Novel CRISPR-Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives
Language English Country Switzerland Media electronic
Document type Historical Article, Journal Article, Review
Grant support
VT2019-2021
UHK
CEP Register
PubMed
33805113
PubMed Central
PMC8036902
DOI
10.3390/ijms22073327
PII: ijms22073327
Knihovny.cz E-resources
- Keywords
- CRISPR/Cas9, agricultural production, genome editing, industrial applications, livestock, therapeutics,
- MeSH
- Archaea metabolism MeSH
- Bacteria metabolism MeSH
- CRISPR-Cas Systems * MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Livestock MeSH
- Gene Editing methods MeSH
- Genetic Engineering history methods MeSH
- Genome MeSH
- Humans MeSH
- Clustered Regularly Interspaced Short Palindromic Repeats MeSH
- Crops, Agricultural genetics MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
According to Darwin's theory, endless evolution leads to a revolution. One such example is the Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-Cas system, an adaptive immunity system in most archaea and many bacteria. Gene editing technology possesses a crucial potential to dramatically impact miscellaneous areas of life, and CRISPR-Cas represents the most suitable strategy. The system has ignited a revolution in the field of genetic engineering. The ease, precision, affordability of this system is akin to a Midas touch for researchers editing genomes. Undoubtedly, the applications of this system are endless. The CRISPR-Cas system is extensively employed in the treatment of infectious and genetic diseases, in metabolic disorders, in curing cancer, in developing sustainable methods for fuel production and chemicals, in improving the quality and quantity of food crops, and thus in catering to global food demands. Future applications of CRISPR-Cas will provide benefits for everyone and will save countless lives. The technology is evolving rapidly; therefore, an overview of continuous improvement is important. In this review, we aim to elucidate the current state of the CRISPR-Cas revolution in a tailor-made format from its discovery to exciting breakthroughs at the application level and further upcoming trends related to opportunities and challenges including ethical concerns.
See more in PubMed
Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the Iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987;169:5429–5433. doi: 10.1128/JB.169.12.5429-5433.1987. PubMed DOI PMC
Jore M.M., Brouns S.J.J., van der Oost J. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. Cold Spring Harb. Perspect. Biol. 2012;4 doi: 10.1101/cshperspect.a003657. PubMed DOI PMC
Jansen R., van Embden J.D.A., Gaastra W., Schouls L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002;43:1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x. PubMed DOI
Mojica F.J., Juez G., Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 1993;9:613–621. doi: 10.1111/j.1365-2958.1993.tb01721.x. PubMed DOI
Makarova K.S., Aravind L., Grishin N.V., Rogozin I.B., Koonin E.V. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 2002;30:482–496. doi: 10.1093/nar/30.2.482. PubMed DOI PMC
Mojica F.J.M., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005;60:174–182. doi: 10.1007/s00239-004-0046-3. PubMed DOI
Pourcel C., Salvignol G., Vergnaud G. CRISPR Elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005;151:653–663. doi: 10.1099/mic.0.27437-0. PubMed DOI
Makarova K.S., Grishin N.V., Shabalina S.A., Wolf Y.I., Koonin E.V. A Putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 2006;1:7. doi: 10.1186/1745-6150-1-7. PubMed DOI PMC
Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–1712. doi: 10.1126/science.1138140. PubMed DOI
Makarova K.S., Haft D.H., Barrangou R., Brouns S.J.J., Charpentier E., Horvath P., Moineau S., Mojica F.J.M., Wolf Y.I., Yakunin A.F., et al. Evolution and classification of the CRISPR-cas systems. Nat. Rev. Microbiol. 2011;9:467–477. doi: 10.1038/nrmicro2577. PubMed DOI PMC
Sapranauskas R., Gasiunas G., Fremaux C., Barrangou R., Horvath P., Siksnys V. The Streptococcus thermophilus CRISPR/cas system provides immunity in Escherichia Coli. Nucleic Acids Res. 2011;39:9275–9282. doi: 10.1093/nar/gkr606. PubMed DOI PMC
Bikard D., Jiang W., Samai P., Hochschild A., Zhang F., Marraffini L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-cas system. Nucleic Acids Res. 2013;41:7429–7437. doi: 10.1093/nar/gkt520. PubMed DOI PMC
McGinn J., Marraffini L.A. Molecular mechanisms of CRISPR-cas spacer acquisition. Nat. Rev. Microbiol. 2019;17:7–12. doi: 10.1038/s41579-018-0071-7. PubMed DOI
Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., et al. Evolutionary classification of CRISPR–cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020;18:67–83. doi: 10.1038/s41579-019-0299-x. PubMed DOI PMC
Hochstrasser M.L., Doudna J.A. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 2015;40:58–66. doi: 10.1016/j.tibs.2014.10.007. PubMed DOI
Gleditzsch D., Pausch P., Müller-Esparza H., Özcan A., Guo X., Bange G., Randau L. PAM identification by CRISPR-cas effector complexes: Diversified mechanisms and structures. RNA Biol. 2018;16:504–517. doi: 10.1080/15476286.2018.1504546. PubMed DOI PMC
Mojica F.J., Díez-Villaseñor C., Soria E., Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and Mitochondria. Mol. Microbiol. 2000;36:244–246. doi: 10.1046/j.1365-2958.2000.01838.x. PubMed DOI
Karginov F.V., Hannon G.J. The CRISPR system: Small RNA-guided defense in Bacteria and Archaea. Mol. Cell. 2010;37:7. doi: 10.1016/j.molcel.2009.12.033. PubMed DOI PMC
Alkhnbashi O.S., Shah S.A., Garrett R.A., Saunders S.J., Costa F., Backofen R. Characterizing leader sequences of CRISPR loci. Bioinformatics. 2016;32:i576–i585. doi: 10.1093/bioinformatics/btw454. PubMed DOI
Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J.J., Charpentier E., Haft D.H., et al. An updated evolutionary classification of CRISPR–cas systems. Nat. Rev. Microb. 2015;13:722–736. doi: 10.1038/nrmicro3569. PubMed DOI PMC
Clark D.P., Pazdernik N.J., McGehee M.R. Chapter 20-Genome Defense. In: Clark D.P., Pazdernik N.J., McGehee M.R., editors. Molecular Biology. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2019. pp. 622–653.
