Influence of Disinfection Methods on Cinematographic Film
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DG18P02OVV062
Ministry of Culture
PubMed
37176375
PubMed Central
PMC10180128
DOI
10.3390/ma16093493
PII: ma16093493
Knihovny.cz E-zdroje
- Klíčová slova
- 1H NMR, cellulose triacetate, disinfection, ethylene oxide, triphenyl phosphate,
- Publikační typ
- časopisecké články MeSH
Microbiological contamination of cinematographic films can cause damage and loss of image information. A large part of the films is made with the base of cellulose triacetate, which has been used from the 1940s until today. Cellulose triacetate is relatively resistant to common organic solvents, but some types of microorganisms can contribute to its faster degradation. In this work, we tested four types of disinfectants suitable for mass disinfection and sufficiently effective against various types of microorganisms. Butanol vapours, a commercial mixture of alcohols (Bacillol® AF), Septonex® (an aqueous solution of [1-(ethoxycarbonyl)pentadecyl] trimethylammonium bromide) and ethylene oxide applied as a gas mixed with carbon dioxide were tested. Samples of a commercial film made of cellulose triacetate were disinfected. The samples were aged for 56 days at 70 °C and 55% RH. Changes in optical, mechanical and chemical properties were studied. None of the disinfectants affected the change in the degree of substitution. For samples disinfected with Bacillol® AF (alcohol mixture), part of the plasticiser (triphenyl phosphate) was extracted and the intrinsic viscosity of the cellulose triacetate solution was reduced after ageing. A slight decrease in intrinsic viscosity also occurred after disinfection with ethylene oxide. Compared to the non-disinfected samples, butanol vapours and Septonex® appear to be the most gentle disinfectants for the cellulose triacetate film base, within the studied parameters.
Zobrazit více v PubMed
Reilly J.A. Celluloid Objects: Their Chemistry and Preservation. J. Am. Inst. Conserv. 1991;30:145–162. doi: 10.1179/019713691806066700. DOI
Nunes S., Ramacciotti F., Neves A., Angelin E.M., Ramos A.M., Roldão É., Wallaszkovits N., Armijo A.A., Melo M.J. A diagnostic tool for assessing the conservation condition of cellulose nitrate and acetate in heritage collections: Quantifying the degree of substitution by infrared spectroscopy. Herit. Sci. 2020;8:33. doi: 10.1186/s40494-020-00373-4. DOI
Read P., Meyer M.-P. Restoration of Motion Picture Film. 1st ed. Butterworth-Heinemann; Oxford, UK: 2000.
Abrusci C., Martín-González A., Del Amo A., Catalina F., Collado J., Platas G. Isolation and identification of bacteria and fungi from cinematographic films. Int. Biodeterior. Biodegrad. 2005;56:58–68. doi: 10.1016/j.ibiod.2005.05.004. DOI
Schilling M., Bouchard M., Khanjian H., Learner T., Phenix A., Rivenc R. Application of Chemical and Thermal Analysis Methods for Studying Cellulose Ester Plastics. Acc. Chem. Res. 2010;43:888–896. doi: 10.1021/ar1000132. PubMed DOI
Bingley G., Verran J. Counts of fungal spores released during inspection of mouldy cinematographic film and determination of the gelatinolytic activity of predominant isolates. Int. Biodeterior. Biodegrad. 2013;84:381–387. doi: 10.1016/j.ibiod.2012.04.006. DOI
Rakotonirainy M.S., Vilmont L.B., Lavédrine B. A methodology for detecting the level of fungal contamination in the French Film Archives vaults. J. Cult. Herit. 2016;19:454–462. doi: 10.1016/j.culher.2015.12.007. DOI
Puls J., Wilson S.A., Hölter D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011;19:152–165. doi: 10.1007/s10924-010-0258-0. DOI
Buchanan C.M., Gardner R.M., Komarek R.J. Aerobic biodegradation of cellulose acetate. J. Appl. Polym. Sci. 1993;47:1709–1719. doi: 10.1002/app.1993.070471001. DOI
