubMed DOI

Dash P.K., Kaminski R., Bella R., Su H., Mathews S., Ahooyi T.M., Chen C., Mancuso P., Sariyer R., Ferrante P., et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat. Commun. 2019;10:2753. doi: 10.1038/s41467-019-10366-y. PubMed DOI PMC

Rusconi S., Giacomelli A. CRISPR in HIV: Dangers of CCR5 deletion. Future Virol. 2020;15:207–209. doi: 10.2217/fvl-2020-0039. DOI

Gao Z., Fan M., Das A.T., Herrera-Carrillo E., Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single CrRNA. Nucleic Acids Res. 2020;48:5527–5539. doi: 10.1093/nar/gkaa226. PubMed DOI PMC

Nouri R., Jiang Y., Lian X.L., Guan W. Sequence-specific recognition of HIV-1 DNA with solid-state CRISPR-Cas12a-assisted nanopores (SCAN) ACS Sens. 2020;5:1273–1280. doi: 10.1021/acssensors.0c00497. PubMed DOI

Ding X., Yin K., Li Z., Liu C. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: A case for rapid, ultrasensitive and visual detection of novel Coronavirus SARS-CoV-2 and HIV Virus. bioRxiv. 2020 doi: 10.1101/2020.03.19.998724. PubMed DOI PMC

Hou T., Zeng W., Yang M., Chen W., Ren L., Ai J., Wu J., Liao Y., Gou X., Li Y., et al. Development and evaluation of A CRISPR-based diagnostic for 2019-novel Coronavirus. medRxiv. 2020 doi: 10.1101/2020.02.22.20025460. PubMed DOI PMC

Roehm P.C., Shekarabi M., Wollebo H.S., Bellizzi A., He L., Salkind J., Khalili K. Inhibition of HSV-1 replication by gene editing strategy. Sci. Rep. 2016;6:23146. doi: 10.1038/srep23146. PubMed DOI PMC

Fan C., Tang Y., Wang J., Xiong F., Guo C., Wang Y., Xiang B., Zhou M., Li X., Wu X., et al. The emerging role of epstein-barr virus encoded microRNAs in nasopharyngeal carcinoma. J. Cancer. 2018;9:2852–2864. doi: 10.7150/jca.25460. PubMed DOI PMC

Van Diemen F.R., Kruse E.M., Hooykaas M.J.G., Bruggeling C.E., Schürch A.C., van Ham P.M., Imhof S.M., Nijhuis M., Wiertz E.J.H.J., Lebbink R.J. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 2016;12:e1005701. doi: 10.1371/journal.ppat.1005701. PubMed DOI PMC

Tso F.Y., West J.T., Wood C. Reduction of Kaposi’s sarcoma-associated herpesvirus latency using CRISPR-Cas9 to edit the latency-associated nuclear antigen gene. J. Virol. 2019;93 doi: 10.1128/JVI.02183-18. PubMed DOI PMC

Gergen J., Coulon F., Creneguy A., Elain-Duret N., Gutierrez A., Pinkenburg O., Verhoeyen E., Anegon I., Nguyen T.H., Halary F.A., et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE. 2018;13:e0192602. doi: 10.1371/journal.pone.0192602. PubMed DOI PMC

Moffett H.F., Harms C.K., Fitzpatrick K.S., Tooley M.R., Boonyaratanakornkit J., Taylor J.J. B cells engineered to express pathogen-specific antibodies protect against infection. Sci. Immunol. 2019;4 doi: 10.1126/sciimmunol.aax0644. PubMed DOI PMC

Wollebo H.S., Bellizzi A., Kaminski R., Hu W., White M.K., Khalili K. CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS ONE. 2015;10:e0136046. doi: 10.1371/journal.pone.0136046. PubMed DOI PMC

Tian X., Gu T., Patel S., Bode A.M., Lee M.-H., Dong Z. CRISPR/Cas9-an evolving biological tool kit for cancer biology and oncology. NPJ Precis. Oncol. 2019;3:8. doi: 10.1038/s41698-019-0080-7. PubMed DOI PMC

Huang C.-H., Lee K.-C., Doudna J.A. Applications of CRISPR-Cas enzymes in cancer therapeutics and detection. Trends Cancer. 2018;4:499–512. doi: 10.1016/j.trecan.2018.05.006. PubMed DOI PMC

