Shiga Toxin, Stx2e, Influences the Activity of Porcine Lymphocytes In Vitro
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37175714
PubMed Central
PMC10178452
DOI
10.3390/ijms24098009
PII: ijms24098009
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli (STEC), immunosuppression, lymphocyte activity, oedema disease, swine,
- MeSH
- Escherichia coli metabolismus MeSH
- infekce vyvolané Escherichia coli * MeSH
- leukocyty mononukleární MeSH
- podskupiny lymfocytů MeSH
- prasata MeSH
- shiga toxin 2 genetika metabolismus MeSH
- shiga toxin * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- shiga toxin 2 MeSH
- shiga toxin * MeSH
Oedema disease (OD) in piglets is one of the most important pathologies, as it causes significant losses due to the high mortality because of the Shiga toxin family, which produces Escherichia coli (STEC) strains. The main toxin responsible for the characteristic pathologies in pigs is Shiga toxin 2 subtype e (Stx2e). Moreover, there is growing evidence that Stx's family of toxins also targets immune cells. Therefore, this study evaluated the effect of different concentrations of Stx2e on porcine immune cells. Porcine peripheral blood mononuclear cells were pre-incubated with Stx2e, at three different concentrations (final concentrations of 10, 500, and 5000 CD50/mL) and with a negative control group. Cells were then stimulated with polyclonal mitogens: concanavalin A, phytohemagglutinin, pokeweed mitogen, or lipopolysaccharides. Cell proliferation was assessed by BrdU (or EdU) incorporation into newly created DNA. The activation of the lymphocyte subsets was assessed by the detection of CD25, using flow cytometry. The toxin significantly decreased mitogen-driven proliferation activity, and the effect was partially dose-dependent, with a significant impact on both T and B populations. The percentage of CD25+ cells was slightly lower in the presence of Stx2e in all the defined T cell subpopulations (CD4+, CD8+, and γδTCR+)-in a dose-dependent manner. B cells seemed to be the most affected populations. The negative effects of different concentrations of Stx2e on the immune cells in this study may explain the negative impact of the subclinical course of OD.
Ceva Innovation Center GmbH 06861 Dessau Rosslau Germany
Ceva Sante Animale 33500 Libourne France
SID Science and Investigation Department 33500 Libourne France
Veterinary Research Institute Brno 621 00 Brno Czech Republic
Zobrazit více v PubMed
Fricke R., Bastert O., Gotter V., Brons N., Kamp J., Selbitz H.J. Implementation of a vaccine against Shiga toxin 2e in a piglet producing farm with problems of Oedema disease: Case study. Porc. Health Manag. 2015;1:6. doi: 10.1186/2055-5660-1-6. PubMed DOI PMC
Bertschinger H., Gyles C.L. Escherichia coli in Domestic Animals and Humans. CAB International; Wallinford, UK: 1994. Oedema disease of pigs; pp. 193–213.
Smith H.W., Halls S. The production of odema disease and diarrhoea I weaned pigs by the oral administration of Escherichia coli: Factors that influence the course of the experimental disease. J. Med. Microbiol. 1968;1:15–59. doi: 10.1099/00222615-1-1-45. PubMed DOI
Kausche F.M., Dean E.A., Arp L.H., Samuel J.E., Moon H.W. An experimental model for subclinical edema disease (Escherichia coli enterotoxemia) manifest as vascular necrosis in pigs. Am. J. Vet. Res. 1992;53:281–287. PubMed
Sperling D., Isaka N., Karembe H., Vanhara J., Vinduska J., Strakova N., Kalova A., Kolackova I., Karpiskova R. Effect of the vaccination against Shiga toxin 2e in a farm with history of oedema disease, caused by atypical Escherichia coli producing Shiga toxin (STEC) Vet. Med. 2022;67:510–518. doi: 10.17221/36/2022-VETMED. PubMed DOI PMC
Linggood M.A., Thompson J.M. Verotoxin production among porcine strains of Escherichia coli and its association with oedema disease. J. Med. Microbiol. 1987;24:359–362. doi: 10.1099/00222615-24-4-359. PubMed DOI
Baranzoni G.M., Fratamico P.M., Gangiredla J., Patel I., Bagi L.K., Delannoy S., Fach P., Boccia F., Anastasio A., Pepe T. Characterization of shiga toxin subtypes and virulence genes in porcine shiga toxin-producing Escherichia coli. Front. Microbiol. 2016;7:574. doi: 10.3389/fmicb.2016.00574. PubMed DOI PMC
Ling H., Pannu N.S., Boodhoo A., Armstrong G.D., Clark C.G., Brunton J.L., Read R.J. A mutant Shiga-like toxin IIe bound to its receptor Gb(3): Structure of a group II Shiga-like toxin with altered binding specificity. Structure. 2000;8:253–264. doi: 10.1016/S0969-2126(00)00103-9. PubMed DOI
