Unsupervised meta-clustering identifies risk clusters in acute myeloid leukemia based on clinical and genetic profiles
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37198246
PubMed Central
PMC10192332
DOI
10.1038/s43856-023-00298-6
PII: 10.1038/s43856-023-00298-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. METHODS: While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. RESULTS: Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. CONCLUSIONS: Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology.
There are various ways in which clinicians can predict the risk of disease progression in patients with leukemia, helping them to treat the patients accordingly. However, these approaches are usually designed by human experts and might not fully capture the complexity of a patient’s disease. Here, with a large cohort of patients with acute myeloid leukemia, we design an unsupervised machine learning model – a type of computer model that learns from patterns in data without human input—to separate these patients into subgroups according to risk. We identify four distinct groups which differ with regards to patient genetics, laboratory values, and clinical characteristics. These groups have differences in response to treatment and patient survival, and we validate our findings in another dataset. Our approach might help clinicians to better predict outcomes in patients with leukemia and make decisions on treatment.
Department of Hematology and Oncology University Hospital Schleswig Holstein Kiel Germany
Department of Hematology and Stem Cell Transplantation University Hospital Essen Essen Germany
Department of Hematology Oncology and Palliative Care Robert Bosch Hospital Stuttgart Germany
Department of Hematology Oncology and Tumor Immunology Charité Berlin Germany
Department of Internal Medicine 1 University Hospital Carl Gustav Carus Dresden Germany
Department of Internal Medicine 3 Klinikum Chemnitz GmbH Chemnitz Germany
Department of Internal Medicine 5 University Hospital Erlangen Erlangen Germany
Department of Internal Medicine 5 University Hospital Nuremberg Nuremberg Germany
Department of Internal Medicine A University Hospital Muenster Muenster Germany
Department of Medicine 2 Hematology and Oncology Goethe University Frankfurt Frankfurt Germany
Department of Medicine 3 Hospital Leverkusen Leverkusen Germany
Department of Medicine 5 University Hospital Heidelberg Heidelberg Germany
Department of Software and Multimedia Technology Technical University Dresden Dresden Germany
Else Kröner Fresenius Center for Digital Health Technical University Dresden Dresden Germany
German Consortium for Translational Cancer Research DKFZ Heidelberg Germany
Hospital Barmherzige Brueder Regensburg Regensburg Germany
Institute for Biostatistics and Clinical Research University Muenster Muenster Germany
Medical Clinic and Policlinic 1 Hematology and Cell Therapy University Hospital Leipzig Germany
Zobrazit více v PubMed
Papaemmanuil E, et al. Genomic classification and prognosis in acute myeloid leukemia. N. Eng. J. Med. 2016;374:2209–2221. doi: 10.1056/NEJMoa1516192. PubMed DOI PMC
Bullinger L, Döhner K, Döhner H. Genomics of acute myeloid leukemia diagnosis and pathways. JCO. 2017;35:934–946. doi: 10.1200/JCO.2016.71.2208. PubMed DOI
Patel JP, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Eng. J. Med. 2012;366:1079–1089. doi: 10.1056/NEJMoa1112304. PubMed DOI PMC
Döhner H, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC
Breiman L. Statistical Modeling: The two cultures (with comments and a rejoinder by the author) Statist. Sci. 2001;16:199–231. doi: 10.1214/ss/1009213726. DOI
