Prediction of Bone Marrow Biopsy Results From MRI in Multiple Myeloma Patients Using Deep Learning and Radiomics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu multicentrická studie, časopisecké články, práce podpořená grantem
PubMed
37222527
DOI
10.1097/rli.0000000000000986
PII: 00004424-990000000-00120
Knihovny.cz E-zdroje
- MeSH
- biopsie MeSH
- chromozomální aberace MeSH
- deep learning * MeSH
- kostní dřeň diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mnohočetný myelom * diagnostické zobrazování genetika MeSH
- retrospektivní studie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
OBJECTIVES: In multiple myeloma and its precursor stages, plasma cell infiltration (PCI) and cytogenetic aberrations are important for staging, risk stratification, and response assessment. However, invasive bone marrow (BM) biopsies cannot be performed frequently and multifocally to assess the spatially heterogenous tumor tissue. Therefore, the goal of this study was to establish an automated framework to predict local BM biopsy results from magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective multicentric study used data from center 1 for algorithm training and internal testing, and data from center 2 to 8 for external testing. An nnU-Net was trained for automated segmentation of pelvic BM from T1-weighted whole-body MRI. Radiomics features were extracted from these segmentations, and random forest models were trained to predict PCI and the presence or absence of cytogenetic aberrations. Pearson correlation coefficient and the area under the receiver operating characteristic were used to evaluate the prediction performance for PCI and cytogenetic aberrations, respectively. RESULTS: A total of 672 MRIs from 512 patients (median age, 61 years; interquartile range, 53-67 years; 307 men) from 8 centers and 370 corresponding BM biopsies were included. The predicted PCI from the best model was significantly correlated ( P ≤ 0.01) to the actual PCI from biopsy in all internal and external test sets (internal test set: r = 0.71 [0.51, 0.83]; center 2, high-quality test set: r = 0.45 [0.12, 0.69]; center 2, other test set: r = 0.30 [0.07, 0.49]; multicenter test set: r = 0.57 [0.30, 0.76]). The areas under the receiver operating characteristic of the prediction models for the different cytogenetic aberrations ranged from 0.57 to 0.76 for the internal test set, but no model generalized well to all 3 external test sets. CONCLUSIONS: The automated image analysis framework established in this study allows for noninvasive prediction of a surrogate parameter for PCI, which is significantly correlated to the actual PCI from BM biopsy.
Zobrazit více v PubMed
Kumar SK, Rajkumar V, Kyle RA, et al. Multiple myeloma. Nat Rev Dis Prim . 2017;3:17046.
Waxman AJ, Mick R, Garfall AL, et al. Classifying ultra-high risk smoldering myeloma. Leukemia . 2015;29:751–753.
Rajkumar SV, Larson D, Kyle RA. Diagnosis of smoldering multiple myeloma. N Engl J Med . 2011;365:474–475.
Kastritis E, Terpos E, Moulopoulos L, et al. Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia . 2013;27:947–953.
Paiva B, Vidriales M-B, Pérez JJ, et al. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica . 2009;94:1599–1602.
Chakraborty R, Muchtar E, Kumar SK, et al. Impact of pre-transplant bone marrow plasma cell percentage on post-transplant response and survival in newly diagnosed multiple myeloma. Leuk Lymphoma . 2017;58:308–315.
Al Saleh AS, Parmar HV, Visram A, et al. Increased bone marrow plasma-cell percentage predicts outcomes in newly diagnosed multiple myeloma patients. Clin Lymphoma Myeloma Leuk . 2020;20:596–601.
Neben K, Jauch A, Hielscher T, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol . 2013;31:4325–4332.
Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J . 2018;8:59.
Palumbo A, Avet-Loiseau H, Oliva S, et al. Revised international staging system for multiple myeloma: a report from International Myeloma Working Group. J Clin Oncol . 2015;33:2863–2869.
Weinhold N, Salwender HJ, Cairns DA, et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma—a meta-analysis of 2,596 trial patients. Haematologica . 2021;106:2754–2758.
Mateos M-V, Kumar S, Dimopoulos MA, et al. International Myeloma Working Group risk stratification model for smoldering multiple myeloma (SMM). Blood Cancer J . 2020;10:102.
Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood . 2016;127:2955–2962.
Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol . 2014;15:e538–e548.
Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol . 2016;17:e328–e346.
