Differentiation of Medicinal Plants According to Solvents, Processing, Origin, and Season by Means of Multivariate Analysis of Spectroscopic and Liquid Chromatography Data
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
313011V336
European Regional Development Fund
PubMed
37241816
PubMed Central
PMC10222402
DOI
10.3390/molecules28104075
PII: molecules28104075
Knihovny.cz E-zdroje
- Klíčová slova
- geographical origin, medicinal plants, multi-experimental analysis, multivariate statistical analysis, processing and seasonal factor, solvent effect,
- MeSH
- antioxidancia chemie MeSH
- chromatografie kapalinová MeSH
- dimethylsulfoxid MeSH
- ethanol chemie MeSH
- fenoly chemie MeSH
- léčivé rostliny * chemie MeSH
- multivariační analýza MeSH
- roční období MeSH
- rostlinné extrakty chemie MeSH
- rozpouštědla chemie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- dimethylsulfoxid MeSH
- ethanol MeSH
- fenoly MeSH
- rostlinné extrakty MeSH
- rozpouštědla MeSH
- voda MeSH
Effects of processing and extraction solvents on antioxidant properties and other characteristics were evaluated for ten medicinal plant species originating from two different localities and two production years. A combination of spectroscopic and liquid chromatography techniques possessed data for multivariate statistics. Water, 50% (v/v) ethanol, and dimethyl sulfoxide (DMSO) were compared to select the most suitable solvent for the isolation of functional components from the frozen/dried medicinal plants. DMSO and 50% (v/v) ethanol were evaluated as more efficient for phenolic compounds and colorants extraction, while water was more useful for element extraction. Drying and extraction of herbs with 50% (v/v) ethanol was the most appropriate treatment to ensure a high yield of most compounds. The satisfactory differentiation of herbs (61.8-100%) confirmed the significant effect of the processing, geographical, and seasonal factors on target functional component concentrations. Total phenolic and total flavonoid compounds content, total antioxidant activity expressed as TAA, yellowness, chroma, and browning index were identified as the most important markers for medicinal plant differentiation.
Institute of Analytical Chemistry Czech Academy of Sciences Veveri 967 97 602 00 Brno Czech Republic
Zobrazit více v PubMed
Butorová L., Polovka M., Pořízka J., Vítová E. Multi-experimental characterization of selected medical plants growing in the Czech Republic. Chem. Pap. 2017;71:1605–1621. doi: 10.1007/s11696-017-0154-3. DOI
Rajan M., Rajkimar G., Guedes T.J.F.L., Barros R.G.C., Narain N. Performance of different solvents on extraction of bioactive compounds, antioxidant and cytotoxic activities in Phoenix loureiroi Kunth leaves. J. Appl. Res. Med. Aromat. Plants. 2020;17:100247. doi: 10.1016/j.jarmap.2020.100247. DOI
Lim Y.P., Pang S.F., Yusoff M.M., Mudalip S.K.A., Gimbum J. Correlation between the extraction yield of mangiferin to the antioxidant activity, total phenolic and total flavonoid content of Phaleria macrocarpa fruits. J. Appl. Res. Med. Aromat. Plants. 2019;14:100224. doi: 10.1016/j.jarmap.2019.100224. DOI
Patonay K., Szalontai H., Scsugány J., Szabó-Hudák O., Pénzes-Kónya E., Neméth É.Z. Comparison of extraction methods for the assessment of total polyphenol content and in vitro antioxidant capacity of horsemint (Mentha longifolia (L.) L.) J. Appl. Res. Med. Aromat. Plants. 2019;15:100220. doi: 10.1016/j.jarmap.2019.100220. DOI
Dailey A., Vuong Q.V. Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agric. 2015;1:1115646. doi: 10.1080/23311932.2015.1115646. PubMed DOI PMC
Złotek U., Mikulska S., Nagajek M., Świeca M. The effect of different solvents and number of extraction steps on the polyphenol content and antioxidant capacity of basil leaves (Ocimum basilicum L.) extracts. Saudi J. Biol. Sci. 2016;23:628–633. doi: 10.1016/j.sjbs.2015.08.002. PubMed DOI PMC
Magwaza L.S., Opara U.L., Cronje P.J.R., Landahl S., Ortiz J.O., Terry L.A. Rapid methods for extracting and quantifying phenolic compounds in citrus rinds. Food Sci. Nutr. 2016;4:4–10. doi: 10.1002/fsn3.210. PubMed DOI PMC
Tasioula-Margari M., Tsabolatidou E. Extraction, separation, and identification of phenolic compounds in virgin olive oil by HPLC-DAD and HPLC-MS. Antioxidants. 2015;4:548–562. doi: 10.3390/antiox4030548. PubMed DOI PMC
Thoo Y.Y., Ng S.Y., Khoo M.Z., Wan Aida W.M., Ho C.W. A binary solvent extraction system for phenolic antioxidants and its application to the estimation of antioxidant capacity in Andrographis paniculata extracts. Int. Food Res. J. 2013;20:1103–1111.
Ameer K., Shahbaz H.M., Kwon J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017;16:295–315. doi: 10.1111/1541-4337.12253. PubMed DOI
Dent M., Dragović-Uzelac V., Penić M., Brnčić M., Bosiljkov T., Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013;51:84–91.