Shouval R, et al. Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT. Bone Marrow Transplant. 2014;49:332–337. doi: 10.1038/bmt.2013.146. PubMed DOI
Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2014;2:3. doi: 10.1186/2047-2501-2-3. PubMed DOI PMC
Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016;375:1216–1219. doi: 10.1056/NEJMp1606181. PubMed DOI PMC
Eckardt J-N, Bornhäuser M, Wendt K, Middeke JM. Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv. 2020;4:6077–6085. doi: 10.1182/bloodadvances.2020002997. PubMed DOI PMC
Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015;16:321–332. doi: 10.1038/nrg3920. PubMed DOI PMC
Barlow HB. Unsupervised learning. Neural Comput. 1989;1:295–311. doi: 10.1162/neco.1989.1.3.295. DOI
Cancer Genome Atlas Research Network, Ley, T. J. et al. Genomic and Epigenomic landscapes of adult de novo acute myeloid leukemia. N. Eng. J. Med.368, 2059–2074 (2013). PubMed PMC
Way GP, et al. Machine learning detects pan-cancer Ras pathway activation in the Cancer Genome Atlas. Cell Rep. 2018;23:172–180.e3. doi: 10.1016/j.celrep.2018.03.046. PubMed DOI PMC
Röllig C, et al. A novel prognostic model in elderly patients with acute myeloid leukemia: results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116:971–978. doi: 10.1182/blood-2010-01-267302. PubMed DOI
Schaich M, et al. High-dose cytarabine consolidation with or without additional amsacrine and mitoxantrone in acute myeloid leukemia: results of the prospective randomized AML2003 trial. J. Clin. Oncol. 2013;31:2094–2102. doi: 10.1200/JCO.2012.46.4743. PubMed DOI
Röllig C, et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann. Oncol. 2018;29:973–978. doi: 10.1093/annonc/mdy030. PubMed DOI
Röllig C, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): a multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–1699. doi: 10.1016/S1470-2045(15)00362-9. PubMed DOI
Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Krug U, et al. Increasing intensity of therapies assigned at diagnosis does not improve survival of adults with acute myeloid leukemia. Leukemia. 2016;30:1230–1236. doi: 10.1038/leu.2016.25. PubMed DOI
Braess J, et al. Sequential high-dose cytarabine and mitoxantrone (S-HAM) versus standard double induction in acute myeloid leukemia—a phase 3 study. Leukemia. 2018;32:2558–2571. doi: 10.1038/s41375-018-0268-9. PubMed DOI PMC
Thiede C, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99:4326–4335. doi: 10.1182/blood.V99.12.4326. PubMed DOI
Thiede C, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML) Blood. 2006;107:4011–4020. doi: 10.1182/blood-2005-08-3167. PubMed DOI
Taube F, et al. CEBPA mutations in 4708 patients with acute myeloid leukemia—differential impact of bZIP and TAD mutations on outcome. Blood. 2021 doi: 10.1182/blood.2020009680. PubMed DOI
Gebhard C, et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33:26–36. doi: 10.1038/s41375-018-0165-2. PubMed DOI
Stasik S, et al. An optimized targeted next-generation sequencing approach for sensitive detection of single nucleotide variants. Biomol. Detect. Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001. PubMed DOI PMC
Marimont RB, Shapiro MB. Nearest neighbour searches and the curse of dimensionality. IMA J. Appl. Math. 1979;24:59–70. doi: 10.1093/imamat/24.1.59. DOI
Rousseeuw PJ. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987;20:53–65. doi: 10.1016/0377-0427(87)90125-7. DOI
Caliński T, Harabasz J. A dendrite method for cluster analysis. Commun. Stat. 1974;3:1–27.
Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans. Pattern Anal.Mach. Intell. 1979;PAMI-1:224–227. doi: 10.1109/TPAMI.1979.4766909. PubMed DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B (Methodol.) 1995;57:289–300.