Charpentier E., Richter H., van der Oost J., White M.F. Biogenesis pathways of RNA guides in Archaeal and Bacterial CRISPR-cas adaptive immunity. FEMS Microbiol. Rev. 2015;39:428–441. doi: 10.1093/femsre/fuv023. PubMed DOI PMC
Özcan A., Pausch P., Linden A., Wulf A., Schühle K., Heider J., Urlaub H., Heimerl T., Bange G., Randau L. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nat. Microbiol. 2019;4:89–96. doi: 10.1038/s41564-018-0274-8. PubMed DOI
Hille F., Richter H., Wong S.P., Bratovič M., Ressel S., Charpentier E. The biology of CRISPR-cas: Backward and forward. Cell. 2018;172:1239–1259. doi: 10.1016/j.cell.2017.11.032. PubMed DOI
Zhou Y., Bravo J.P.K., Taylor H.N., Steens J., Jackson R.N., Staals R.H.J., Taylor D.W. Structure of a type IV CRISPR-cas effector complex. bioRxiv. 2020 doi: 10.1101/2020.07.31.231399. PubMed DOI PMC
Schindele P., Wolter F., Puchta H. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett. 2018;592:1954–1967. doi: 10.1002/1873-3468.13073. PubMed DOI
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC
Li Y., Glass Z., Huang M., Chen Z.-Y., Xu Q. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials. 2020;234:119711. doi: 10.1016/j.biomaterials.2019.119711. PubMed DOI PMC
Rees H.A., Liu D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018;19:770–788. doi: 10.1038/s41576-018-0059-1. PubMed DOI PMC
Miao J., Guo D., Zhang J., Huang Q., Qin G., Zhang X., Wan J., Gu H., Qu L.-J. Targeted mutagenesis in rice using CRISPR-cas system. Cell Res. 2013;23:1233–1236. doi: 10.1038/cr.2013.123. PubMed DOI PMC
Shan Q., Wang Y., Li J., Gao C. Genome editing in rice and wheat using the CRISPR/cas system. Nat. Protoc. 2014;9:2395–2410. doi: 10.1038/nprot.2014.157. PubMed DOI
Zhang Y., Li D., Zhang D., Zhao X., Cao X., Dong L., Liu J., Chen K., Zhang H., Gao C., et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J. 2018;94:857–866. doi: 10.1111/tpj.13903. PubMed DOI
Ma X., Zhang Q., Zhu Q., Liu W., Chen Y., Qiu R., Wang B., Yang Z., Li H., Lin Y., et al. A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant. 2015;8:1274–1284. doi: 10.1016/j.molp.2015.04.007. PubMed DOI
Jiang W.Z., Henry I.M., Lynagh P.G., Comai L., Cahoon E.B., Weeks D.P. Significant enhancement of fatty acid composition in seeds of the allohexaploid, cCamelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechnol. J. 2017;15:648–657. doi: 10.1111/pbi.12663. PubMed DOI PMC
Sánchez-León S., Gil-Humanes J., Ozuna C.V., Giménez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC
Aznar-Moreno J.A., Durrett T.P. Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol. 2017;58:1260–1267. doi: 10.1093/pcp/pcx058. PubMed DOI
Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00298. PubMed DOI PMC
Shan Q., Wang Y., Li J., Zhang Y., Chen K., Liang Z., Zhang K., Liu J., Xi J.J., Qiu J.-L., et al. Targeted genome modification of crop plants using a CRISPR-cas system. Nat. Biotechnol. 2013;31:686–688. doi: 10.1038/nbt.2650. PubMed DOI
Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y., Barg R. Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 2017;15:634–647. doi: 10.1111/pbi.12662. PubMed DOI PMC
Lu H.-P., Luo T., Fu H.-W., Wang L., Tan Y.-Y., Huang J.-Z., Wang Q., Ye G.-Y., Gatehouse A.M.R., Lou Y.-G., et al. Resistance of Rice to Insect Pests Mediated by Suppression of Serotonin Biosynthesis. Nat. Plants. 2018;4:338–344. doi: 10.1038/s41477-018-0152-7. PubMed DOI
Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. Genetics. 2010;186:757–761. doi: 10.1534/genetics.110.120717. PubMed DOI PMC
Chen K., Wang Y., Zhang R., Zhang H., Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;70:667–697. doi: 10.1146/annurev-arplant-050718-100049. PubMed DOI
Kim H., Kim S.-T., Ryu J., Kang B.-C., Kim J.-S., Kim S.-G. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 2017;8:14406. doi: 10.1038/ncomms14406. PubMed DOI PMC
Xu R., Li H., Qin R., Wang L., Li L., Wei P., Yang J. Gene targeting using the Agrobacterium Ttumefaciens-mediated CRISPR-cas system in rice. Rice. 2014;7:5. doi: 10.1186/s12284-014-0005-6. PubMed DOI PMC
Yin K., Han T., Liu G., Chen T., Wang Y., Yu A.Y.L., Liu Y. A Geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015;5:14926. doi: 10.1038/srep14926. PubMed DOI PMC
Baltes N.J., Hummel A.W., Konecna E., Cegan R., Bruns A.N., Bisaro D.M., Voytas D.F. Conferring resistance to geminiviruses with the CRISPR-cas prokaryotic immune System. Nat. Plants. 2015;1:15145. doi: 10.1038/nplants.2015.145. PubMed DOI PMC
Feng Z., Mao Y., Xu N., Zhang B., Wei P., Yang D.-L., Wang Z., Zhang Z., Zheng R., Yang L., et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/cas-induced gene modifications in arabidopsis. Proc. Natl. Acad. Sci. USA. 2014;111:4632–4637. doi: 10.1073/pnas.1400822111. PubMed DOI PMC
Puchta H. Using CRISPR/cas in three dimensions: Towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. 2016;87:5–15. doi: 10.1111/tpj.13100. PubMed DOI
Aman R., Ali Z., Butt H., Mahas A., Aljedaani F., Khan M.Z., Ding S., Mahfouz M. RNA Virus interference via CRISPR/Cas13a system in plants. Genome Biol. 2018;19:1. doi: 10.1186/s13059-017-1381-1. PubMed DOI PMC
Abudayyeh O.O., Gootenberg J.S., Essletzbichler P., Han S., Joung J., Belanto J.J., Verdine V., Cox D.B.T., Kellner M.J., Regev A., et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550:280–284. doi: 10.1038/nature24049. PubMed DOI PMC
Zhou H., He M., Li J., Chen L., Huang Z., Zheng S., Zhu L., Ni E., Jiang D., Zhao B., et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-Mediated TMS5 editing system. Sci. Rep. 2016;6:37395. doi: 10.1038/srep37395. PubMed DOI PMC
Svitashev S., Schwartz C., Lenderts B., Young J.K., Mark Cigan A. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat. Commun. 2016;7:13274. doi: 10.1038/ncomms13274. PubMed DOI PMC
Singh M., Kumar M., Albertsen M.C., Young J.K., Cigan A.M. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum Aaestivum, L.) Plant. Mol. Biol. 2018;97:371–383. doi: 10.1007/s11103-018-0749-2. PubMed DOI
Yao L., Zhang Y., Liu C., Liu Y., Wang Y., Liang D., Liu J., Sahoo G., Kelliher T. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants. 2018;4:530–533. doi: 10.1038/s41477-018-0193-y. PubMed DOI
Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K., et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017;35:441–443. doi: 10.1038/nbt.3833. PubMed DOI
Chen Y., Wang Z., Ni H., Xu Y., Chen Q., Jiang L. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in arabidopsis. Sci. China Life Sci. 2017;60:520–523. doi: 10.1007/s11427-017-9021-5. PubMed DOI
Tian S., Jiang L., Cui X., Zhang J., Guo S., Li M., Zhang H., Ren Y., Gong G., Zong M., et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep. 2018;37:1353–1356. doi: 10.1007/s00299-018-2299-0. PubMed DOI
Malnoy M., Viola R., Jung M.-H., Koo O.-J., Kim S., Kim J.-S., Velasco R., Nagamangala Kanchiswamy C. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 2016;7:1904. doi: 10.3389/fpls.2016.01904. PubMed DOI PMC
Ji L., Jordan W.T., Shi X., Hu L., He C., Schmitz R.J. TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat. Commun. 2018;9:895. doi: 10.1038/s41467-018-03289-7. PubMed DOI PMC