Morris L.G.T., Chan T.A. Therapeutic targeting of tumor suppressor genes. Cancer. 2015;121:1357–1368. doi: 10.1002/cncr.29140. PubMed DOI PMC

Kodama M., Kodama T., Murakami M. Oncogene activation and tumor suppressor gene inactivation find their sites of expression in the changes in time and space of the age-adjusted cancer incidence rate. In Vivo. 2000;14:725–734. PubMed

Bu X., Kato J., Hong J.A., Merino M.J., Schrump D.S., Lund F.E., Moss J. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis. 2018;39:242–251. doi: 10.1093/carcin/bgx137. PubMed DOI PMC

Chen C.H., Changou C.A., Hsieh T.H., Lee Y.C., Chu C.Y., Hsu K.C., Wang H.C., Lin Y.C., Lo Y.N., Liu Y.R., et al. Dual inhibition of PIK3C3 and FGFR as a new therapeutic approach to treat bladder cancer. Clin. Cancer res. Off. J. Am. Assoc. Cancer Res. 2018;24:1176–1189. doi: 10.1158/1078-0432.CCR-17-2066. PubMed DOI

Takeda H., Kataoka S., Nakayama M., Ali M.A.E., Oshima H., Yamamoto D., Park J.-W., Takegami Y., An T., Jenkins N.A., et al. CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. PNAS. 2019;116:15635–15644. doi: 10.1073/pnas.1904714116. PubMed DOI PMC

Artegiani B., van Voorthuijsen L., Lindeboom R.G.H., Seinstra D., Heo I., Tapia P., López-Iglesias C., Postrach D., Dayton T., Oka R., et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem. Cell. 2019;24:927–943.e6. doi: 10.1016/j.stem.2019.04.017. PubMed DOI

Eyquem J., Mansilla-Soto J., Giavridis T., van der Stegen S.J.C., Hamieh M., Cunanan K.M., Odak A., Gönen M., Sadelain M. Targeting a CAR to the TRAC Locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–117. doi: 10.1038/nature21405. PubMed DOI PMC

Ren J., Liu X., Fang C., Jiang S., June C.H., Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 2017;23:2255–2266. doi: 10.1158/1078-0432.CCR-16-1300. PubMed DOI PMC

Rupp L.J., Schumann K., Roybal K.T., Gate R.E., Ye C.J., Lim W.A., Marson A. CRISPR/Cas9-Mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 2017;7:737. doi: 10.1038/s41598-017-00462-8. PubMed DOI PMC

Huang R.-Y., Francois A., McGray A.R., Miliotto A., Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561. doi: 10.1080/2162402X.2016.1249561. PubMed DOI PMC

Zhang W., Liu Y., Zhou X., Zhao R., Wang H. Applications of CRISPR-Cas9 in gynecological cancer research. Clin. Genet. 2020;97:827–834. doi: 10.1111/cge.13717. PubMed DOI

Firth A.L., Menon T., Parker G.S., Qualls S.J., Lewis B.M., Ke E., Dargitz C.T., Wright R., Khanna A., Gage F.H., et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient IPSCs. Cell Rep. 2015;12:1385–1390. doi: 10.1016/j.celrep.2015.07.062. PubMed DOI PMC

Duchêne B.L., Cherif K., Iyombe-Engembe J.-P., Guyon A., Rousseau J., Ouellet D.L., Barbeau X., Lague P., Tremblay J.P. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol. Ther. 2018;26:2604–2616. doi: 10.1016/j.ymthe.2018.08.010. PubMed DOI PMC

Long C., Li H., Tiburcy M., Rodriguez-Caycedo C., Kyrychenko V., Zhou H., Zhang Y., Min Y.-L., Shelton J.M., Mammen P.P.A., et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 2018;4:eaap9004. doi: 10.1126/sciadv.aap9004. PubMed DOI PMC

Frangoul H., Altshuler D., Cappellini M.D., Chen Y.-S., Domm J., Eustace B.K., Foell J., de la Fuente J., Grupp S., Handgretinger R., et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054. PubMed DOI

Vilarino M., Suchy F.P., Rashid S.T., Lindsay H., Reyes J., McNabb B.R., van der Meulen T., Huising M.O., Nakauchi H., Ross P.J. Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep. Transgenic Res. 2018;27:525–537. doi: 10.1007/s11248-018-0094-x. PubMed DOI