Latifoltojar A, Boyd K, Riddell A, et al. Characterising spatial heterogeneity of multiple myeloma in high resolution by whole body magnetic resonance imaging: towards macro-phenotype driven patient management. Magn Reson Imaging . 2021;75:60–64.
Hillengass J, Ellert E, Spira D, et al. Comparison of plasma cell infiltration in random samples of the bone marrow and osteolyses acquired by CT-guided biopsy in patients with symptomatic multiple myeloma. J Clin Oncol . 2016;34(15_suppl):8040.
Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun . 2017;8:268.
Merz M, Merz AMA, Wang J, et al. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nat Commun . 2022;13:807.
Rasche L, Schinke C, Maura F, et al. The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states. Nat Commun . 2022;13:4517.
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer . 2012;48:441–446.
Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun . 2014;5:4006.
Aerts HJ. The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol . 2016;2:1636–1642.
Isensee F, Jaeger PF, Kohl SAA, et al. nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods . 2021;18:203–211.
Wennmann M, Klein A, Bauer F, et al. Combining deep learning and radiomics for automated, objective, comprehensive bone marrow characterization from whole-body MRI. Invest Radiol . 2022;57:752–763.
Wennmann M, Bauer F, Klein A, et al. In vivo repeatability and multiscanner reproducibility of MRI radiomics features in patients with monoclonal plasma cell disorders: a prospective bi-institutional study. Invest Radiol . 2023;58:253–264.
Götz M, Nolden M, Maier-Hein K. MITK phenotyping: an open-source toolchain for image-based personalized medicine with radiomics. Radiother Oncol . 2019;131:108–111.
Wennmann M, Thierjung H, Bauer F, et al. Repeatability and reproducibility of ADC measurements and MRI signal intensity measurements of bone marrow in monoclonal plasma cell disorders. Invest Radiol . 2022;57:272–281.
Zwanenburg A, Vallieres M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology . 2020;295:328–338.
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res . 2011;12:2825–2830.
D'Agostino M, Cairns DA, Lahuerta JJ, et al. Second revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: a European myeloma network (EMN) report within the HARMONY project. J Clin Oncol . 2022;40:3406–3418.
Mai EK, Hielscher T, Kloth JK, et al. A magnetic resonance imaging-based prognostic scoring system to predict outcome in transplant-eligible patients with multiple myeloma. Haematologica . 2015;100:818–825.
Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol . 2007;25:1121–1128.
Kastritis E, Moulopoulos LA, Terpos E, et al. The prognostic importance of the presence of more than one focal lesion in spine MRI of patients with asymptomatic (smoldering) multiple myeloma. Leukemia . 2014;28:2402–2403.
Dhodapkar MV, Sexton R, Waheed S, et al. Clinical, genomic, and imaging predictors of myeloma progression from asymptomatic monoclonal gammopathies (SWOG S0120). Blood . 2014;123:78–85.
Hillengass J, Fechtner K, Weber M-A, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol . 2010;28:1606–1610.
Hillengass J, Weber MA, Kilk K, et al. Prognostic significance of whole-body MRI in patients with monoclonal gammopathy of undetermined significance. Leukemia . 2014;28:174–178.
Merz M, Hielscher T, Wagner B, et al. Predictive value of longitudinal whole-body magnetic resonance imaging in patients with smoldering multiple myeloma. Leukemia . 2014;2:1902–1908.
Lecouvet FE, Vande Berg BC, Michaux L, et al. Stage III multiple myeloma: clinical and prognostic value of spinal bone marrow MR imaging. Radiology . 1998;209:653–660.
Almeida SD, Santinha J, Oliveira FPM, et al. Quantification of tumor burden in multiple myeloma by atlas-based semi-automatic segmentation of WB-DWI. Cancer Imaging . 2020;20:6.
Arabi H, Zaidi H. Whole-body bone segmentation from MRI for PET/MRI attenuation correction using shape-based averaging. Med Phys . 2016;43:5848–5861.
Lavdas I, Glocker B, Kamnitsas K, et al. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach. Med Phys . 2017;44:5210–5220.
Wennmann M, Neher P, Stanczyk N, et al. Deep learning for automatic bone marrow apparent diffusion coefficient measurements from whole-body magnetic resonance imaging in patients with multiple myeloma: a retrospective multicenter study. Invest Radiol . 2023;58:273–282.