Tripathi L., Ntui V.O., Tripathi J.N. CRISPR/Cas9-based genome editing of banana for disease resistance. Curr. Opin. Plant Biol. 2020;56:118–126. doi: 10.1016/j.pbi.2020.05.003. PubMed DOI
Gomez M.A., Lin Z.D., Moll T., Luebbert C., Chauhan R.D., Vijayaraghavan A., Kelley R., Beyene G., Taylor N.J., Carrington J., et al. Simultaneous CRISPR/Cas9-mediated editing of cassava EIF4E isoforms NCBP-1 and NCBP-2 confers elevated resistance to cassava brown streak disease. bioRxiv. 2017:209874. doi: 10.1101/209874. PubMed DOI
Hummel A.W., Chauhan R.D., Cermak T., Mutka A.M., Vijayaraghavan A., Boyher A., Starker C.G., Bart R., Voytas D.F., Taylor N.J. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol. J. 2018;16:1275–1282. doi: 10.1111/pbi.12868. PubMed DOI PMC
Peng A., Chen S., Lei T., Xu L., He Y., Wu L., Yao L., Zou X. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 2017;15:1509–1519. doi: 10.1111/pbi.12733. PubMed DOI PMC
Jia H., Zhang Y., Orbović V., Xu J., White F.F., Jones J.B., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC
Fister A.S., Landherr L., Maximova S.N., Guiltinan M.J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in theobroma cacao. Front. Plant Sci. 2018;9:268. doi: 10.3389/fpls.2018.00268. PubMed DOI PMC
Iqbal Z., Sattar M.N., Shafiq M. CRISPR/Cas9: A tool to circumscribe cotton leaf curl disease. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00475. PubMed DOI PMC
Zhang Z., Ge X., Luo X., Wang P., Fan Q., Hu G., Xiao J., Li F., Wu J. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium Dahliae in allotetraploid upland cotton. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.00842. PubMed DOI PMC
Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016;17:1140–1153. doi: 10.1111/mpp.12375. PubMed DOI PMC
Sauer N.J., Narváez-Vásquez J., Mozoruk J., Miller R.B., Warburg Z.J., Woodward M.J., Mihiret Y.A., Lincoln T.A., Segami R.E., Sanders S.L., et al. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol. 2016;170:1917–1928. doi: 10.1104/pp.15.01696. PubMed DOI PMC
Wang X., Guo R., Tu M., Wang D., Guo C., Wan R., Li Z., Wang X. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 in Arabidopsis thaliana enhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen Botrytis cinerea. Front. Plant Sci. 2017;8 doi: 10.3389/fpls.2017.00097. PubMed DOI PMC
Choudhury M.D., Das S., Tarafdar S. Effect of loading history on visco-elastic potato starch Gel. Coll. Surf. A Physicochem. Eng. Asp. 2016;492:47–53. doi: 10.1016/j.colsurfa.2015.12.007. DOI
Makhotenko A.V., Khromov A.V., Snigir E.A., Makarova S.S., Makarov V.V., Suprunova T.P., Kalinina N.O., Taliansky M.E. Functional analysis of coilin in virus resistance and stress tolerance of potato Solanum tuberosum using CRISPR-Cas9 editing. Dokl. Biochem. Biophys. 2019;484:88–91. doi: 10.1134/S1607672919010241. PubMed DOI
Ma J., Chen J., Wang M., Ren Y., Wang S., Lei C., Cheng Z. Sodmergen, null disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J. Exp. Bot. 2018;69:1051–1064. doi: 10.1093/jxb/erx458. PubMed DOI PMC
Macovei A., Sevilla N.R., Cantos C., Jonson G.B., Slamet-Loedin I., Čermák T., Voytas D.F., Choi I.-R., Chadha-Mohanty P. Novel alleles of rice EIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol. J. 2018;16:1918–1927. doi: 10.1111/pbi.12927. PubMed DOI PMC
Li J., Meng X., Zong Y., Chen K., Zhang H., Liu J., Li J., Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants. 2016;2:16139. doi: 10.1038/nplants.2016.139. PubMed DOI
Mishra R., Joshi R.K., Zhao K. Genome editing in rice: Recent advances, challenges, and future implications. Front. Plant Sci. 2018;9 doi: 10.3389/fpls.2018.01361. PubMed DOI PMC
Cai Y., Chen L., Liu X., Sun S., Wu C., Jiang B., Han T., Hou W. CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE. 2015;10:e0136064. doi: 10.1371/journal.pone.0136064. PubMed DOI PMC
Ludman M., Burgyán J., Fátyol K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses. Sci. Rep. 2017;7:1010. doi: 10.1038/s41598-017-01050-6. PubMed DOI PMC
Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017;7:482. doi: 10.1038/s41598-017-00578-x. PubMed DOI PMC
Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 2019;17:665–673. doi: 10.1111/pbi.13006. PubMed DOI PMC
Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017;91:714–724. doi: 10.1111/tpj.13599. PubMed DOI
Acevedo-Garcia J., Spencer D., Thieron H., Reinstädler A., Hammond-Kosack K., Phillips A.L., Panstruga R. Mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol. J. 2017;15:367–378. doi: 10.1111/pbi.12631. PubMed DOI PMC
Li W., Nguyen K.H., Chu H.D., Ha C.V., Watanabe Y., Osakabe Y., Leyva-González M.A., Sato M., Toyooka K., Voges L., et al. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. PLoS Genet. 2017;13:e1007076. doi: 10.1371/journal.pgen.1007076. PubMed DOI PMC
Kapusi E., Corcuera-Gómez M., Melnik S., Stoger E. Heritable Genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front. Plant Sci. 2017;8:540. doi: 10.3389/fpls.2017.00540. PubMed DOI PMC
Ren C., Liu X., Zhang Z., Wang Y., Duan W., Li S., Liang Z. CRISPR/Cas9-mediated efficient targeted mutagenesis in chardonnay (Vitis Vinifera, L.) Sci. Rep. 2016;6:32289. doi: 10.1038/srep32289. PubMed DOI PMC
Wang L., Wang L., Tan Q., Fan Q., Zhu H., Hong Z., Zhang Z., Duanmu D. Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front. Plant Sci. 2016;7:1333. doi: 10.3389/fpls.2016.01333. PubMed DOI PMC
Zuo Y., Feng F., Qi W., Song R. Dek42 encodes an RNA-binding protein that affects alternative Pre-MRNA splicing and maize kernel development. J. Integr. Plant Biol. 2019;61:728–748. doi: 10.1111/jipb.12798. PubMed DOI
Waltz E. CRISPR-edited crops free to enter market, skip regulation. Nat. Biotechnol. 2016;34:582. doi: 10.1038/nbt0616-582. PubMed DOI
Alagoz Y., Gurkok T., Zhang B., Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep. 2016;6:30910. doi: 10.1038/srep30910. PubMed DOI PMC
Kui L., Chen H., Zhang W., He S., Xiong Z., Zhang Y., Yan L., Zhong C., He F., Chen J., et al. Building a genetic manipulation tool box for orchid biology: Identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Front. Plant Sci. 2017;7 doi: 10.3389/fpls.2016.02036. PubMed DOI PMC
Semiarti E., Nopitasari S., Setiawati Y., Lawrie M.D., Purwantoro A., Widada J., Yoshioka Y., Matsumoto S., Ninomiya K., Asano Y. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indones. J. Biotechnol. 2020;25:61–68. doi: 10.22146/ijbiotech.39485. DOI
Andersson M., Turesson H., Nicolia A., Fält A.-S., Samuelsson M., Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum Ttuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant. Cell Rep. 2017;36:117–128. doi: 10.1007/s00299-016-2062-3. PubMed DOI PMC
Zhou X., Zha M., Huang J., Li L., Imran M., Zhang C. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J. Exp. Bot. 2017;68:1265–1281. doi: 10.1093/jxb/erx026. PubMed DOI PMC
Veillet F., Perrot L., Chauvin L., Kermarrec M.-P., Guyon-Debast A., Chauvin J.-E., Nogué F., Mazier M. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci. 2019;20:402. doi: 10.3390/ijms20020402. PubMed DOI PMC
Li M., Li X., Zhou Z., Wu P., Fang M., Pan X., Lin Q., Luo W., Wu G., Li H. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00377. PubMed DOI PMC
Xu R., Yang Y., Qin R., Li H., Qiu C., Li L., Wei P., Yang J. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J. Genet. Genom. 2016;43:529–532. doi: 10.1016/j.jgg.2016.07.003. PubMed DOI