Sakai K., Yamauchi T., Nakasu F., Ohe T. Biodegradation of cellulose acetate by neisseria sicca. Biosci. Biotechnol. Biochem. 1996;60:1617–1622. doi: 10.1271/bbb.60.1617. PubMed DOI
Edge M., Allen N.S., Jewitt T.S., Horie C.V. Fundamental aspects of the degradation of cellulose triacetate base cinematograph film. Polym. Degrad. Stab. 1989;25:345–362. doi: 10.1016/S0141-3910(89)81016-X. DOI
McDonnell G., Russell A.D. Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin. Microbiol. Rev. 1999;12:147–179. doi: 10.1128/CMR.12.1.147. PubMed DOI PMC
Drábková K., Krejčí J., Škrdlantová M., Ďurovič M., Bacílková B. Influence of Disinfectants on Natural Textile Fibres. Restaurator. 2021;42:67–86. doi: 10.1515/res-2021-0002. DOI
Purkrtová S., Savická D., Kadavá J., Sýkorová H., Kováčova N., Kališová D., Nešporová T., Novaková M., Mašek Benetková B., Koukalová L., et al. Microbial Contamination of Photographic and Cinematographic Materials in Archival Funds in the Czech Republic. Microorganisms. 2022;10:155. doi: 10.3390/microorganisms10010155. PubMed DOI PMC
Bacílková B. Study on the Effect of Butanol Vapours and other Alcohols on Fungi. Restaurator. 2006;27:186–199. doi: 10.1515/REST.2006.186. DOI
Zervos S., Alexopoulou I. Paper conservation methods: A literature review. Cellulose. 2015;22:2859–2897. doi: 10.1007/s10570-015-0699-7. DOI
Stickley F.L. The Biodegradation of Gelatin and its Problems in the Photographic Industry. J. Photogr. Sci. 1986;34:111–112. doi: 10.1080/00223638.1986.11738407. DOI
Shintani H. Ethylene Oxide Gas Sterilization of Medical Devices. Biocontrol Sci. 2017;22:1–16. doi: 10.4265/bio.22.1. PubMed DOI
Romero S.M., Giudicessi S.L., Vitale R.G. Is the fungus Aspergillus a threat to cultural heritage? J. Cult. Herit. 2021;51:107–124. doi: 10.1016/j.culher.2021.08.002. DOI
Branyšová T., Teplá B., Demnerová K., Stiborová H., Ďurovič M. Biodeterioration of audio-visual materials. Chem. Listy. 2021;115:260–265.
Tepla B., Demnerova K., Stiborova H. History and microbial biodeterioration of audiovisual materials. J. Cult. Herit. 2020;44:218–228. doi: 10.1016/j.culher.2019.12.009. DOI
Vivar I., Borrego S.F., García A.M., Moreno D.A. Microscopic techniques in the determination of the biodeterioration in cinematographic films. Acta Microsc. 2018;27:63–68.
Vivar I., Borrego S., Ellis G., Moreno D.A., García A.M. Fungal biodeterioration of color cinematographic films of the cultural heritage of cuba. Int. Biodeterior. Biodegrad. 2013;84:372–380. doi: 10.1016/j.ibiod.2012.05.021. DOI
Abrusci C., Marquina D., Del Amo A., Catalina F. Biodegradation of cinematographic gelatin emulsion by bacteria and filamentous fungi using indirect impedance technique. Int. Biodeterior. Biodegrad. 2007;60:137–143. doi: 10.1016/j.ibiod.2007.01.005. DOI
Abrusci C., Marquina D., Santos A., Del Amo A., Corrales T., Catalina F. Biodeterioration of cinematographic cellulose triacetate by Sphingomonas paucimobilis using indirect impedance and chemiluminescence techniques. Int. Biodeterior. Biodegrad. 2009;63:759–764. doi: 10.1016/j.ibiod.2009.02.012. DOI
Tisch T. Cleaning Solutions for a Clean Environment: Developments in Motion-Picture Film-Cleaning Technology. SMPTE J. 1995;104:528–533. doi: 10.5594/J17686. DOI
Czerwińska E., Kowalik R. Microbiodeterioration of Audiovisual Collections. Restaurator. 1979;3:63–80. doi: 10.1515/rest.1979.3.1-2.63. DOI
Nagai M.L.E., de Souza Santos P., Otubo L., Oliveira M.J.A., Vasquez P.A.S. Gamma and electron beam irradiation effects for conservation treatment of cellulose triacetate photographic and cinematographic films. Radiat. Phys. Chem. 2021;182:109395. doi: 10.1016/j.radphyschem.2021.109395. DOI
McDonnell G.E. Antisepsis, Disinfection, and Sterilization-Types, Action, and Resistance. 2nd ed. American Society for Microbiology (ASM); Washington, DC, USA: 2017.
