Microbial Contamination of Photographic and Cinematographic Materials in Archival Funds in the Czech Republic
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DG18P02OVV062
the Ministry of Culture of the Czech Republic
PubMed
35056604
PubMed Central
PMC8782003
DOI
10.3390/microorganisms10010155
PII: microorganisms10010155
Knihovny.cz E-resources
- Keywords
- Czech Republic, MALDI-TOF MS, archival funds, bacterial contamination, cinematographic materials, cultivation methods, fungal contamination, microbial contamination, photographic materials,
- Publication type
- Journal Article MeSH
In this study we investigated the microbial contamination of 126 samples of photographic and cinematographic materials from 10 archival funds in the Czech Republic. Microorganisms were isolated from the light-sensitive layer by swabbing it with a polyurethane sponge. Microbial isolates were identified by MALDI-TOF MS (bacteria) or by phenotype testing and microscopy (fungi). Bacterial contamination was more abundant and more diverse than fungal contamination, and both were significantly associated with archives. The most frequently isolated fungal genera were Cladosporium, Eurotium, Penicillium, Aspergillus and Alternaria. The most frequently isolated bacteria were Gram-positive genera such as Staphylococcus, Micrococcus, Kocuria, Streptococcus and Bacillus. This bacterial and fungal diversity suggests that air is the main vehicle of contamination. We also analysed the impact of the type of material used for the carrier (paper, baryta paper, cellulose acetate and nitrate or glass) or the light-sensitive layer (albumen, gelatine, collodion and other) on the level and diversity of microbial contamination. Carriers such as polyester and cellulose nitrate may have a negative impact on bacterial contamination, while paper and baryta paper may have a partially positive impact on both fungal and bacterial contamination.
See more in PubMed
Kosel J., Ropret P. Overview of fungal isolates on heritage collections of photographic materials and their biological potency. J. Cul. Herit. 2021;48:277–291. doi: 10.1016/j.culher.2021.01.004. DOI
Osterman M. Introduction to Photographic Equipment, Processes, and Definitions of the 19th Century. In: Peres M.R., editor. The Focal Encyclopedia of Photography. 4th ed. Focal Press; Boston, MA, USA: 2007. pp. 36–123.
Keller K., Kampfer H., Matejec R., Lapp O., Krafft W., Frenken H., Lührig H., Scheerer R., Heilmann M., Meckl H., et al. Ullmann’s Encyclopedia of Industrial Chemistry. Volume 26 Wiley-VCH GmbH & Co. KGaA; Weinheim, Germany: 2000. Photography.
Rosenblum N., Gernsheim H.E.R., Grundberg A.N., Beaumont History of Photography. [(accessed on 27 November 2021)]. Available online: https://www.britannica.com/technology/photography.
Vincett P.S., Sahyun M.R.V. Photographic Processes and Materials. In: Meyers R.A., editor. Encyclopedia of Physical Science and Technology. 3rd ed. Academic Press; New York, NY, USA: 2003. pp. 91–132.
Bjelkhagen H.I. Holographic Recording Materials and Their Processing. In: Guenther R.D., editor. Encyclopedia of Modern Optics. Elsevier; Oxford, UK: 2005. pp. 47–57.
Cappitelli F., Sorlini C. From papyrus to compact disc: The microbial deterioration of documentary heritage. Crit. Rev. Microbiol. 2005;31:1–10. doi: 10.1080/10408410490884766. PubMed DOI
Abrusci C., Martıín-González A., Del Amo A., Corrales T., Catalina F. Biodegrad. of type-B gelatine by bacteria isolated from cinematographic films. A viscometric study. Polym. Degrad. Stabil. 2004;86:283–291. doi: 10.1016/j.polymdegradstab.2004.04.024. DOI
Vivar I., Borrego S., Ellis G., Moreno D.A., García A.M. Fungal biodeterioration of color cinematographic films of the cultural heritage of Cuba. Int. Biodeterior. Biodegrad. 2013;84:372–380. doi: 10.1016/j.ibiod.2012.05.021. DOI
Teplá B., Demnerová K., Stiborová H. History and microbial biodeterioration of audiovisual materials. J. Cul. Herit. 2020;44:218–228. doi: 10.1016/j.culher.2019.12.009. DOI
Balloffet N., Hille J. Preservation and Conservation for Libraries and Archives. American Library Association; Chicago, IL, USA: 2005. Care of Photographs; pp. 183–191.