Haston S., Pozzi S., Gonzalez-Meljem J.M. Applications of CRISPR-cas in ageing research. Clin. Genet. Genom. Aging. 2020:213–230. doi: 10.1007/978-3-030-40955-5_11. DOI

Yue Y., Kan Y., Xu W., Zhao H.-Y., Zhou Y., Song X., Wu J., Xiong J., Goswami D., Yang M., et al. Extensive mammalian germline genome engineering. bioRxiv. 2019 doi: 10.1101/2019.12.17.876862. DOI

Skill N., Kubal S., Fridell J., Ekser B. Identification of novel xenoreactive non-gal antigens: Tetraspanin CD37 and CD81. Xenotransplantation. 2017;24:27–28. doi: 10.1111/xen.12328. DOI

Ul Ain Q., Chung J.Y., Kim Y.-H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J. Control. Release. 2015;205:120–127. doi: 10.1016/j.jconrel.2014.12.036. PubMed DOI

Wu Y., Zhou H., Fan X., Zhang Y., Zhang M., Wang Y., Xie Z., Bai M., Yin Q., Liang D., et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25:67–79. doi: 10.1038/cr.2014.160. PubMed DOI PMC

Flynn R., Grundmann A., Renz P., Hänseler W., James W.S., Cowley S.A., Moore M.D. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human IPS cells. Exp. Hematol. 2015;43:838–848. doi: 10.1016/j.exphem.2015.06.002. PubMed DOI PMC

Wang S., Cheng Z.-Y., Zhao Z.-N., Quan X.-Q., Wei Y., Xia D.-S., Li J.-Q., Hu J.-L. Correlation of serum PCSK9 in CHD patients with the severity of coronary arterial lesions. Eur. Rev. Med. Pharmacol. Sci. 2016;20:1135–1139. PubMed

Van Agtmaal E.L., André L.M., Willemse M., Cumming S.A., van Kessel I.D.G., van den Broek W.J.A.A., Gourdon G., Furling D., Mouly V., Monckton D.G., et al. CRISPR/Cas9-Induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: Implications for therapeutic genome editing. Mol. Ther. 2017;25:24–43. doi: 10.1016/j.ymthe.2016.10.014. PubMed DOI PMC

Li H.L., Fujimoto N., Sasakawa N., Shirai S., Ohkame T., Sakuma T., Tanaka M., Amano N., Watanabe A., Sakurai H., et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem. Cell Rep. 2015;4:143–154. doi: 10.1016/j.stemcr.2014.10.013. PubMed DOI PMC

Monteys A.M., Ebanks S.A., Keiser M.S., Davidson B.L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol. Ther. 2017;25:12–23. doi: 10.1016/j.ymthe.2016.11.010. PubMed DOI PMC

Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N.E., Shalem O., Chen D.D., Schupp P.G., Vinjamur D.S., Garcia S.P., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–197. doi: 10.1038/nature15521. PubMed DOI PMC

Xie C., Zhang Y.-P., Song L., Luo J., Qi W., Hu J., Lu D., Yang Z., Zhang J., Xiao J., et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 2016;26:1099–1111. doi: 10.1038/cr.2016.101. PubMed DOI PMC

Liu Y., Yang Y., Kang X., Lin B., Yu Q., Song B., Gao G., Chen Y., Sun X., Li X., et al. One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific IPSCs without drug selection. Mol. Ther. Nucleic Acids. 2017;6:57–67. doi: 10.1016/j.omtn.2016.11.010. PubMed DOI PMC

Lavin M.F., Yeo A.J., Kijas A.W., Wolvetang E., Sly P.D., Wainwright C., Sinclair K. Therapeutic targets and investigated treatments for ataxia-telangiectasia. Expert Opin. Orphan Drugs. 2016;4:1263–1276. doi: 10.1080/21678707.2016.1254618. DOI

Zhen S., Hua L., Takahashi Y., Narita S., Liu Y.-H., Li Y. In vitro and in vivo growth suppression of human Papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 2014;450:1422–1426. doi: 10.1016/j.bbrc.2014.07.014. PubMed DOI

Ma H., Marti-Gutierrez N., Park S.-W., Wu J., Lee Y., Suzuki K., Koski A., Ji D., Hayama T., Ahmed R., et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–419. doi: 10.1038/nature23305. PubMed DOI