Carter E.C., Ohno Y., Pointer M.R., Robertson A.R., Seve R., Schanda J.D., Witt K. CIE Technical Report-Colorimetry. 3rd ed. Volume 15. CIE Central Bureau; Vienna, Austria: 2004. pp. 17–18.
Kemper B., Lichtblau D.A. Extraction of plasticizers: An entire and reproducible quantification method for historical cellulose acetate material. Polym. Test. 2019;80:106096. doi: 10.1016/j.polymertesting.2019.106096. DOI
Schoenberger T. Guideline for qNMR Analysis. [(accessed on 30 August 2022)]. Available online: http://enfsi.eu/wp-content/uploads/2017/06/qNMR-Guideline_version001.pdf.
Da Ros S., Aliev A.E., del Gaudio I., King R., Pokorska A., Kearney M., Curran K. Characterising plasticised cellulose acetate-based historic artefacts by NMR spectroscopy: A new approach for quantifying the degree of substitution and diethyl phthalate contents. Polym. Degrad. Stab. 2021;183:109420. doi: 10.1016/j.polymdegradstab.2020.109420. DOI
Riley J.L. The Baker-Philippoff equation for cellulose acetate solutions. J. Polym. Sci. 1946;1:434–436. doi: 10.1002/pol.1946.120010511. DOI
Allen N.S., Edge M., Rodriguez M., Liauw C.M., Fontan E. Aspects of the thermal oxidation, yellowing and stabilisation of ethylene vinyl acetate copolymer. Polym. Degrad. Stab. 2000;71:1–14. doi: 10.1016/S0141-3910(00)00111-7. DOI
Krauklis A.E., Echtermeyer A.T. Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers. 2018;10:1017. doi: 10.3390/polym10091017. PubMed DOI PMC
Chadwick A.C., Kentridge R.W. The perception of gloss: A review. Vis. Res. 2015;109:221–235. doi: 10.1016/j.visres.2014.10.026. PubMed DOI
Bharti S.K., Roy R. Quantitative 1H NMR spectroscopy. Trends Anal. Chem. 2012;35:5–26. doi: 10.1016/j.trac.2012.02.007. DOI
Kono H., Hashimoto H., Shimizu Y. NMR characterization of cellulose acetate: Chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr. Polym. 2015;118:91–100. doi: 10.1016/j.carbpol.2014.11.004. PubMed DOI
Hikichi K., Kakuta Y., Katoh T. 1H NMR Study on Substituent Distribution of Cellulose Diacetate. Polym. J. 1995;27:659–663. doi: 10.1295/polymj.27.659. DOI
Liu L., Gong D., Bratasz L., Zhu Z., Wang C. Degradation markers and plasticizer loss of cellulose acetate films during ageing. Polym. Degrad. Stab. 2019;168:108952. doi: 10.1016/j.polymdegradstab.2019.108952. DOI
Deng W., Liu M., Zhang Q., Wang Y. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids. Catal. Today. 2011;164:461–466. doi: 10.1016/j.cattod.2010.10.055. DOI
Sequeira S., Cabrita E.J., Macedo M.F. Antifungals on paper conservation: An overview. Int. Biodeterior. Biodegrad. 2012;74:67–86. doi: 10.1016/j.ibiod.2012.07.011. DOI