Rocha R.P., Melo E.C., Radünz L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plant Res. 2011;5:7076–7084. doi: 10.5897/JMPRX11.001. DOI
Orphanides A., Goulas V., Gekas V. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci. 2013;31:509–513. doi: 10.17221/526/2012-CJFS. DOI
Nozad M., Khojastehpour M., Tabasizadeh M., Azizi M., Ashtiani S.H.M., Salarikia A. Characterization of hot-air drying and infrared drying of spearmint (Mentha spicata L.) leaves. J. Food Meas. Charact. 2016;10:466–473. doi: 10.1007/s11694-016-9325-0. DOI
Kouřimská L., Ešlerová K., Khatri Y. The effect of storage on quality of herbs genus Origanum. Potravin. Slovak J. Food Sci. 2016;10:207–214. doi: 10.5219/608. DOI
Di Vittori L., Mazzoni L., Battino M., Mezzetti B. Pre-harvest factors influencing the quality of berries. Sci. Hortic. 2018;233:310–322. doi: 10.1016/j.scienta.2018.01.058. DOI
Liu W., Yin D., Li N., Hou X., Wang D., Li D., Liu J. Influence of Environmental Factors on the Active Substance Production and Antioxidant Activity in Potentilla fruticosa L. and Its Quality Assessment. Sci. Rep. 2016;6:28591. doi: 10.1038/srep28591. PubMed DOI PMC
Pico Y. Chemical Analysis of Food—Techniques and Application. 2nd ed. Academic Press; London, UK: 2020. pp. 33–76.
Iloki-Assanga S.B., Lewis-Luján L.M., Lara-Espinoza C.L., Gil-Salido A.A., Fernandez-Angulo D., Rubio-Pino J.L., Haines D.D. Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC Res. Notes. 2015;8:396. doi: 10.1186/s13104-015-1388-1. PubMed DOI PMC
Burdejova L., Tobolkova B., Polovka M. Effects of Different Factors on Concentration of Functional Components of Aronia and Saskatoon Berries. Plant Foods Hum. Nutr. 2020;75:83–88. doi: 10.1007/s11130-019-00780-4. PubMed DOI
Sumanta N., Haque C.I., Nishika J., Suprakash R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014;4:63–69.
Do Q.D., Angkawijaya A.E., Tran-Nguyen P.L., Huynh L.H., Soetaredjo F.E., Ismadji S., Ju Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014;22:296–302. doi: 10.1016/j.jfda.2013.11.001. PubMed DOI PMC
Ngo T.V., Scarlett C.J., Bowyer M.C., Ngo P.D., Vuong Q.V. Impact of Different Extraction Solvents on Bioactive Compounds and Antioxidant Capacity from the Root of Salacia chinensis L. J. Food Qual. 2017;2017:9305047. doi: 10.1155/2017/9305047. DOI
Dhanani T., Shah S., Gajbhiye N.A., Kumar S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017;10:S1193–S1199. doi: 10.1016/j.arabjc.2013.02.015. DOI
Kostić D., Mitić S., Zarubica A., Mitić M., Veličković J., Ranđelović S. Content of trace metals in medicinal plants and their extracts. Hem. Ind. 2011;65:165–170. doi: 10.2298/HEMIND101005075K. DOI
Pereira C.G., Barreira L., Bijttebier S., Pieters L., Marques C., Santos T.F., Rodrigues M.J., Varela J., Custódio L. Health promoting potential of herbal teas and tinctures from Artemisia campestris subsp. maritima: From traditional remedies to prospective products. Sci. Rep. 2018;8:4689. doi: 10.1038/s41598-018-23038-6. PubMed DOI PMC
Hossain M.B., Barry-Ryan C., Martin-Diana A.B., Brunton N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010;123:85–91. doi: 10.1016/j.foodchem.2010.04.003. DOI
Roshanak S., Rahimmalek M., Goli S.A.H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. J. Food Sci. Technol. 2016;53:721–729. doi: 10.1007/s13197-015-2030-x. PubMed DOI PMC
Semenov G.V., Krasnova I.S., Suvorov O.A., Shuvalova I.D., Posokhov N.D. Influence of freezing and drying on phytochemical properties of various fruit. Biosci. Biotechnol. Res. Asia. 2015;12:1311–1320. doi: 10.13005/bbra/1786. DOI
Singha P., Muthukumarappan K. Quality changes and freezing time prediction during freezing and thawing of ginger. Food Sci. Nutr. 2016;4:521–533. doi: 10.1002/fsn3.314. PubMed DOI PMC
Cuervo-Andrade S.P., Hensel O. Stepwise drying of medicinal plants as alternative to reduce time and energy processing. IOP Conf. Ser. Mater. Sci. Eng. 2016;138:012014. doi: 10.1088/1757-899X/138/1/012014. DOI
Guo Y., Wei H., Lu C., Gao B., Gu W. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change. PeerJ. 2016;4:e2554. doi: 10.7717/peerj.2554. PubMed DOI PMC
Liu W., Liu J., Yin D., Zhao X. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) T.S. Ying. PLoS ONE. 2015;10:e0122981. doi: 10.1371/journal.pone.0122981. PubMed DOI PMC
Shevchuk A., Jayasinghe L., Kuhnert N. Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Res. Int. 2018;109:387–402. doi: 10.1016/j.foodres.2018.03.059. PubMed DOI
Gautam V.K., Datta M., Baldi A. Effect of Geographical and Seasonal Variations on Phenolic Contents and Antioxidant Activity of Aerial Parts of Urtica diocia L. Curr. Tradit. Med. 2019;5:159–167. doi: 10.2174/2215083804666181012123333. DOI
Butorová L., Polovka M., Tobolková B., Vítová E., Křemenovská G. Assessment of antioxidant properties of different types of herbs by EPR and UV-VIS spectroscopy. Czech Chem. Soc. Symp. Ser. 2015;13:56–58.
Jiang P., Burczynski F., Campbell C., Pierce G., Austria J.A., Briggs C.J. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res. Int. 2007;40:356–364. doi: 10.1016/j.foodres.2006.10.009. DOI