Zhang H., Zhang J., Wei P., Zhang B., Gou F., Feng Z., Mao Y., Yang L., Zhang H., Xu N., et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 2014;12:797–807. doi: 10.1111/pbi.12200. PubMed DOI
Nieves-Cordones M., Mohamed S., Tanoi K., Kobayashi N.I., Takagi K., Vernet A., Guiderdoni E., Périn C., Sentenac H., Véry A.-A. Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-cas system. Plant J. 2017;92:43–56. doi: 10.1111/tpj.13632. PubMed DOI
Mao X., Zheng Y., Xiao K., Wei Y., Zhu Y., Cai Q., Chen L., Xie H., Zhang J. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem. Biophys. Res. Commun. 2018;495:461–467. doi: 10.1016/j.bbrc.2017.11.045. PubMed DOI
Shen C., Que Z., Xia Y., Tang N., Li D., He R., Cao M. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J. Plant Biol. 2017;60:539–547. doi: 10.1007/s12374-016-0400-1. DOI
Li C., Zong Y., Wang Y., Jin S., Zhang D., Song Q., Zhang R., Gao C. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59. doi: 10.1186/s13059-018-1443-z. PubMed DOI PMC
Iaffaldano B., Zhang Y., Cornish K. CRISPR/Cas9 genome editing of rubber producing dandelion Taraxacum kok-saghyz using Agrobacterium rhizogenes without selection. Ind. Crops Prod. 2016;89:356–362. doi: 10.1016/j.indcrop.2016.05.029. DOI
Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., Qiu D., Shan Z., Yang Z., Yuan S., et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 2019;19:131. doi: 10.1186/s12870-019-1746-6. PubMed DOI PMC
Ueta R., Abe C., Watanabe T., Sugano S.S., Ishihara R., Ezura H., Osakabe Y., Osakabe K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep. 2017;7:507. doi: 10.1038/s41598-017-00501-4. PubMed DOI PMC
Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M., Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 2015;467:76–82. doi: 10.1016/j.bbrc.2015.09.117. PubMed DOI
Wang R., Tavano E.C.D.R., Lammers M., Martinelli A.P., Angenent G.C., de Maagd R.A. Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci. Rep. 2019;9:1696. doi: 10.1038/s41598-018-38170-6. PubMed DOI PMC
Brooks C., Nekrasov V., Lippman Z.B., Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system1. Plant Physiol. 2014;166:1292–1297. doi: 10.1104/pp.114.247577. PubMed DOI PMC
Li R., Liu C., Zhao R., Wang L., Chen L., Yu W., Zhang S., Sheng J., Shen L. CRISPR/Cas9-mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. 2019;19:38. doi: 10.1186/s12870-018-1627-4. PubMed DOI PMC
Zhang S., Zhang R., Song G., Gao J., Li W., Han X., Chen M., Li Y., Li G. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 2018;18:302. doi: 10.1186/s12870-018-1496-x. PubMed DOI PMC
Liu H., Wang K., Jia Z., Gong Q., Lin Z., Du L., Pei X., Ye X. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized agrobacterium-mediated CRISPR System. J. Exp. Bot. 2020;71:1337–1349. doi: 10.1093/jxb/erz529. PubMed DOI PMC
Von Caemmerer S., Quick W.P., Furbank R.T. The development of C4 rice: Current progress and future challenges. Science. 2012;336:1671–1672. doi: 10.1126/science.1220177. PubMed DOI
Salesse-Smith C.E., Sharwood R.E., Busch F.A., Kromdijk J., Bardal V., Stern D.B. Overexpression of rubisco subunits with RAF1 increases rubisco content in maize. Nat. Plants. 2018;4:802–810. doi: 10.1038/s41477-018-0252-4. PubMed DOI
Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., Dong W., Gao C., Xu C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018 doi: 10.1038/nbt.4273. PubMed DOI
Kosicki M., Tomberg K., Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 2018;36:765–771. doi: 10.1038/nbt.4192. PubMed DOI PMC
Khan M.Z., Amin I., Hameed A., Mansoor S. CRISPR-Cas13a: Prospects for plant virus resistance. Trends Biotechnol. 2018;36:1207–1210. doi: 10.1016/j.tibtech.2018.05.005. PubMed DOI
Min Y.-L., Li H., Rodriguez-Caycedo C., Mireault A.A., Huang J., Shelton J.M., McAnally J.R., Amoasii L., Mammen P.P.A., Bassel-Duby R., et al. CRISPR-Cas9 corrects duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci. Adv. 2019;5:eaav4324. doi: 10.1126/sciadv.aav4324. PubMed DOI PMC
Bjursell M., Porritt M.J., Ericson E., Taheri-Ghahfarokhi A., Clausen M., Magnusson L., Admyre T., Nitsch R., Mayr L., Aasehaug L., et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates A1-antitrypsin deficiency phenotype. EBioMedicine. 2018;29:104–111. doi: 10.1016/j.ebiom.2018.02.015. PubMed DOI PMC
Ohmori T., Mizukami H., Ozawa K., Sakata Y., Nishimura S. New approaches to gene and cell therapy for hemophilia. J. Thromb. Haemost. 2015;13:S133–S142. doi: 10.1111/jth.12926. PubMed DOI
Khosravi M.A., Abbasalipour M., Concordet J.-P., Berg J.V., Zeinali S., Arashkia A., Azadmanesh K., Buch T., Karimipoor M. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur. J. Pharmacol. 2019;854:398–405. doi: 10.1016/j.ebiom.2018.02.015. PubMed DOI
György B., Nist-Lund C., Pan B., Asai Y., Karavitaki K.D., Kleinstiver B.P., Garcia S.P., Zaborowski M.P., Solanes P., Spataro S., et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat. Med. 2019;25:1123–1130. doi: 10.1038/s41591-019-0500-9. PubMed DOI PMC
Dever D.P., Bak R.O., Reinisch A., Camarena J., Washington G., Nicolas C.E., Pavel-Dinu M., Saxena N., Wilkens A.B., Mantri S., et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 2016;539:384–389. doi: 10.1038/nature20134. PubMed DOI PMC
Isgrò A., Gaziev J., Sodani P., Lucarelli G. Progress in hematopoietic stem cell transplantation as allogeneic cellular gene therapy in thalassemia. Ann. N. Y. Acad. Sci. 2010;1202:149–154. doi: 10.1111/j.1749-6632.2010.05543.x. PubMed DOI
Traylen C.M., Patel H.R., Fondaw W., Mahatme S., Williams J.F., Walker L.R., Dyson O.F., Arce S., Akula S.M. Virus reactivation: A panoramic view in human infections. Future Virol. 2011;6:451–463. doi: 10.2217/fvl.11.21. PubMed DOI PMC
Craigie R., Bushman F.D. HIV DNA integration. Cold Spring Harb. Perspect. Med. 2012;2:a006890. doi: 10.1101/cshperspect.a006890. PubMed DOI PMC
Finzi D., Blankson J., Siliciano J.D., Margolick J.B., Chadwick K., Pierson T., Smith K., Lisziewicz J., Lori F., Flexner C., et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 1999;5:512–517. doi: 10.1038/8394. PubMed DOI
Hu W., Kaminski R., Yang F., Zhang Y., Cosentino L., Li F., Luo B., Alvarez-Carbonell D., Garcia-Mesa Y., Karn J., et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA. 2014;111:11461–11466. doi: 10.1073/pnas.1405186111. PubMed DOI PMC
Cho S.W., Kim S., Kim J.M., Kim J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:230–232. doi: 10.1038/nbt.2507. PubMed DOI
Hou P., Chen S., Wang S., Yu X., Chen Y., Jiang M., Zhuang K., Ho W., Hou W., Huang J., et al. Genome editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Sci. Rep. 2015;5:15577. doi: 10.1038/srep15577. PubMed DOI PMC
Liu Z., Chen S., Jin X., Wang Q., Yang K., Li C., Xiao Q., Hou P., Liu S., Wu S., et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell Biosci. 2017;7:1–15. doi: 10.1186/s13578-017-0174-2. PubMed DOI PMC
Yu S., Yao Y., Xiao H., Li J., Liu Q., Yang Y., Adah D., Lu J., Zhao S., Qin L., et al. Simultaneous knockout of CXCR4 and CCR5 genes in CD4+ T cells via CRISPR/Cas9 confers resistance to both X4- and R5-tropic human immunodeficiency virus type 1 infection. Hum. Gene. Ther. 2018;29:51–67. doi: 10.1089/hum.2017.032. PubMed DOI
