A previously uncharacterized Factor Associated with Metabolism and Energy (FAME/C14orf105/CCDC198/1700011H14Rik) is related to evolutionary adaptation, energy balance, and kidney physiology
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
M 2688
Austrian Science Fund FWF - Austria
PubMed
37248239
PubMed Central
PMC10226981
DOI
10.1038/s41467-023-38663-7
PII: 10.1038/s41467-023-38663-7
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie * MeSH
- energetický metabolismus * genetika MeSH
- ferritiny genetika MeSH
- ledviny MeSH
- lidé MeSH
- neandertálci MeSH
- tělesná hmotnost MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferritiny MeSH
In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences 1090 Vienna Austria
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Neuroimmunology Center for Brain Research Medical University Vienna Vienna Austria
Department of Neuroscience Karolinska Institutet Stockholm Sweden
Department of Orthodontics University Leipzig Medical Center Leipzig Germany
Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
Endocrinology Research Center Moscow Russia
Institute of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Institute of Experimental Medicine and Systems Biology RWTH Aachen University Aachen Germany
Intractable Disease Research Center Graduate School of Medicine Juntendo University Tokyo Japan
Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases 1090 Vienna Austria
Max Planck Institute for Evolutionary Biology Plön 24306 Germany
Medical Gene Technology Unit Institute of Experimental Medicine Budapest Hungary
Zobrazit více v PubMed
Jones FC, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61. doi: 10.1038/nature10944. PubMed DOI PMC
Bustamante CD, et al. Natural selection on protein-coding genes in the human genome. Nature. 2005;437:1153–1157. doi: 10.1038/nature04240. PubMed DOI
Wang T, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350:1096–1101. doi: 10.1126/science.aac7041. PubMed DOI PMC
Lieben L. Evolution: Redefining gene essentiality. Nat. Rev. Genet. 2016;17:66. doi: 10.1038/nrg.2015.23. PubMed DOI
Manuylov NL, Manuylova E, Avdoshina V, Tevosian S. Serdin1/Lrrc10 is dispensable for mouse development. Genesis. 2008;46:441–446. doi: 10.1002/dvg.20422. PubMed DOI
Brody MJ, Lee Y. The Role of Leucine-Rich Repeat Containing Protein 10 (LRRC10) in Dilated Cardiomyopathy. Front Physiol. 2016;7:337. doi: 10.3389/fphys.2016.00337. PubMed DOI PMC
Strasser B, et al. Evolutionary origin and diversification of epidermal barrier proteins in amniotes. Mol. Biol. Evol. 2014;31:3194–3205. doi: 10.1093/molbev/msu251. PubMed DOI PMC
Kawasaki K, Lafont AG, Sire JY. The evolution of milk casein genes from tooth genes before the origin of mammals. Mol. Biol. Evol. 2011;28:2053–2061. doi: 10.1093/molbev/msr020. PubMed DOI
Meredith RW, Gatesy J, Springer MS. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes. BMC Evol. Biol. 2013;13:20. doi: 10.1186/1471-2148-13-20. PubMed DOI PMC
Ellegren H. Comparative genomics and the study of evolution by natural selection. Mol. Ecol. 2008;17:4586–4596. doi: 10.1111/j.1365-294X.2008.03954.x. PubMed DOI
Zhang G, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346:1311–1320. doi: 10.1126/science.1251385. PubMed DOI PMC
Jarvis ED, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346:1320–1331. doi: 10.1126/science.1253451. PubMed DOI PMC
Seebacher F. The evolution of metabolic regulation in animals. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2018;224:195–203. doi: 10.1016/j.cbpb.2017.11.002. PubMed DOI
Hedrick MS, Hillman SS. What drove the evolution of endothermy? J. Exp. Biol. 2016;219:300–301. doi: 10.1242/jeb.128009. PubMed DOI
Roberts RM, Green JA, Schulz LC. The evolution of the placenta. Reproduction. 2016;152:R179–R189. doi: 10.1530/REP-16-0325. PubMed DOI PMC
Vize PD, Smith HW. A Homeric view of kidney evolution: A reprint of H.W. Smith’s classic essay with a new introduction. Evolution of the kidney. 1943. Anat. Rec. A Disco. Mol. Cell Evol. Biol. 2004;277:344–354. doi: 10.1002/ar.a.20017. PubMed DOI
Poulson TL, McNabb FM, Folk RL. Uric acid: the main nitrogenous excretory product of birds. Science. 1970;170:98–99. doi: 10.1126/science.170.3953.98.a. PubMed DOI
Galperin MY, Koonin EV. From complete genome sequence to ‘complete’ understanding? Trends Biotechnol. 2010;28:398–406. doi: 10.1016/j.tibtech.2010.05.006. PubMed DOI PMC
Galperin MY, Koonin EV. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res. 2004;32:5452–5463. doi: 10.1093/nar/gkh885. PubMed DOI PMC
Pawlowski K. Uncharacterized/hypothetical proteins in biomedical ‘omics’ experiments: is novelty being swept under the carpet? Brief. Funct. Genom. Proteomic. 2008;7:283–290. doi: 10.1093/bfgp/eln033. PubMed DOI