International Organization for Standardization . ISO 11799:2015 (E) Information and Documentation—Document Storage Requirements for Archive and Library Materials. 2nd ed. International Organization for Standardization; Geneva, Switzerland: 2015. pp. 1–12.
Foundation N.F.P., editor. The Film Preservation Guide: The Basics for Archives, Libraries, and Museums. 1st ed. National Film Preservation Foundation; San Francisco, CA, USA: 2004. p. 122.
Karbowska-Berent J., Górniak B., Czajkowska-Wagner L., Rafalska K., Jarmiłko J., Kozielec T. The initial disinfection of paper-based historic items—Observations on some simple suggested methods. Int. Biodeterior. Biodegrad. 2018;131:60–66. doi: 10.1016/j.ibiod.2017.03.001. DOI
Borrego S., Guiamet P., Gómez de Saravia S., Batistini P., Garcia M., Lavin P., Perdomo I. The quality of air at archives and the biodeterioration of photographs. Int. Biodeterior. Biodegrad. 2010;64:139–145. doi: 10.1016/j.ibiod.2009.12.005. DOI
Puskarova A., Buckova M., Habalova B., Krakova L., Makova A., Pangallo D. Microbial communities affecting albumen photography heritage: A methodological survey. Sci. Rep. 2016;6:20810. doi: 10.1038/srep20810. PubMed DOI PMC
Cangelosi G.A., Meschke J.S., Drake H.L. Dead or Alive: Molecular Assessment of Microbial Viability. Appl. Environ. Microbiol. 2014;80:5884–5891. doi: 10.1128/AEM.01763-14. PubMed DOI PMC
Michaelsen A., Pinzari F., Barbabietola N., Pinar G. Monitoring the effects of different conservation treatments on paper-infecting fungi. Int. Biodeterior. Biodegrad. 2013;84:333–341. doi: 10.1016/j.ibiod.2012.08.005. PubMed DOI PMC
Pietrzak K., Otlewska A., Danielewicz D., Dybka K., Pangallo D., Kraková L., Puškárová A., Bučková M., Scholtz V., Ďurovič M., et al. Disinfection of archival documents using thyme essential oil, silver nanoparticles misting and low temperature plasma. J. Cul. Herit. 2017;24:69–77. doi: 10.1016/j.culher.2016.10.011. DOI
Kraková L., Šoltys K., Otlewska A., Pietrzak K., Purkrtová S., Savická D., Puškárová A., Bučková M., Szemes T., Budiš J., et al. Comparison of methods for identification of microbial communities in book collections: Culture-dependent (sequencing and MALDI-TOF MS) and culture-independent (Illumina MiSeq) Int. Biodeterior. Biodegrad. 2018;131:51–59. doi: 10.1016/j.ibiod.2017.02.015. DOI
Pereyra L.P., Hiibel S.R., Prieto Riquelme M.V., Reardon K.F., Pruden A. Detection and quantification of functional genes of cellulose- degrading, fermentative, and sulfate-reducing bacteria and methanogenic archaea. Appl. Environ. Microbiol. 2010;76:2192–2202. doi: 10.1128/AEM.01285-09. PubMed DOI PMC
Szulc J., Ruman T., Karbowska-Berent J., Kozielec T., Gutarowska B. Analyses of microorganisms and metabolites diversity on historic photographs using innovative methods. J. Cul. Herit. 2020;45:101–113. doi: 10.1016/j.culher.2020.04.017. DOI
Abrusci C., Martín-González A., Del Amo A., Catalina F., Collado J., Platas G. Isolation and identification of bacteria and fungi from cinematographic films. Int. Biodeterior. Biodegrad. 2005;56:58–68. doi: 10.1016/j.ibiod.2005.05.004. DOI
Singhal N., Kumar M., Virdi J.S. MALDI-TOF MS in clinical parasitology: Applications, constraints and prospects. Parasitology. 2016;143:1491–1500. doi: 10.1017/S0031182016001189. PubMed DOI
Bonk T., Humeny A. MALDI-TOF MS analysis of protein and DNA. Neuroscientist. 2001;7:6–12. doi: 10.1177/107385840100700104. PubMed DOI
Woo P.C., Lau S.K., Teng J.L., Tse H., Yuen K.Y. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2008;14:908–934. doi: 10.1111/j.1469-0691.2008.02070.x. PubMed DOI