DeGrandis S., Law H., Brunton J., Gyles C., Lingwood C.A. Globotetraosylceramide is recognized by the pig edema disease toxin. J. Biol. Chem. 1989;264:12520–12525. doi: 10.1016/S0021-9258(18)63888-8. PubMed DOI
Steil D., Bonse R., Meisen I., Pohlentz G., Vallejo G., Karch H., Müthing J. A topographical atlas of shiga toxin 2e receptor distribution in the tissue of weaned piglets. Toxins. 2016;8:357. doi: 10.3390/toxins8120357. PubMed DOI PMC
Winter K.R.K., Stoffregen W.C., Dean-Nystrom E.A. Shiga toxin binding to isolated porcine tissues and peripheral blood leukocytes. Infect. Immunol. 2004;72:6680–6684. doi: 10.1128/IAI.72.11.6680-6684.2004. PubMed DOI PMC
Clugston R.E., Nielsen N.O., Smith D.L.T. Experimental edema disease of swine (E. coli enterotoxemia). III. Pathology and pathogenesis. Can. J. Comp. Med. 1974;38:34–43. PubMed PMC
Menge C.L.H., Wieler T.S., Baljer G. Shiga toxin 1 from Escherichia coli blocks activation and proliferation of bovine lymphocyte subpopulations in vitro. Infect. Immun. 1999;67:2209–2217. doi: 10.1128/IAI.67.5.2209-2217.1999. PubMed DOI PMC
Cohen A., Madrid-Marina V., Estrov Z., Freedman M.H., Lingwood C.A., Dosch H.M. Expression of glycolipid receptors to Shiga-like toxin on human B lymphocytes: A mechanism for the failure of long-lived antibody response to dysenteric disease. Int. Immunol. 1990;2:1–8. doi: 10.1093/intimm/2.1.1. PubMed DOI
Ramegowda B., and Tesh V.I. Differenctiation-associated toxin receptor modulation, cytokine production and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect. Immmun. 1996;64:1173–1180. doi: 10.1128/iai.64.4.1173-1180.1996. PubMed DOI PMC
Van Setten P.A., Monnens L.A.H., Verstraten R.G.G., van den Heuvel L.P.W.J., van Hinsbergh V.W.M. Effects of verocytotoxin-1 on nonadherent human monocytes: Binding characteristics, protein synthesis and induction of cytokine release. Blood. 1996;88:174–183. doi: 10.1182/blood.V88.1.174.174. PubMed DOI
Ferrens W.A., Hovde C.J. Antiviral activity of Shiga toxin 1: Suppression of bvine leukemia virus-related spontaneous lymphocyte proliferation. Infect. Immun. 2000;68:4462–4469. doi: 10.1128/IAI.68.8.4462-4469.2000. PubMed DOI PMC
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins. 2020;12:607. doi: 10.3390/toxins12090607. PubMed DOI PMC
Hajishengallis G., Nawar H., Tapping R.I., Russell M.W., Connell T.D. The Type II heat-labile enterotoxins LT-IIa and LT-IIb and their respective B pentamers differentially induce and regulate cytokine production in human monocytic cells. Infect. Immun. 2004;72:6351–6358. doi: 10.1128/IAI.72.11.6351-6358.2004. PubMed DOI PMC
Christopher-Hennings J., Willgohs J.A., Francis D.H., Raman U.A.K., Moxley R.A., Hurley D.J. Immunocompromise in gnotobiotic pigs induced by verotoxin-producing Escherichia coli (O111:NM) Infect. Immun. 1993;61:2304–2308. doi: 10.1128/iai.61.6.2304-2308.1993. PubMed DOI PMC
Fairbrother J.M., Nadeau E. Collibacillosis. In: Zimmerman J., Karriker L.A., Ramirez A., Schwartz K.J., Stevenson G.W., Zhang J., editors. Diseases of Swine. 11th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2019. pp. 807–834.
Lee M.S., Tesh V.L. Roles of Shiga Toxins in Immunopathology. Toxins. 2019;11:212. doi: 10.3390/toxins11040212. PubMed DOI PMC
Sugatani J., Igarashi T., Shimura M., Yamanaka T., Takeda T., Miwa M. Disorders in the immune responses of T- and B-cells in mice administered intravenous verotoxin 2. Life Sci. 2000;67:1059–1072. doi: 10.1016/S0024-3205(00)00703-7. PubMed DOI
Stepanova K., Sinkora M. The expression of CD25, CD11b, SWC1, SWC7, MHC-II, and family of CD45 molecules can be used to characterize different stages of γδ T lymphocytes in pigs. Develop. Comp. Immunol. 2012;36:728–740. doi: 10.1016/j.dci.2011.11.003. PubMed DOI
Pescovitz M.D., Sakopoulos A.G., Gaddy J.A., Husmann R.J., Zuckermann F.A. Porcine peripheral blood CD4+/CD8+ dual expressing T-cells. Vet. Immunol. Immunopathol. 1994;43:53–62. doi: 10.1016/0165-2427(94)90120-1. PubMed DOI
Van Hoorde S., Devriendt B., Sperling D., Cox E. Comparative analysis of Stx2e secretion in Shiga toxin-producing Escherichia coli (STEC) field strains from swine; Proceedings of the 13th European Symposium of Porcine Health Management (ESPHM); Budapest, Hungary. 11–13 May 2022; p. 233.