Miyamoto T., Akutsu S.N., Tauchi H., Kudo Y., Tashiro S., Yamamoto T., Matsuura S. Exploration of genetic basis underlying individual differences in radiosensitivity within human populations using genome editing technology. J. Radiat. Res. 2018;59:ii75–ii82. doi: 10.1093/jrr/rry007. PubMed DOI PMC

Li F., Ng W.-L., Luster T.A., Hu H., Sviderskiy V.O., Dowling C.M., Hollinshead K.E.R., Zouitine P., Zhang H., Huang Q., et al. Epigenetic CRISPR screens identify Npm1 as a therapeutic vulnerability in non–small cell lung cancer. Cancer Res. 2020;80:3556–3567. doi: 10.1158/0008-5472.CAN-19-3782. PubMed DOI PMC

You L., Tong R., Li M., Liu Y., Xue J., Lu Y. Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol. Ther. Methods Clin. Dev. 2019;13:359–370. doi: 10.1016/j.omtm.2019.02.008. PubMed DOI PMC

Li H., Sheng C., Wang S., Yang L., Liang Y., Huang Y., Liu H., Li P., Yang C., Yang X., et al. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front. Cell Infect. Microbiol. 2017;7:91. doi: 10.3389/fcimb.2017.00091. PubMed DOI PMC

Gomaa A.A., Klumpe H.E., Luo M.L., Selle K., Barrangou R., Beisel C.L. Programmable removal of bacterial strains by use of genome-targeting CRISPR-cas systems. mBio. 2014;5 doi: 10.1128/mBio.00928-13. PubMed DOI PMC

Yosef I., Manor M., Kiro R., Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. PNAS. 2015;112:7267–7272. doi: 10.1073/pnas.1500107112. PubMed DOI PMC

Kim J.-S., Cho D.-H., Park M., Chung W.-J., Shin D., Ko K.S., Kweon D.-H. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J. Microbiol. Biotechnol. 2016;26:394–401. doi: 10.4014/jmb.1508.08080. PubMed DOI

Bikard D., Euler C., Jiang W., Nussenzweig P.M., Goldberg G.W., Duportet X., Fischetti V.A., Marraffini L.A. Development of sequence-specific antimicrobials based on programmable CRISPR-cas nucleases. Nat. Biotechnol. 2014;32:1146–1150. doi: 10.1038/nbt.3043. PubMed DOI PMC

Li D., Li X., Zhou W.-L., Huang Y., Liang X., Jiang L., Yang X., Sun J., Li Z., Han W.-D., et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduct. Target. Ther. 2019;4:1–17. doi: 10.1038/s41392-019-0070-9. PubMed DOI PMC

Kyrou K., Hammond A.M., Galizi R., Kranjc N., Burt A., Beaghton A.K., Nolan T., Crisanti A. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 2018;36:1062–1066. doi: 10.1038/nbt.4245. PubMed DOI PMC

Jakočiūnas T., Jensen M.K., Keasling J.D. CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 2016;34:44–59. doi: 10.1016/j.ymben.2015.12.003. PubMed DOI

Jakočiūnas T., Bonde I., Herrgård M., Harrison S.J., Kristensen M., Pedersen L.E., Jensen M.K., Keasling J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015;28:213–222. doi: 10.1016/j.ymben.2015.01.008. PubMed DOI

Li Y., Lin Z., Huang C., Zhang Y., Wang Z., Tang Y.-J., Chen T., Zhao X. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 2015;31:13–21. doi: 10.1016/j.ymben.2015.06.006. PubMed DOI

Cho J.S., Choi K.R., Prabowo C.P.S., Shin J.H., Yang D., Jang J., Lee S.Y. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 2017;42:157–167. doi: 10.1016/j.ymben.2017.06.010. PubMed DOI

Ferreira R., David F., Nielsen J. Advancing Biotechnology with CRISPR/Cas9: Recent applications and patent landscape. J. Ind. Microbiol. Biotechnol. 2018;45:467–480. doi: 10.1007/s10295-017-2000-6. PubMed DOI

Kuivanen J., Wang Y.-M.J., Richard P. Engineering Aspergillus niger for galactaric acid production: Elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb. Cell Factories. 2016;15:210. doi: 10.1186/s12934-016-0613-5. PubMed DOI PMC