Dash P.K., Kaminski R., Bella R., Su H., Mathews S., Ahooyi T.M., Chen C., Mancuso P., Sariyer R., Ferrante P., et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat. Commun. 2019;10:2753. doi: 10.1038/s41467-019-10366-y. PubMed DOI PMC
Rusconi S., Giacomelli A. CRISPR in HIV: Dangers of CCR5 deletion. Future Virol. 2020;15:207–209. doi: 10.2217/fvl-2020-0039. DOI
Gao Z., Fan M., Das A.T., Herrera-Carrillo E., Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single CrRNA. Nucleic Acids Res. 2020;48:5527–5539. doi: 10.1093/nar/gkaa226. PubMed DOI PMC
Nouri R., Jiang Y., Lian X.L., Guan W. Sequence-specific recognition of HIV-1 DNA with solid-state CRISPR-Cas12a-assisted nanopores (SCAN) ACS Sens. 2020;5:1273–1280. doi: 10.1021/acssensors.0c00497. PubMed DOI
Ding X., Yin K., Li Z., Liu C. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: A case for rapid, ultrasensitive and visual detection of novel Coronavirus SARS-CoV-2 and HIV Virus. bioRxiv. 2020 doi: 10.1101/2020.03.19.998724. PubMed DOI PMC
Hou T., Zeng W., Yang M., Chen W., Ren L., Ai J., Wu J., Liao Y., Gou X., Li Y., et al. Development and evaluation of A CRISPR-based diagnostic for 2019-novel Coronavirus. medRxiv. 2020 doi: 10.1101/2020.02.22.20025460. PubMed DOI PMC
Roehm P.C., Shekarabi M., Wollebo H.S., Bellizzi A., He L., Salkind J., Khalili K. Inhibition of HSV-1 replication by gene editing strategy. Sci. Rep. 2016;6:23146. doi: 10.1038/srep23146. PubMed DOI PMC
Fan C., Tang Y., Wang J., Xiong F., Guo C., Wang Y., Xiang B., Zhou M., Li X., Wu X., et al. The emerging role of epstein-barr virus encoded microRNAs in nasopharyngeal carcinoma. J. Cancer. 2018;9:2852–2864. doi: 10.7150/jca.25460. PubMed DOI PMC
Van Diemen F.R., Kruse E.M., Hooykaas M.J.G., Bruggeling C.E., Schürch A.C., van Ham P.M., Imhof S.M., Nijhuis M., Wiertz E.J.H.J., Lebbink R.J. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent infections. PLoS Pathog. 2016;12:e1005701. doi: 10.1371/journal.ppat.1005701. PubMed DOI PMC
Tso F.Y., West J.T., Wood C. Reduction of Kaposi’s sarcoma-associated herpesvirus latency using CRISPR-Cas9 to edit the latency-associated nuclear antigen gene. J. Virol. 2019;93 doi: 10.1128/JVI.02183-18. PubMed DOI PMC
Gergen J., Coulon F., Creneguy A., Elain-Duret N., Gutierrez A., Pinkenburg O., Verhoeyen E., Anegon I., Nguyen T.H., Halary F.A., et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE. 2018;13:e0192602. doi: 10.1371/journal.pone.0192602. PubMed DOI PMC
Moffett H.F., Harms C.K., Fitzpatrick K.S., Tooley M.R., Boonyaratanakornkit J., Taylor J.J. B cells engineered to express pathogen-specific antibodies protect against infection. Sci. Immunol. 2019;4 doi: 10.1126/sciimmunol.aax0644. PubMed DOI PMC
Wollebo H.S., Bellizzi A., Kaminski R., Hu W., White M.K., Khalili K. CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection. PLoS ONE. 2015;10:e0136046. doi: 10.1371/journal.pone.0136046. PubMed DOI PMC
Tian X., Gu T., Patel S., Bode A.M., Lee M.-H., Dong Z. CRISPR/Cas9-an evolving biological tool kit for cancer biology and oncology. NPJ Precis. Oncol. 2019;3:8. doi: 10.1038/s41698-019-0080-7. PubMed DOI PMC
Huang C.-H., Lee K.-C., Doudna J.A. Applications of CRISPR-Cas enzymes in cancer therapeutics and detection. Trends Cancer. 2018;4:499–512. doi: 10.1016/j.trecan.2018.05.006. PubMed DOI PMC
Morris L.G.T., Chan T.A. Therapeutic targeting of tumor suppressor genes. Cancer. 2015;121:1357–1368. doi: 10.1002/cncr.29140. PubMed DOI PMC
Kodama M., Kodama T., Murakami M. Oncogene activation and tumor suppressor gene inactivation find their sites of expression in the changes in time and space of the age-adjusted cancer incidence rate. In Vivo. 2000;14:725–734. PubMed
Bu X., Kato J., Hong J.A., Merino M.J., Schrump D.S., Lund F.E., Moss J. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis. 2018;39:242–251. doi: 10.1093/carcin/bgx137. PubMed DOI PMC
Chen C.H., Changou C.A., Hsieh T.H., Lee Y.C., Chu C.Y., Hsu K.C., Wang H.C., Lin Y.C., Lo Y.N., Liu Y.R., et al. Dual inhibition of PIK3C3 and FGFR as a new therapeutic approach to treat bladder cancer. Clin. Cancer res. Off. J. Am. Assoc. Cancer Res. 2018;24:1176–1189. doi: 10.1158/1078-0432.CCR-17-2066. PubMed DOI
Takeda H., Kataoka S., Nakayama M., Ali M.A.E., Oshima H., Yamamoto D., Park J.-W., Takegami Y., An T., Jenkins N.A., et al. CRISPR-Cas9–mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. PNAS. 2019;116:15635–15644. doi: 10.1073/pnas.1904714116. PubMed DOI PMC
Artegiani B., van Voorthuijsen L., Lindeboom R.G.H., Seinstra D., Heo I., Tapia P., López-Iglesias C., Postrach D., Dayton T., Oka R., et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem. Cell. 2019;24:927–943.e6. doi: 10.1016/j.stem.2019.04.017. PubMed DOI
Eyquem J., Mansilla-Soto J., Giavridis T., van der Stegen S.J.C., Hamieh M., Cunanan K.M., Odak A., Gönen M., Sadelain M. Targeting a CAR to the TRAC Locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–117. doi: 10.1038/nature21405. PubMed DOI PMC
Ren J., Liu X., Fang C., Jiang S., June C.H., Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 2017;23:2255–2266. doi: 10.1158/1078-0432.CCR-16-1300. PubMed DOI PMC
Rupp L.J., Schumann K., Roybal K.T., Gate R.E., Ye C.J., Lim W.A., Marson A. CRISPR/Cas9-Mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 2017;7:737. doi: 10.1038/s41598-017-00462-8. PubMed DOI PMC
Huang R.-Y., Francois A., McGray A.R., Miliotto A., Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561. doi: 10.1080/2162402X.2016.1249561. PubMed DOI PMC
Zhang W., Liu Y., Zhou X., Zhao R., Wang H. Applications of CRISPR-Cas9 in gynecological cancer research. Clin. Genet. 2020;97:827–834. doi: 10.1111/cge.13717. PubMed DOI
Firth A.L., Menon T., Parker G.S., Qualls S.J., Lewis B.M., Ke E., Dargitz C.T., Wright R., Khanna A., Gage F.H., et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient IPSCs. Cell Rep. 2015;12:1385–1390. doi: 10.1016/j.celrep.2015.07.062. PubMed DOI PMC
Duchêne B.L., Cherif K., Iyombe-Engembe J.-P., Guyon A., Rousseau J., Ouellet D.L., Barbeau X., Lague P., Tremblay J.P. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol. Ther. 2018;26:2604–2616. doi: 10.1016/j.ymthe.2018.08.010. PubMed DOI PMC
Long C., Li H., Tiburcy M., Rodriguez-Caycedo C., Kyrychenko V., Zhou H., Zhang Y., Min Y.-L., Shelton J.M., Mammen P.P.A., et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci. Adv. 2018;4:eaap9004. doi: 10.1126/sciadv.aap9004. PubMed DOI PMC
Frangoul H., Altshuler D., Cappellini M.D., Chen Y.-S., Domm J., Eustace B.K., Foell J., de la Fuente J., Grupp S., Handgretinger R., et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054. PubMed DOI
Vilarino M., Suchy F.P., Rashid S.T., Lindsay H., Reyes J., McNabb B.R., van der Meulen T., Huising M.O., Nakauchi H., Ross P.J. Mosaicism diminishes the value of pre-implantation embryo biopsies for detecting CRISPR/Cas9 induced mutations in sheep. Transgenic Res. 2018;27:525–537. doi: 10.1007/s11248-018-0094-x. PubMed DOI
Haston S., Pozzi S., Gonzalez-Meljem J.M. Applications of CRISPR-cas in ageing research. Clin. Genet. Genom. Aging. 2020:213–230. doi: 10.1007/978-3-030-40955-5_11. DOI