Lindahl B.D., Nilsson R.H., Tedersoo L., Abarenkov K., Carlsen T., Kjoller R., Koljalg U., Pennanen T., Rosendahl S., Stenlid J., et al. Fungal community analysis by high-throughput sequencing of amplified markers—A user’s guide. New Phytol. 2013;199:288–299. doi: 10.1111/nph.12243. PubMed DOI PMC
Carbonnelle E., Grohs P., Jacquier H., Day N., Tenza S., Dewailly A., Vissouarn O., Rottman M., Herrmann J.L., Podglajen I., et al. Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification. J. Microbiol. Methods. 2012;89:133–136. doi: 10.1016/j.mimet.2012.03.003. PubMed DOI
Lourenço M.J.L., Sampaio J.P. Microbial deterioration of gelatin emulsion photographs: Differences of susceptibility between black and white and colour materials. Int. Biodeterior. Biodegrad. 2009;63:496–502. doi: 10.1016/j.ibiod.2008.10.011. DOI
Bučková M., Puškárová A., Sclocchi M.C., Bicchieri M., Colaizzi P., Pinzari F., Pangallo D. Co-occurrence of bacteria and fungi and spatial partitioning during photographic materials biodeterioration. Polym. Degrad. Stabil. 2014;108:1–11. doi: 10.1016/j.polymdegradstab.2014.05.025. DOI
Sclocchi M.C., Kraková L., Pinzari F., Colaizzi P., Bicchieri M., Šaková N., Pangallo D. Microbial Life and Death in a Foxing Stain: A Suggested Mechanism of Photographic Prints Defacement. Microb. Ecol. 2017;73:815–826. doi: 10.1007/s00248-016-0913-7. PubMed DOI
Demnerová K.K.J., Purkrtová S., Savická D., Sýkorová H., Ďurovič M., Benetková B., Hricková K., Koukalová L., Nováková M. Metodika Odběru a Izolace Bakterií, Kvasinek a Plísní z Fotografických Materiálů (Methodology of Collection and Isolation of Bacteria, Yeasts and Fungi from Photographic Materials) University of Chemistry and Technology Prague; Prague, Czech Republic: 2020. p. 23.
Samson R.A., Houbraken J., Thrane U., Frisvad J.C., Andersen B. Food and Indoor Fungi. 2nd ed. Westerdijk Fungal Biodiversity Institute; Utrecht, The Netherlands: 2019. p. 481.
Domsch K.H., Gams W., Anderson T.H. Compendium of Soil Fungi. 2nd ed. IHW-Verlag Eching; Munchen, Germany: 2007. p. 672.
Pitt J.I., Hocking A.D. Fungi and Food Spoilage. Springer; Boston, MA, USA: 2009. p. 520.
de Hoog G.S., Guarro J. Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures; Utrecht, The Netherlands: 2000. p. 1126.
Guarro J. Atlas of Soil Ascomycetes. 10th ed. CBS-KNAW Fungal Biodiversity Centre; Utrecht, The Netherlands: 2012. p. 486.
R_Core_Team R . A Language and Environment for Statistical Computing, 4.1.1. R Foundation for Statistical Computing; Vienna, Austria: 2021.
Kassambara A. Statistical Tools for High-Throughput Data Analysis: Chi-Square Test of Independence in R. [(accessed on 8 November 2021)]. Available online: http://sthda.com/english/wiki/chi-square-test-of-independence-in-r.
Opela V. Fungal and bacterial attack on motion picture film; Proceedings of the FIAF, JoInt Technical Symposium; Ottawa, ON, Canada. 1992; pp. 139–144.
Branysova T., Kracmarova M., Durovic M., Demnerova K., Stiborova H. Factors Influencing the Fungal Diversity on Audio–Visual Materials. Microorganisms. 2021;9:2497. doi: 10.3390/microorganisms9122497. PubMed DOI PMC
Gόrny R.L., Dutkiewicz J. Bacterial and fungal aerosols in indoor environment in Central and Eastern European countries. Ann. Agric. Environ. Med. 2002;9:17–23. PubMed
Bacterial Diversity on Historical Audio-Visual Materials and in the Atmosphere of Czech Depositories
Influence of Disinfection Methods on Cinematographic Film