Siripong W., Angela C., Tanapongpipat S., Runguphan W. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-Butanol) Enzyme Microb. Technol. 2020;138:109557. doi: 10.1016/j.enzmictec.2020.109557. PubMed DOI

Xu P., Li L., Zhang F., Stephanopoulos G., Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. PNAS. 2014;111:11299–11304. doi: 10.1073/pnas.1406401111. PubMed DOI PMC

Jiménez A., Muñoz-Fernández G., Ledesma-Amaro R., Buey R.M., Revuelta J.L. One-Vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii. Microb. Biotechnol. 2019;12:1293–1301. doi: 10.1111/1751-7915.13425. PubMed DOI PMC

Liu W., An C., Shu X., Meng X., Yao Y., Zhang J., Chen F., Xiang H., Yang S., Gao X., et al. A dual-plasmid CRISPR/cas system for mycotoxin elimination in polykaryotic industrial fungi. ACS Synth. Biol. 2020;9:2087–2095. doi: 10.1021/acssynbio.0c00178. PubMed DOI

Li C., Zhang R., Meng X., Chen S., Zong Y., Lu C., Qiu J.-L., Chen Y.-H., Li J., Gao C. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 2020;38:875–882. doi: 10.1038/s41587-019-0393-7. PubMed DOI

Mougiakos I., Mohanraju P., Bosma E.F., Vrouwe V., Finger Bou M., Naduthodi M.I.S., Gussak A., Brinkman R.B.L., van Kranenburg R., van der Oost J. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat. Commun. 2017;8:1647. doi: 10.1038/s41467-017-01591-4. PubMed DOI PMC

Lim H., Choi S.-K. Programmed GRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis. Front. Microbiol. 2019;10 doi: 10.3389/fmicb.2019.01140. PubMed DOI PMC

Altenbuchner J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2016;82:5421–5427. doi: 10.1128/AEM.01453-16. PubMed DOI PMC

Nagaraju S., Davies N.K., Walker D.J.F., Köpke M., Simpson S.D. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol. Biofuels. 2016;9:219. doi: 10.1186/s13068-016-0638-3. PubMed DOI PMC

Wang Y., Zhang Z.-T., Seo S.-O., Lynn P., Lu T., Jin Y.-S., Blaschek H.P. Gene transcription repression in Clostridium beijerinckii using CRISPR-DCas9. Biotechnol. Bioeng. 2016;113:2739–2743. doi: 10.1002/bit.26020. PubMed DOI

Xu C., Huang R., Teng L., Jing X., Hu J., Cui G., Wang Y., Cui Q., Xu J. Cellulosome stoichiometry in clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat. Commun. 2015;6:6900. doi: 10.1038/ncomms7900. PubMed DOI PMC

Huang H., Chai C., Li N., Rowe P., Minton N.P., Yang S., Jiang W., Gu Y. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol. 2016;5:1355–1361. doi: 10.1021/acssynbio.6b00044. PubMed DOI

Pyne M.E., Sokolenko S., Liu X., Srirangan K., Bruder M.R., Aucoin M.G., Moo-Young M., Chung D.A., Chou C.P. Disruption of the reductive 1,3-propanediol pathway triggers production of 1,2-propanediol for sustained glycerol fermentation by Clostridium Ppasteurianum. Appl. Environ. Microbiol. 2016;82:5375–5388. doi: 10.1128/AEM.01354-16. PubMed DOI PMC

Cleto S., Jensen J.V., Wendisch V.F., Lu T.K. Corynebacterium Gglutamicum metabolic engineering with CRISPR interference (CRISPRi) ACS Synth. Biol. 2016;5:375–385. doi: 10.1021/acssynbio.5b00216. PubMed DOI PMC

Li H., Shen C.R., Huang C.-H., Sung L.-Y., Wu M.-Y., Hu Y.-C. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabol. Eng. 2016;38:293–302. doi: 10.1016/j.ymben.2016.09.006. PubMed DOI

Zhang S., Guo F., Yan W., Dai Z., Dong W., Zhou J., Zhang W., Xin F., Jiang M. Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology. Front. Bioeng. Biotechnol. 2020;7 doi: 10.3389/fbioe.2019.00459. PubMed DOI PMC