Yue Y., Kan Y., Xu W., Zhao H.-Y., Zhou Y., Song X., Wu J., Xiong J., Goswami D., Yang M., et al. Extensive mammalian germline genome engineering. bioRxiv. 2019 doi: 10.1101/2019.12.17.876862. DOI
Skill N., Kubal S., Fridell J., Ekser B. Identification of novel xenoreactive non-gal antigens: Tetraspanin CD37 and CD81. Xenotransplantation. 2017;24:27–28. doi: 10.1111/xen.12328. DOI
Ul Ain Q., Chung J.Y., Kim Y.-H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J. Control. Release. 2015;205:120–127. doi: 10.1016/j.jconrel.2014.12.036. PubMed DOI
Wu Y., Zhou H., Fan X., Zhang Y., Zhang M., Wang Y., Xie Z., Bai M., Yin Q., Liang D., et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25:67–79. doi: 10.1038/cr.2014.160. PubMed DOI PMC
Flynn R., Grundmann A., Renz P., Hänseler W., James W.S., Cowley S.A., Moore M.D. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human IPS cells. Exp. Hematol. 2015;43:838–848. doi: 10.1016/j.exphem.2015.06.002. PubMed DOI PMC
Wang S., Cheng Z.-Y., Zhao Z.-N., Quan X.-Q., Wei Y., Xia D.-S., Li J.-Q., Hu J.-L. Correlation of serum PCSK9 in CHD patients with the severity of coronary arterial lesions. Eur. Rev. Med. Pharmacol. Sci. 2016;20:1135–1139. PubMed
Van Agtmaal E.L., André L.M., Willemse M., Cumming S.A., van Kessel I.D.G., van den Broek W.J.A.A., Gourdon G., Furling D., Mouly V., Monckton D.G., et al. CRISPR/Cas9-Induced (CTG⋅CAG)n repeat instability in the myotonic dystrophy type 1 locus: Implications for therapeutic genome editing. Mol. Ther. 2017;25:24–43. doi: 10.1016/j.ymthe.2016.10.014. PubMed DOI PMC
Li H.L., Fujimoto N., Sasakawa N., Shirai S., Ohkame T., Sakuma T., Tanaka M., Amano N., Watanabe A., Sakurai H., et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem. Cell Rep. 2015;4:143–154. doi: 10.1016/j.stemcr.2014.10.013. PubMed DOI PMC
Monteys A.M., Ebanks S.A., Keiser M.S., Davidson B.L. CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol. Ther. 2017;25:12–23. doi: 10.1016/j.ymthe.2016.11.010. PubMed DOI PMC
Canver M.C., Smith E.C., Sher F., Pinello L., Sanjana N.E., Shalem O., Chen D.D., Schupp P.G., Vinjamur D.S., Garcia S.P., et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–197. doi: 10.1038/nature15521. PubMed DOI PMC
Xie C., Zhang Y.-P., Song L., Luo J., Qi W., Hu J., Lu D., Yang Z., Zhang J., Xiao J., et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome. Cell Res. 2016;26:1099–1111. doi: 10.1038/cr.2016.101. PubMed DOI PMC
Liu Y., Yang Y., Kang X., Lin B., Yu Q., Song B., Gao G., Chen Y., Sun X., Li X., et al. One-step biallelic and scarless correction of a β-thalassemia mutation in patient-specific IPSCs without drug selection. Mol. Ther. Nucleic Acids. 2017;6:57–67. doi: 10.1016/j.omtn.2016.11.010. PubMed DOI PMC
Lavin M.F., Yeo A.J., Kijas A.W., Wolvetang E., Sly P.D., Wainwright C., Sinclair K. Therapeutic targets and investigated treatments for ataxia-telangiectasia. Expert Opin. Orphan Drugs. 2016;4:1263–1276. doi: 10.1080/21678707.2016.1254618. DOI
Zhen S., Hua L., Takahashi Y., Narita S., Liu Y.-H., Li Y. In vitro and in vivo growth suppression of human Papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem. Biophys. Res. Commun. 2014;450:1422–1426. doi: 10.1016/j.bbrc.2014.07.014. PubMed DOI
Ma H., Marti-Gutierrez N., Park S.-W., Wu J., Lee Y., Suzuki K., Koski A., Ji D., Hayama T., Ahmed R., et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–419. doi: 10.1038/nature23305. PubMed DOI
Miyamoto T., Akutsu S.N., Tauchi H., Kudo Y., Tashiro S., Yamamoto T., Matsuura S. Exploration of genetic basis underlying individual differences in radiosensitivity within human populations using genome editing technology. J. Radiat. Res. 2018;59:ii75–ii82. doi: 10.1093/jrr/rry007. PubMed DOI PMC
Li F., Ng W.-L., Luster T.A., Hu H., Sviderskiy V.O., Dowling C.M., Hollinshead K.E.R., Zouitine P., Zhang H., Huang Q., et al. Epigenetic CRISPR screens identify Npm1 as a therapeutic vulnerability in non–small cell lung cancer. Cancer Res. 2020;80:3556–3567. doi: 10.1158/0008-5472.CAN-19-3782. PubMed DOI PMC
You L., Tong R., Li M., Liu Y., Xue J., Lu Y. Advancements and obstacles of CRISPR-Cas9 technology in translational research. Mol. Ther. Methods Clin. Dev. 2019;13:359–370. doi: 10.1016/j.omtm.2019.02.008. PubMed DOI PMC
Li H., Sheng C., Wang S., Yang L., Liang Y., Huang Y., Liu H., Li P., Yang C., Yang X., et al. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front. Cell Infect. Microbiol. 2017;7:91. doi: 10.3389/fcimb.2017.00091. PubMed DOI PMC
Gomaa A.A., Klumpe H.E., Luo M.L., Selle K., Barrangou R., Beisel C.L. Programmable removal of bacterial strains by use of genome-targeting CRISPR-cas systems. mBio. 2014;5 doi: 10.1128/mBio.00928-13. PubMed DOI PMC
Yosef I., Manor M., Kiro R., Qimron U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. PNAS. 2015;112:7267–7272. doi: 10.1073/pnas.1500107112. PubMed DOI PMC
Kim J.-S., Cho D.-H., Park M., Chung W.-J., Shin D., Ko K.S., Kweon D.-H. CRISPR/Cas9-mediated re-sensitization of antibiotic-resistant Escherichia coli harboring extended-spectrum β-lactamases. J. Microbiol. Biotechnol. 2016;26:394–401. doi: 10.4014/jmb.1508.08080. PubMed DOI
Bikard D., Euler C., Jiang W., Nussenzweig P.M., Goldberg G.W., Duportet X., Fischetti V.A., Marraffini L.A. Development of sequence-specific antimicrobials based on programmable CRISPR-cas nucleases. Nat. Biotechnol. 2014;32:1146–1150. doi: 10.1038/nbt.3043. PubMed DOI PMC
Li D., Li X., Zhou W.-L., Huang Y., Liang X., Jiang L., Yang X., Sun J., Li Z., Han W.-D., et al. Genetically engineered T cells for cancer immunotherapy. Signal Transduct. Target. Ther. 2019;4:1–17. doi: 10.1038/s41392-019-0070-9. PubMed DOI PMC
Kyrou K., Hammond A.M., Galizi R., Kranjc N., Burt A., Beaghton A.K., Nolan T., Crisanti A. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 2018;36:1062–1066. doi: 10.1038/nbt.4245. PubMed DOI PMC
Jakočiūnas T., Jensen M.K., Keasling J.D. CRISPR/Cas9 advances engineering of microbial cell factories. Metab. Eng. 2016;34:44–59. doi: 10.1016/j.ymben.2015.12.003. PubMed DOI
Jakočiūnas T., Bonde I., Herrgård M., Harrison S.J., Kristensen M., Pedersen L.E., Jensen M.K., Keasling J.D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 2015;28:213–222. doi: 10.1016/j.ymben.2015.01.008. PubMed DOI
Li Y., Lin Z., Huang C., Zhang Y., Wang Z., Tang Y.-J., Chen T., Zhao X. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab. Eng. 2015;31:13–21. doi: 10.1016/j.ymben.2015.06.006. PubMed DOI
Cho J.S., Choi K.R., Prabowo C.P.S., Shin J.H., Yang D., Jang J., Lee S.Y. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 2017;42:157–167. doi: 10.1016/j.ymben.2017.06.010. PubMed DOI
Ferreira R., David F., Nielsen J. Advancing Biotechnology with CRISPR/Cas9: Recent applications and patent landscape. J. Ind. Microbiol. Biotechnol. 2018;45:467–480. doi: 10.1007/s10295-017-2000-6. PubMed DOI
Kuivanen J., Wang Y.-M.J., Richard P. Engineering Aspergillus niger for galactaric acid production: Elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb. Cell Factories. 2016;15:210. doi: 10.1186/s12934-016-0613-5. PubMed DOI PMC
Siripong W., Angela C., Tanapongpipat S., Runguphan W. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-Butanol) Enzyme Microb. Technol. 2020;138:109557. doi: 10.1016/j.enzmictec.2020.109557. PubMed DOI