Mai EK, Hielscher T, Kloth JK, et al. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology. Eur Radiol . 2016;26:3939–3948.
Kloth JK, Hillengass J, Listl K, et al. Appearance of monoclonal plasma cell diseases in whole-body magnetic resonance imaging and correlation with parameters of disease activity. Int J Cancer . 2014;135:2380–2386.
Moulopoulos LA, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol . 2005;16:1824–1828.
Messiou C, Porta N, Sharma B, et al. Prospective evaluation of whole-body MRI versus FDG PET/CT for lesion detection in participants with myeloma. Radiol Imaging Cancer . 2021;3:e210048.
Dutoit JC, Vanderkerken MA, Anthonissen J, et al. The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol . 2014;24:2754–2765.
Hillengass J, Bauerle T, Bartl R, et al. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol . 2011;153:721–728.
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol . 2017;14:749–762.
Poulton TB, Murphy WD, Duerk JL, et al. Bone marrow reconversion in adults who are smokers: MR imaging findings. AJR Am J Roentgenol . 1993;161:1217–1221.
Lavdas I, Rockall AG, Castelli F, et al. Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5 T: the effect of sex and age. AJR Am J Roentgenol . 2015;205:242–250.
Joshi R, Horncastle D, Elderfield K, et al. Bone marrow trephine combined with immunohistochemistry is superior to bone marrow aspirate in follow-up of myeloma patients. J Clin Pathol . 2008;61:213–216.
Waheed S, Mitchell A, Usmani S, et al. Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica . 2013;98:71–78.
Moulopoulos LA, Dimopoulos MA, Kastritis E, et al. Diffuse pattern of bone marrow involvement on magnetic resonance imaging is associated with high risk cytogenetics and poor outcome in newly diagnosed, symptomatic patients with multiple myeloma: a single center experience on 228 patients. Am J Hematol . 2012;87:861–864.
Liu J, Zeng P, Guo W, et al. Prediction of high-risk cytogenetic status in multiple myeloma based on magnetic resonance imaging: utility of radiomics and comparison of machine learning methods. J Magn Reson Imaging . 2021;54:1303–1311.
Rasche L, Angtuaco E, McDonald JE, et al. Low expression of hexokinase-2 is associated with false-negative FDG-positron emission tomography in multiple myeloma. Blood . 2017;130:30–34.
Rata M, Blackledge M, Scurr E, et al. Implementation of whole-body MRI (MY-RADS) within the OPTIMUM/MUKnine multi-centre clinical trial for patients with myeloma. Insights Imaging . 2022;13:123.
Orlhac F, Frouin F, Nioche C, et al. Validation of a method to compensate multicenter effects affecting CT radiomics. Radiology . 2019;291:53–59.
Leithner D, Nevin RB, Gibbs P, et al. ComBat harmonization for MRI radiomics: impact on nonbinary tissue classification by machine learning. Invest Radiol . 2023. Online ahead of print. doi:10.1097/RLI.0000000000000970. DOI
Gatidis S, Kart T, Fischer M, et al. Better together: data harmonization and cross-study analysis of abdominal MRI data from UK biobank and the German National Cohort. Invest Radiol . 2022. Online ahead of print. doi:10.1097/RLI.0000000000000941. DOI
Giles SL, Messiou C, Collins DJ, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology . 2014;271:785–794.
Latifoltojar A, Hall-Craggs M, Bainbridge A, et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction. Eur Radiol . 2017;27:5325–5336.
Chiabai O, Van Nieuwenhove S, Vekemans M-C, et al. Whole-body MRI in oncology: can a single anatomic T2 Dixon sequence replace the combination of T1 and STIR sequences to detect skeletal metastasis and myeloma? Eur Radiol . 2023;33:244–257.
Rasche L, Alapat D, Kumar M, et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia . 2019;33:1713–1722.
Böckle D, Tabares P, Zhou X, et al. Minimal residual disease and imaging-guided consolidation strategies in newly diagnosed and relapsed refractory multiple myeloma. Br J Haematol . 2022;198:515–522.
Alonso R, Cedena MT, Gómez-Grande A, et al. Imaging and bone marrow assessments improve minimal residual disease prediction in multiple myeloma. Am J Hematol . 2019;94:853–861.
EudraCT
2017-004768-37