Donohoue P.D., Barrangou R., May A.P. Advances in industrial biotechnology using CRISPR-cas systems. Trends Biotechnol. 2018;36:134–146. doi: 10.1016/j.tibtech.2017.07.007. PubMed DOI

Oh J.-H., van Pijkeren J.-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131. doi: 10.1093/nar/gku623. PubMed DOI PMC

Hao M., Cui Y., Qu X. Analysis of CRISPR-cas system in Streptococcus thermophilus and its application. Front. Microbiol. 2018;9:257. doi: 10.3389/fmicb.2018.00257. PubMed DOI PMC

Zhang M.M., Wong F.T., Wang Y., Luo S., Lim Y.H., Heng E., Yeo W.L., Cobb R.E., Enghiad B., Ang E.L., et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 2017;13:607–609. doi: 10.1038/nchembio.2341. PubMed DOI PMC

Huang H., Zheng G., Jiang W., Hu H., Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. 2015;47:231–243. doi: 10.1093/abbs/gmv007. PubMed DOI

Jia H., Zhang L., Wang T., Han J., Tang H., Zhang L. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology. 2017;163:1148–1155. doi: 10.1099/mic.0.000501. PubMed DOI

Lim Y.H., Wong F.T., Yeo W.L., Ching K.C., Lim Y.W., Heng E., Chen S., Tsai D.-J., Lauderdale T.-L., Shia K.-S., et al. Auroramycin: A potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation. ChemBioChem. 2018;19:1716–1719. doi: 10.1002/cbic.201800266. PubMed DOI

Zhang Y., Sun X., Wang Q., Xu J., Dong F., Yang S., Yang J., Zhang Z., Qian Y., Chen J., et al. Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth. Biol. 2020;9:1998–2008. doi: 10.1021/acssynbio.0c00073. PubMed DOI

Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015;81:2506–2514. doi: 10.1128/AEM.04023-14. PubMed DOI PMC

Wenderoth M., Pinecker C., Voß B., Fischer R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet. Biol. 2017;101:55–60. doi: 10.1016/j.fgb.2017.03.001. PubMed DOI

Nødvig C.S., Nielsen J.B., Kogle M.E., Mortensen U.H. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE. 2015;10:e0133085. doi: 10.1371/journal.pone.0133085. PubMed DOI PMC

Nødvig C.S., Hoof J.B., Kogle M.E., Jarczynska Z.D., Lehmbeck J., Klitgaard D.K., Mortensen U.H. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in aspergilli. Fungal Genet. Biol. 2018;115:78–89. doi: 10.1016/j.fgb.2018.01.004. PubMed DOI

Weyda I., Yang L., Vang J., Ahring B.K., Lübeck M., Lübeck P.S. A comparison of agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J. Microbiol. Methods. 2017;135:26–34. doi: 10.1016/j.mimet.2017.01.015. PubMed DOI

Fuller K.K., Chen S., Loros J.J., Dunlap J.C. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot. Cell. 2015;14:1073–1080. doi: 10.1128/EC.00107-15. PubMed DOI PMC

Kadooka C., Yamaguchi M., Okutsu K., Yoshizaki Y., Takamine K., Katayama T., Maruyama J.-I., Tamaki H., Futagami T. A CRISPR/Cas9-mediated gene knockout system in Aspergillus luchuensis mut. Kawachii. Biosci. Biotechnol. Biochem. 2020;84:2179–2183. doi: 10.1080/09168451.2020.1792761. PubMed DOI

Katayama T., Tanaka Y., Okabe T., Nakamura H., Fujii W., Kitamoto K., Maruyama J. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol. Lett. 2016;38:637–642. doi: 10.1007/s10529-015-2015-x. PubMed DOI

Min K., Ichikawa Y., Woolford C.A., Mitchell A.P. Candida albicans gene deletion with a transient CRISPR-Cas9 System. mSphere. 2016;1 doi: 10.1128/mSphere.00130-16. PubMed DOI PMC

Enkler L., Richer D., Marchand A.L., Ferrandon D., Jossinet F. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 System. Sci Rep. 2016;6:35766. doi: 10.1038/srep35766. PubMed DOI PMC

Wang Y., Wei D., Zhu X., Pan J., Zhang P., Huo L., Zhu X. A ‘Suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 2016;6:31145. doi: 10.1038/srep31145. PubMed DOI PMC