Xu P., Li L., Zhang F., Stephanopoulos G., Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. PNAS. 2014;111:11299–11304. doi: 10.1073/pnas.1406401111. PubMed DOI PMC
Jiménez A., Muñoz-Fernández G., Ledesma-Amaro R., Buey R.M., Revuelta J.L. One-Vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii. Microb. Biotechnol. 2019;12:1293–1301. doi: 10.1111/1751-7915.13425. PubMed DOI PMC
Liu W., An C., Shu X., Meng X., Yao Y., Zhang J., Chen F., Xiang H., Yang S., Gao X., et al. A dual-plasmid CRISPR/cas system for mycotoxin elimination in polykaryotic industrial fungi. ACS Synth. Biol. 2020;9:2087–2095. doi: 10.1021/acssynbio.0c00178. PubMed DOI
Li C., Zhang R., Meng X., Chen S., Zong Y., Lu C., Qiu J.-L., Chen Y.-H., Li J., Gao C. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 2020;38:875–882. doi: 10.1038/s41587-019-0393-7. PubMed DOI
Mougiakos I., Mohanraju P., Bosma E.F., Vrouwe V., Finger Bou M., Naduthodi M.I.S., Gussak A., Brinkman R.B.L., van Kranenburg R., van der Oost J. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat. Commun. 2017;8:1647. doi: 10.1038/s41467-017-01591-4. PubMed DOI PMC
Lim H., Choi S.-K. Programmed GRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis. Front. Microbiol. 2019;10 doi: 10.3389/fmicb.2019.01140. PubMed DOI PMC
Altenbuchner J. Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2016;82:5421–5427. doi: 10.1128/AEM.01453-16. PubMed DOI PMC
Nagaraju S., Davies N.K., Walker D.J.F., Köpke M., Simpson S.D. Genome editing of Clostridium autoethanogenum using CRISPR/Cas9. Biotechnol. Biofuels. 2016;9:219. doi: 10.1186/s13068-016-0638-3. PubMed DOI PMC
Wang Y., Zhang Z.-T., Seo S.-O., Lynn P., Lu T., Jin Y.-S., Blaschek H.P. Gene transcription repression in Clostridium beijerinckii using CRISPR-DCas9. Biotechnol. Bioeng. 2016;113:2739–2743. doi: 10.1002/bit.26020. PubMed DOI
Xu C., Huang R., Teng L., Jing X., Hu J., Cui G., Wang Y., Cui Q., Xu J. Cellulosome stoichiometry in clostridium cellulolyticum is regulated by selective RNA processing and stabilization. Nat. Commun. 2015;6:6900. doi: 10.1038/ncomms7900. PubMed DOI PMC
Huang H., Chai C., Li N., Rowe P., Minton N.P., Yang S., Jiang W., Gu Y. CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol. 2016;5:1355–1361. doi: 10.1021/acssynbio.6b00044. PubMed DOI
Pyne M.E., Sokolenko S., Liu X., Srirangan K., Bruder M.R., Aucoin M.G., Moo-Young M., Chung D.A., Chou C.P. Disruption of the reductive 1,3-propanediol pathway triggers production of 1,2-propanediol for sustained glycerol fermentation by Clostridium Ppasteurianum. Appl. Environ. Microbiol. 2016;82:5375–5388. doi: 10.1128/AEM.01354-16. PubMed DOI PMC
Cleto S., Jensen J.V., Wendisch V.F., Lu T.K. Corynebacterium Gglutamicum metabolic engineering with CRISPR interference (CRISPRi) ACS Synth. Biol. 2016;5:375–385. doi: 10.1021/acssynbio.5b00216. PubMed DOI PMC
Li H., Shen C.R., Huang C.-H., Sung L.-Y., Wu M.-Y., Hu Y.-C. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metabol. Eng. 2016;38:293–302. doi: 10.1016/j.ymben.2016.09.006. PubMed DOI
Zhang S., Guo F., Yan W., Dai Z., Dong W., Zhou J., Zhang W., Xin F., Jiang M. Recent advances of CRISPR/Cas9-based genetic engineering and transcriptional regulation in industrial biology. Front. Bioeng. Biotechnol. 2020;7 doi: 10.3389/fbioe.2019.00459. PubMed DOI PMC
Donohoue P.D., Barrangou R., May A.P. Advances in industrial biotechnology using CRISPR-cas systems. Trends Biotechnol. 2018;36:134–146. doi: 10.1016/j.tibtech.2017.07.007. PubMed DOI
Oh J.-H., van Pijkeren J.-P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131. doi: 10.1093/nar/gku623. PubMed DOI PMC
Hao M., Cui Y., Qu X. Analysis of CRISPR-cas system in Streptococcus thermophilus and its application. Front. Microbiol. 2018;9:257. doi: 10.3389/fmicb.2018.00257. PubMed DOI PMC
Zhang M.M., Wong F.T., Wang Y., Luo S., Lim Y.H., Heng E., Yeo W.L., Cobb R.E., Enghiad B., Ang E.L., et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 2017;13:607–609. doi: 10.1038/nchembio.2341. PubMed DOI PMC
Huang H., Zheng G., Jiang W., Hu H., Lu Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. 2015;47:231–243. doi: 10.1093/abbs/gmv007. PubMed DOI
Jia H., Zhang L., Wang T., Han J., Tang H., Zhang L. Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology. 2017;163:1148–1155. doi: 10.1099/mic.0.000501. PubMed DOI
Lim Y.H., Wong F.T., Yeo W.L., Ching K.C., Lim Y.W., Heng E., Chen S., Tsai D.-J., Lauderdale T.-L., Shia K.-S., et al. Auroramycin: A potent antibiotic from Streptomyces roseosporus by CRISPR-Cas9 activation. ChemBioChem. 2018;19:1716–1719. doi: 10.1002/cbic.201800266. PubMed DOI
Zhang Y., Sun X., Wang Q., Xu J., Dong F., Yang S., Yang J., Zhang Z., Qian Y., Chen J., et al. Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth. Biol. 2020;9:1998–2008. doi: 10.1021/acssynbio.0c00073. PubMed DOI
Jiang Y., Chen B., Duan C., Sun B., Yang J., Yang S. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl. Environ. Microbiol. 2015;81:2506–2514. doi: 10.1128/AEM.04023-14. PubMed DOI PMC
Wenderoth M., Pinecker C., Voß B., Fischer R. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet. Biol. 2017;101:55–60. doi: 10.1016/j.fgb.2017.03.001. PubMed DOI
Nødvig C.S., Nielsen J.B., Kogle M.E., Mortensen U.H. A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE. 2015;10:e0133085. doi: 10.1371/journal.pone.0133085. PubMed DOI PMC
Nødvig C.S., Hoof J.B., Kogle M.E., Jarczynska Z.D., Lehmbeck J., Klitgaard D.K., Mortensen U.H. Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in aspergilli. Fungal Genet. Biol. 2018;115:78–89. doi: 10.1016/j.fgb.2018.01.004. PubMed DOI
Weyda I., Yang L., Vang J., Ahring B.K., Lübeck M., Lübeck P.S. A comparison of agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J. Microbiol. Methods. 2017;135:26–34. doi: 10.1016/j.mimet.2017.01.015. PubMed DOI
Fuller K.K., Chen S., Loros J.J., Dunlap J.C. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot. Cell. 2015;14:1073–1080. doi: 10.1128/EC.00107-15. PubMed DOI PMC
Kadooka C., Yamaguchi M., Okutsu K., Yoshizaki Y., Takamine K., Katayama T., Maruyama J.-I., Tamaki H., Futagami T. A CRISPR/Cas9-mediated gene knockout system in Aspergillus luchuensis mut. Kawachii. Biosci. Biotechnol. Biochem. 2020;84:2179–2183. doi: 10.1080/09168451.2020.1792761. PubMed DOI
Katayama T., Tanaka Y., Okabe T., Nakamura H., Fujii W., Kitamoto K., Maruyama J. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol. Lett. 2016;38:637–642. doi: 10.1007/s10529-015-2015-x. PubMed DOI
Min K., Ichikawa Y., Woolford C.A., Mitchell A.P. Candida albicans gene deletion with a transient CRISPR-Cas9 System. mSphere. 2016;1 doi: 10.1128/mSphere.00130-16. PubMed DOI PMC
Enkler L., Richer D., Marchand A.L., Ferrandon D., Jossinet F. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 System. Sci Rep. 2016;6:35766. doi: 10.1038/srep35766. PubMed DOI PMC
Wang Y., Wei D., Zhu X., Pan J., Zhang P., Huo L., Zhu X. A ‘Suicide’ CRISPR-Cas9 system to promote gene deletion and restoration by electroporation in Cryptococcus neoformans. Sci. Rep. 2016;6:31145. doi: 10.1038/srep31145. PubMed DOI PMC
Shi T.-Q., Gao J., Wang W.-J., Wang K.-F., Xu G.-Q., Huang H., Ji X.-J. CRISPR/Cas9-based genome editing in the filamentous Fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synth. Biol. 2019;8:445–454. doi: 10.1021/acssynbio.8b00478. PubMed DOI