Bennett JM, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 1976;33:451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x. PubMed DOI
Gale RE, et al. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood. 2008;111:2776–2784. doi: 10.1182/blood-2007-08-109090. PubMed DOI
Ley TJ, et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 2010;363:2424–2433. doi: 10.1056/NEJMoa1005143. PubMed DOI PMC
Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat. Rev. Cancer. 2015;15:152–165. doi: 10.1038/nrc3895. PubMed DOI PMC
Gaidzik VI, et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia. 2016;30:2160–2168. doi: 10.1038/leu.2016.126. PubMed DOI
Pratcorona M, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97:388–392. doi: 10.3324/haematol.2011.051532. PubMed DOI PMC
Bowen D, et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009;23:203–206. doi: 10.1038/leu.2008.173. PubMed DOI
Haferlach C, et al. Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype. Leukemia. 2008;22:1539–1541. doi: 10.1038/leu.2008.143. PubMed DOI
Middeke JM, et al. TP53 mutation in patients with high-risk acute myeloid leukaemia treated with allogeneic haematopoietic stem cell transplantation. Br. J. Haematol. 2016;172:914–922. doi: 10.1111/bjh.13912. PubMed DOI
Jerez A, et al. Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. JCO. 2012;30:1343–1349. doi: 10.1200/JCO.2011.36.1824. PubMed DOI PMC
Li H-Y, et al. Favorable prognosis of biallelic CEBPA gene mutations in acute myeloid leukemia patients: a meta-analysis. Eur. J. Haematol. 2015;94:439–448. doi: 10.1111/ejh.12450. PubMed DOI
Mannelli F, et al. CEBPA-double-mutated acute myeloid leukemia displays a unique phenotypic profile: a reliable screening method and insight into biological features. Haematologica. 2017;102:529–540. doi: 10.3324/haematol.2016.151910. PubMed DOI PMC
Hou H-A, et al. GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution. Ann. Hematol. 2015;94:211–221. doi: 10.1007/s00277-014-2208-8. PubMed DOI
Fasan A, et al. GATA2 mutations are frequent in intermediate-risk karyotype AML with biallelic CEBPA mutations and are associated with favorable prognosis. Leukemia. 2013;27:482–485. doi: 10.1038/leu.2012.174. PubMed DOI
Bowman RL, Levine RL. TET2 in normal and malignant hematopoiesis. Cold Spring Harb. Perspect. Med. 2017;7:a026518. doi: 10.1101/cshperspect.a026518. PubMed DOI PMC
Weissmann S, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 2012;26:934–942. doi: 10.1038/leu.2011.326. PubMed DOI
Wang R, Gao X, Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis. BMC Cancer. 2019;19:389. doi: 10.1186/s12885-019-5602-8. PubMed DOI PMC
Dastugue N, et al. Prognostic significance of karyotype in de novo adult acute myeloid leukemia. The BGMT group. Leukemia. 1995;9:1491–1498. PubMed
Schiffer CA, Lee EJ, Tomiyasu T, Wiernik PH, Testa JR. Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood. 1989;73:263–270. doi: 10.1182/blood.V73.1.263.263. PubMed DOI
Gerstung M, et al. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 2017;49:332–340. doi: 10.1038/ng.3756. PubMed DOI PMC
Bullinger L, et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood. 2007;110:1291–1300. doi: 10.1182/blood-2006-10-049783. PubMed DOI
Bullinger L, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N. Engl. J. Med. 2004;350:1605–1616. doi: 10.1056/NEJMoa031046. PubMed DOI
Awada H, et al. Machine learning integrates genomic signatures for subclassification beyond primary and secondary acute myeloid Leukemia. Blood. 2021 doi: 10.1182/blood.2020010603. PubMed DOI PMC
Lang KM, et al. Core outcome set measurement for future clinical trials in acute myeloid leukemia: the HARMONY study protocol using a multi-stakeholder consensus-based Delphi process and a final consensus meeting. Trials. 2020;21:437. doi: 10.1186/s13063-020-04384-1. PubMed DOI PMC
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI
Röllig C, et al. Sorafenib or placebo in patients with newly diagnosed acute myeloid leukaemia: long-term follow-up of the randomized controlled SORAML trial. Leukemia. 2021;35:2517–2525. doi: 10.1038/s41375-021-01148-x. PubMed DOI PMC
Kayser S, Levis MJ. Advances in targeted therapy for acute myeloid leukaemia. Br. J. Haematol. 2018;180:484–500. doi: 10.1111/bjh.15032. PubMed DOI PMC
Perl AE. The role of targeted therapy in the management of patients with AML. Blood Adv. 2017;1:2281–2294. doi: 10.1182/bloodadvances.2017009829. PubMed DOI PMC
Wendt, K. KarstenWendtTUD/sal-metaclustering. Zenodo10.5281/zenodo.7841798 (2023).