Shi T.-Q., Gao J., Wang W.-J., Wang K.-F., Xu G.-Q., Huang H., Ji X.-J. CRISPR/Cas9-based genome editing in the filamentous Fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synth. Biol. 2019;8:445–454. doi: 10.1021/acssynbio.8b00478. PubMed DOI

Qin H., Xiao H., Zou G., Zhou Z., Zhong J.-J. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem. 2017;56:57–61. doi: 10.1016/j.procbio.2017.02.012. DOI

Wilson A.M., Wingfield B.D. CRISPR-Cas9-mediated genome editing in the Filamentous Ascomycete Huntiella omanensis. J. Vis. Exp. 2020 doi: 10.3791/61367. PubMed DOI

Horwitz A.A., Walter J.M., Schubert M.G., Kung S.H., Hawkins K., Platt D.M., Hernday A.D., Mahatdejkul-Meadows T., Szeto W., Chandran S.S., et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015;1:88–96. doi: 10.1016/j.cels.2015.02.001. PubMed DOI

Liu Q., Gao R., Li J., Lin L., Zhao J., Sun W., Tian C. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels. 2017;10:1. doi: 10.1186/s13068-016-0693-9. PubMed DOI PMC

Matsu-ura T., Baek M., Kwon J., Hong C. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2015;2:s40694–s40715. doi: 10.1186/s40694-015-0015-1. PubMed DOI PMC

Pohl C., Kiel J.A.K.W., Driessen A.J.M., Bovenberg R.A.L., Nygård Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth. Biol. 2016;5:754–764. doi: 10.1021/acssynbio.6b00082. PubMed DOI

Fang Y., Tyler B.M. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol. Plant Pathol. 2016;17:127–139. doi: 10.1111/mpp.12318. PubMed DOI PMC

Jacobs J.Z., Ciccaglione K.M., Tournier V., Zaratiegui M. Implementation of the CRISPR-Cas9 System in fission yeast. Nat. Commun. 2014;5:5344. doi: 10.1038/ncomms6344. PubMed DOI PMC

Nielsen M.L., Isbrandt T., Rasmussen K.B., Thrane U., Hoof J.B., Larsen T.O., Mortensen U.H. Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9. PLoS ONE. 2017;12:e0169712. doi: 10.1371/journal.pone.0169712. PubMed DOI PMC

Liu R., Chen L., Jiang Y., Zhou Z., Zou G. Efficient genome editing in Filamentous Fungus Trichoderma reesei Uusing the CRISPR/Cas9 System. Cell Discov. 2015;1:1–11. doi: 10.1038/celldisc.2015.7. PubMed DOI PMC

Schuster M., Schweizer G., Reissmann S., Kahmann R. Genome editing in Ustilago maydis using the CRISPR-cas system. Fungal. Genet. Biol. 2016;89:3–9. doi: 10.1016/j.fgb.2015.09.001. PubMed DOI

Schwartz C.M., Hussain M.S., Blenner M., Wheeldon I. Synthetic RNA Polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth. Biol. 2016;5:356–359. doi: 10.1021/acssynbio.5b00162. PubMed DOI

Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to fok I Cleavage domain. PNAS. 1996;93:1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC

Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and Other TAL effector-based constructs for DNA Targeting. Nucleic Acids Res. 2011;39:e82. doi: 10.1093/nar/gkr218. PubMed DOI PMC

Wang H., La Russa M., Qi L.S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 2016;85:227–264. doi: 10.1146/annurev-biochem-060815-014607. PubMed DOI

Sakuma T., Nishikawa A., Kume S., Chayama K., Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 Vector System. Sci. Rep. 2014;4:5400. doi: 10.1038/srep05400. PubMed DOI PMC

Poirier J.T. CRISPR libraries and screening. Prog. Mol. Biol. Transl. Sci. 2017;152:69–82. doi: 10.1016/bs.pmbts.2017.10.002. PubMed DOI

Zhang J.-H., Adikaram P., Pandey M., Genis A., Simonds W.F. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered. 2016;7:166–174. doi: 10.1080/21655979.2016.1189039. PubMed DOI PMC

Zhu H., Li C., Gao C. Applications of CRISPR–cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020;21:661–677. doi: 10.1038/s41580-020-00288-9. PubMed DOI

Sedeek K.E.M., Mahas A., Mahfouz M. Plant genome engineering for targeted improvement of crop traits. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00114. PubMed DOI PMC

FAOSTAT. [(accessed on 11 March 2021)]; Available online: http://www.fao.org/faostat/en/#data/RL.