Qin H., Xiao H., Zou G., Zhou Z., Zhong J.-J. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem. 2017;56:57–61. doi: 10.1016/j.procbio.2017.02.012. DOI
Wilson A.M., Wingfield B.D. CRISPR-Cas9-mediated genome editing in the Filamentous Ascomycete Huntiella omanensis. J. Vis. Exp. 2020 doi: 10.3791/61367. PubMed DOI
Horwitz A.A., Walter J.M., Schubert M.G., Kung S.H., Hawkins K., Platt D.M., Hernday A.D., Mahatdejkul-Meadows T., Szeto W., Chandran S.S., et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 2015;1:88–96. doi: 10.1016/j.cels.2015.02.001. PubMed DOI
Liu Q., Gao R., Li J., Lin L., Zhao J., Sun W., Tian C. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol. Biofuels. 2017;10:1. doi: 10.1186/s13068-016-0693-9. PubMed DOI PMC
Matsu-ura T., Baek M., Kwon J., Hong C. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol. Biotechnol. 2015;2:s40694–s40715. doi: 10.1186/s40694-015-0015-1. PubMed DOI PMC
Pohl C., Kiel J.A.K.W., Driessen A.J.M., Bovenberg R.A.L., Nygård Y. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth. Biol. 2016;5:754–764. doi: 10.1021/acssynbio.6b00082. PubMed DOI
Fang Y., Tyler B.M. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol. Plant Pathol. 2016;17:127–139. doi: 10.1111/mpp.12318. PubMed DOI PMC
Jacobs J.Z., Ciccaglione K.M., Tournier V., Zaratiegui M. Implementation of the CRISPR-Cas9 System in fission yeast. Nat. Commun. 2014;5:5344. doi: 10.1038/ncomms6344. PubMed DOI PMC
Nielsen M.L., Isbrandt T., Rasmussen K.B., Thrane U., Hoof J.B., Larsen T.O., Mortensen U.H. Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9. PLoS ONE. 2017;12:e0169712. doi: 10.1371/journal.pone.0169712. PubMed DOI PMC
Liu R., Chen L., Jiang Y., Zhou Z., Zou G. Efficient genome editing in Filamentous Fungus Trichoderma reesei Uusing the CRISPR/Cas9 System. Cell Discov. 2015;1:1–11. doi: 10.1038/celldisc.2015.7. PubMed DOI PMC
Schuster M., Schweizer G., Reissmann S., Kahmann R. Genome editing in Ustilago maydis using the CRISPR-cas system. Fungal. Genet. Biol. 2016;89:3–9. doi: 10.1016/j.fgb.2015.09.001. PubMed DOI
Schwartz C.M., Hussain M.S., Blenner M., Wheeldon I. Synthetic RNA Polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth. Biol. 2016;5:356–359. doi: 10.1021/acssynbio.5b00162. PubMed DOI
Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to fok I Cleavage domain. PNAS. 1996;93:1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC
Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and Other TAL effector-based constructs for DNA Targeting. Nucleic Acids Res. 2011;39:e82. doi: 10.1093/nar/gkr218. PubMed DOI PMC
Wang H., La Russa M., Qi L.S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 2016;85:227–264. doi: 10.1146/annurev-biochem-060815-014607. PubMed DOI
Sakuma T., Nishikawa A., Kume S., Chayama K., Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 Vector System. Sci. Rep. 2014;4:5400. doi: 10.1038/srep05400. PubMed DOI PMC
Poirier J.T. CRISPR libraries and screening. Prog. Mol. Biol. Transl. Sci. 2017;152:69–82. doi: 10.1016/bs.pmbts.2017.10.002. PubMed DOI
Zhang J.-H., Adikaram P., Pandey M., Genis A., Simonds W.F. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered. 2016;7:166–174. doi: 10.1080/21655979.2016.1189039. PubMed DOI PMC
Zhu H., Li C., Gao C. Applications of CRISPR–cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 2020;21:661–677. doi: 10.1038/s41580-020-00288-9. PubMed DOI
Sedeek K.E.M., Mahas A., Mahfouz M. Plant genome engineering for targeted improvement of crop traits. Front. Plant Sci. 2019;10 doi: 10.3389/fpls.2019.00114. PubMed DOI PMC
FAOSTAT. [(accessed on 11 March 2021)]; Available online: http://www.fao.org/faostat/en/#data/RL.
Biotech Crop Highlights in 2018 | ISAAA.Org. [(accessed on 14 March 2021)]; Available online: https://www.isaaa.org/resources/publications/pocketk/16/
PubMed. [(accessed on 14 March 2021)]; Available online: https://pubmed.ncbi.nlm.nih.gov/
Cho S.W., Kim S., Kim Y., Kweon J., Kim H.S., Bae S., Kim J.-S. Analysis of off-target effects of CRISPR/Cas-Derived RNA-guided endonucleases and nickases. Genome Res. 2014;24:132–141. doi: 10.1101/gr.162339.113. PubMed DOI PMC
Soga K., Nakamura K., Ishigaki T., Kimata S., Ohmori K., Kishine M., Mano J., Takabatake R., Kitta K., Nagoya H., et al. Development of a novel method for specific detection of genetically modified atlantic salmon, aquadvantage, using real-time polymerase chain reaction. Food Chem. 2020;305:125426. doi: 10.1016/j.foodchem.2019.125426. PubMed DOI
Caplan A.L., Parent B., Shen M., Plunkett C. No time to waste—the ethical challenges created by CRISPR. EMBO Rep. 2015;16:1421–1426. doi: 10.15252/embr.201541337. PubMed DOI PMC
Scudellari M. Self-destructing mosquitoes and sterilized rodents: The promise of gene drives. Nature. 2019;571:160–162. doi: 10.1038/d41586-019-02087-5. PubMed DOI
Schleidgen S., Dederer H.-G., Sgodda S., Cravcisin S., Lüneburg L., Cantz T., Heinemann T. Human germline editing in the era of CRISPR-Cas: Risk and uncertainty, inter-generational responsibility, therapeutic legitimacy. BMC Med. Ethics. 2020;21:87. doi: 10.1186/s12910-020-00487-1. PubMed DOI PMC
Furtado R.N., Furtado R.N. Gene Editing: The risks and benefits of modifying human DNA. Rev. Bioética. 2019;27:223–233. doi: 10.1590/1983-80422019272304. DOI
Locke L.G. The Promise of CRISPR for human germline editing and the perils of “Playing God”. CRISPR J. 2020;3:27–31. doi: 10.1089/crispr.2019.0033. PubMed DOI PMC
Ihry R.J., Worringer K.A., Salick M.R., Frias E., Ho D., Theriault K., Kommineni S., Chen J., Sondey M., Ye C., et al. P53 Inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 2018;24:939–946. doi: 10.1038/s41591-018-0050-6. PubMed DOI
Haapaniemi E., Botla S., Persson J., Schmierer B., Taipale J. CRISPR–Cas9 genome editing induces a P53-mediated DNA damage response. Nat. Med. 2018;24:927–930. doi: 10.1038/s41591-018-0049-z. PubMed DOI
Fu Y., Foden J.A., Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-cas nucleases in human cells. Nat. Biotechnol. 2013;31:822–826. doi: 10.1038/nbt.2623. PubMed DOI PMC
Ferdosi S.R., Ewaisha R., Moghadam F., Krishna S., Park J.G., Ebrahimkhani M.R., Kiani S., Anderson K.S. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 2019;10:1–10. doi: 10.1038/s41467-019-09693-x. PubMed DOI PMC
Pawluk A., Davidson A.R., Maxwell K.L. Anti-CRISPR: Discovery, mechanism and function. Nat. Rev. Microbiol. 2018;16:12–17. doi: 10.1038/nrmicro.2017.120. PubMed DOI
DiEuliis D., Giordano J. Why gene editors like CRISPR/Cas may be a game-changer for neuroweapons. Health Secur. 2017;15:296–302. doi: 10.1089/hs.2016.0120. PubMed DOI PMC
DiEuliis D., Giordano J. Gene editing using CRISPR/Cas9: Implications for dual-use and biosecurity. Protein Cell. 2018;9:239–240. doi: 10.1007/s13238-017-0493-4. PubMed DOI PMC
West R.M., Gronvall G.K. CRISPR Cautions: Biosecurity implications of gene editing. Perspect. Biol. Med. 2020;63:73–92. doi: 10.1353/pbm.2020.0006. PubMed DOI
Ayanoğlu F.B., Elçin A.E., Elçin Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020;44:110–120. doi: 10.3906/biy-1912-52. PubMed DOI PMC
Exosome/Liposome-like Nanoparticles: New Carriers for CRISPR Genome Editing in Plants