Menge C., Stamm I., Blessenohl M., Wieler L.H., Baljer G. Verotoxin 1 from Escherichia coli affects Gb3/CD77+ bovine lymphocytes independent of interleukin-2, tumor necrosis factor-alpha, and interferon-alpha. Exp. Biol. Med. 2003;228:377–386. doi: 10.1177/153537020322800408. PubMed DOI
Mangeney M., Richard Y., Coulaud D., Tursz T., Wiels J. CD77: An antigen of germinal center B cells entering apoptosis. Eur. J. Immunol. 1991;21:1131–1140. doi: 10.1002/eji.1830210507. PubMed DOI
Hughes A.K., Ergonul Z., Stricklett P.K., Kohan D.E. Molecular basis for high renal cell sensitivity to the cytotoxic effects of Shigatoxin-1: Upregulation of globotriaosylceramide expression. J. Am. Soc. Nephrol. 2002;13:2239–2245. doi: 10.1097/01.ASN.0000027873.85792.52. PubMed DOI
Menge C., Eisenberg T., Stamm I., Baljer G. Comparison of binding and effects of Escherichia coli Shiga toxin 1 on bovine and ovine granulocytes. Vet. Immunol. Immunopathol. 2006;113:392–403. doi: 10.1016/j.vetimm.2006.06.009. PubMed DOI
Celi A.B., Goldstein J., Rosato-Siri M.V., Pinto A. Role of globotriaosylceramide in physiology and pathology. Front. Mol. Biosci. 2022;9:813637. PubMed PMC
Silberstein C., Lucero M.S., Zotta E., Copeland D.P., Lingyun L., Repetto H.A., Ibara C. A glucosylceramide synthase inhibitor protects rats against the cytotoxic effects of Shiga toxin 2. Pediatr. Res. 2011;69:390–394. doi: 10.1203/PDR.0b013e318211dd57. PubMed DOI
Obata F., Tohyama K., Bonev A.D., Kolling G.L., Keepers T.R., Gross L.K., Nelson M.T., Sato S., Obring T.G. Shiga Toxin 2 Affects the central nervous system through receptor globotriaosylceramide localized to neurons. J. Infect. Dis. 2008;198:1398–1406. doi: 10.1086/591911. PubMed DOI PMC
Stein K.E., Marcus D.M. Glycosphingolipids of purified human lymphocytes. Biochemistry. 1997;16:5285–5291. doi: 10.1021/bi00643a019. PubMed DOI
Kiguchi K., Henning-Chubb C.B., Huberman E. Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes, and granulocytes are cell specific. J. Biochem. 1990;107:8–14. doi: 10.1093/oxfordjournals.jbchem.a123016. PubMed DOI
Chakrabandhu K., Huault S., Garmy N., Fantini J., Stebe E., Mailfert S., Marguet D., Hueber A.O. The extracellular glycosphingolipid-binding motif of Fas defines its internalization route, mode and outcome of signals upon activation by ligand. Cell Death Differ. 2008;15:1824–1837. doi: 10.1038/cdd.2008.115. PubMed DOI
Fas S.C., Fritzsching B., Suri-Payer E., Krammer P.H. Death receptor signaling and its function in the immune system. Curr. Dir. Autoimmun. 2005;9:1–17. PubMed
Karlsson K.A. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 1989;58:309–350. doi: 10.1146/annurev.bi.58.070189.001521. PubMed DOI
Legros N., Dusny S., Humpf H.U., Pohlentz G., Karch H., Müthing J. Shiga toxin glycosphingolipid receptors and their lipid membrane ensemble in primary human blood-brain barrier endothelial cells. Glycobiology. 2017;27:99–109. doi: 10.1093/glycob/cww090. PubMed DOI
Schüller S. Shiga toxin interaction with human intestinal epithelium. Toxins. 2011;3:626–639. doi: 10.3390/toxins3060626. PubMed DOI PMC
Ewers H., Helenius A. Lipid-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 2011;3:a004721. doi: 10.1101/cshperspect.a004721. PubMed DOI PMC
Lingwood C. Verotoxin Receptor-Based Pathology and Therapies. Front. Cell Infect Microbiol. 2020;31:123. doi: 10.3389/fcimb.2020.00123. PubMed DOI PMC
Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987;262:8128–8130. doi: 10.1016/S0021-9258(18)47538-2. PubMed DOI
Mesonero-Escuredo S., Morales J., Mainar-Jaime R.C., Díaz G., Arnal J.L., Casanovas C., Barrabés S., Segalés J. Effect of Edema Disease Vaccination on Mortality and Growth Parameters in Nursery Pigs in a Shiga Toxin 2e Positive Commercial Farm. Vaccines. 2021;9:567. doi: 10.3390/vaccines9060567. PubMed DOI PMC