Biotech Crop Highlights in 2018 | ISAAA.Org. [(accessed on 14 March 2021)]; Available online: https://www.isaaa.org/resources/publications/pocketk/16/

PubMed. [(accessed on 14 March 2021)]; Available online: https://pubmed.ncbi.nlm.nih.gov/

Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.-S. Analysis of off-target effects of CRISPR/Cas-Derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–141. doi: 10.1101/gr.162339.113. PubMed DOI PMC

Soga K., Nakamura K., Ishigaki T., Kimata S., Ohmori K., Kishine M., Mano J., Takabatake R., Kitta K., Nagoya H., et al. Development of a novel method for specific detection of genetically modified atlantic salmon, aquadvantage, using real-time polymerase chain reaction. Food Chem. 2020;305:125426. doi: 10.1016/j.foodchem.2019.125426. PubMed DOI

Caplan A.L., Parent B., Shen M., Plunkett C. No time to waste—the ethical challenges created by CRISPR. EMBO Rep. 2015;16:1421–1426. doi: 10.15252/embr.201541337. PubMed DOI PMC

Scudellari M. Self-destructing mosquitoes and sterilized rodents: The promise of gene drives. Nature. 2019;571:160–162. doi: 10.1038/d41586-019-02087-5. PubMed DOI

Schleidgen S., Dederer H.-G., Sgodda S., Cravcisin S., Lüneburg L., Cantz T., Heinemann T. Human germline editing in the era of CRISPR-Cas: Risk and uncertainty, inter-generational responsibility, therapeutic legitimacy. BMC Med. Ethics. 2020;21:87. doi: 10.1186/s12910-020-00487-1. PubMed DOI PMC

Furtado R.N., Furtado R.N. Gene Editing: The risks and benefits of modifying human DNA. Rev. Bioética. 2019;27:223–233. doi: 10.1590/1983-80422019272304. DOI

Locke L.G. The Promise of CRISPR for human germline editing and the perils of “Playing God”. CRISPR J. 2020;3:27–31. doi: 10.1089/crispr.2019.0033. PubMed DOI PMC

Ihry R.J., Worringer K.A., Salick M.R., Frias E., Ho D., Theriault K., Kommineni S., Chen J., Sondey M., Ye C., et al. P53 Inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018;24:939–946. doi: 10.1038/s41591-018-0050-6. PubMed DOI

Haapaniemi E., Botla S., Persson J., Schmierer B., Taipale J. CRISPR–Cas9 genome editing induces a P53-mediated DNA damage response. Nat. Med. 2018;24:927–930. doi: 10.1038/s41591-018-0049-z. PubMed DOI

Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-cas nucleases in human cells. Nat. Biotechnol. 2013;31:822–826. doi: 10.1038/nbt.2623. PubMed DOI PMC

Ferdosi S.R., Ewaisha R., Moghadam F., Krishna S., Park J.G., Ebrahimkhani M.R., Kiani S., Anderson K.S. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 2019;10:1–10. doi: 10.1038/s41467-019-09693-x. PubMed DOI PMC

Pawluk A., Davidson A.R., Maxwell K.L. Anti-CRISPR: Discovery, mechanism and function. Nat. Rev. Microbiol. 2018;16:12–17. doi: 10.1038/nrmicro.2017.120. PubMed DOI

DiEuliis D., Giordano J. Why gene editors like CRISPR/Cas may be a game-changer for neuroweapons. Health Secur. 2017;15:296–302. doi: 10.1089/hs.2016.0120. PubMed DOI PMC

DiEuliis D., Giordano J. Gene editing using CRISPR/Cas9: Implications for dual-use and biosecurity. Protein Cell. 2018;9:239–240. doi: 10.1007/s13238-017-0493-4. PubMed DOI PMC

West R.M., Gronvall G.K. CRISPR Cautions: Biosecurity implications of gene editing. Perspect. Biol. Med. 2020;63:73–92. doi: 10.1353/pbm.2020.0006. PubMed DOI

Ayanoğlu F.B., Elçin A.E., Elçin Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020;44:110–120. doi: 10.3906/biy-1912-52. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...