Doridot L, et al. Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene. Antioxid. Redox Signal. 2014;21:819–834. doi: 10.1089/ars.2013.5661. PubMed DOI PMC
Bonavita R, et al. Cep126 is required for pericentriolar satellite localisation to the centrosome and for primary cilium formation. Biol. Cell. 2014;106:254–267. doi: 10.1111/boc.201300087. PubMed DOI PMC
Chen L, Wolf AB, Fu W, Li L, Akey JM. Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. Cell. 2020;180:677–687.e616. doi: 10.1016/j.cell.2020.01.012. PubMed DOI
Posth C, et al. Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Curr. Biol. 2016;26:827–833. doi: 10.1016/j.cub.2016.01.037. PubMed DOI
Rito T, et al. A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration. Sci. Rep. 2019;9:4728. doi: 10.1038/s41598-019-41176-3. PubMed DOI PMC
Genomes Project, C. et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393. PubMed DOI PMC
Mafessoni F, et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl Acad. Sci. USA. 2020;117:15132–15136. doi: 10.1073/pnas.2004944117. PubMed DOI PMC
Prufer K, et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 2017;358:655–658. doi: 10.1126/science.aao1887. PubMed DOI PMC
Prufer K, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505:43–49. doi: 10.1038/nature12886. PubMed DOI PMC
Mafessoni F, Prufer K. Better support for a small effective population size of Neandertals and a long shared history of Neandertals and Denisovans. Proc. Natl Acad. Sci. USA. 2017;114:E10256–E10257. doi: 10.1073/pnas.1716918114. PubMed DOI PMC
Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–722. doi: 10.1126/science.1188021. PubMed DOI PMC
Huerta-Sanchez E, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512:194–197. doi: 10.1038/nature13408. PubMed DOI PMC
Kong A, et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature. 2010;467:1099–1103. doi: 10.1038/nature09525. PubMed DOI
Tabula Muris C, et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562:367–372. doi: 10.1038/s41586-018-0590-4. PubMed DOI PMC
Park J, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science. 2018;360:758–763. doi: 10.1126/science.aar2131. PubMed DOI PMC
Deutsch EW. The PeptideAtlas Project. Methods Mol. Biol. 2010;604:285–296. doi: 10.1007/978-1-60761-444-9_19. PubMed DOI PMC
Huttlin EL, et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell. 2010;143:1174–1189. doi: 10.1016/j.cell.2010.12.001. PubMed DOI PMC
Schmidt T, et al. ProteomicsDB. Nucleic Acids Res. 2018;46:D1271–D1281. doi: 10.1093/nar/gkx1029. PubMed DOI PMC
Wang D, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 2019;15:e8503. doi: 10.15252/msb.20188503. PubMed DOI PMC
Li S, et al. Digging More Missing Proteins Using an Enrichment Approach with ProteoMiner. J. Proteome Res. 2017;16:4330–4339. doi: 10.1021/acs.jproteome.7b00353. PubMed DOI
Rinschen MM, et al. Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc. Natl Acad. Sci. USA. 2010;107:3882–3887. doi: 10.1073/pnas.0910646107. PubMed DOI PMC
MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10:997–1030. doi: 10.1089/ars.2007.1893. PubMed DOI PMC
Ho HY, et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell. 2004;118:203–216. doi: 10.1016/j.cell.2004.06.027. PubMed DOI
Kakimoto T, Katoh H, Negishi M. Regulation of neuronal morphology by Toca-1, an F-BAR/EFC protein that induces plasma membrane invagination. J. Biol. Chem. 2006;281:29042–29053. doi: 10.1074/jbc.M604025200. PubMed DOI
Lee J, Kim MS, Park SH, Jang YK. Tousled-like kinase 1 is a negative regulator of core transcription factors in murine embryonic stem cells. Sci. Rep. 2018;8:334. doi: 10.1038/s41598-017-18628-9. PubMed DOI PMC
Zhang R, Thamm DH, Misra V. The effect of Zhangfei/CREBZF on cell growth, differentiation, apoptosis, migration, and the unfolded protein response in several canine osteosarcoma cell lines. BMC Vet. Res. 2015;11:22. doi: 10.1186/s12917-015-0331-y. PubMed DOI PMC
Pardo M, et al. Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells. Sci. Rep. 2017;7:8157. doi: 10.1038/s41598-017-08456-2. PubMed DOI PMC
Nilsson R, et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 2009;10:119–130. doi: 10.1016/j.cmet.2009.06.012. PubMed DOI PMC
Tschop MH, et al. A guide to analysis of mouse energy metabolism. Nat. Methods. 2011;9:57–63. doi: 10.1038/nmeth.1806. PubMed DOI PMC
West DB, Boozer CN, Moody DL, Atkinson RL. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992;262:R1025–R1032. PubMed
Dunaief JL. Iron induced oxidative damage as a potential factor in age-related macular degeneration: the Cogan Lecture. Invest Ophthalmol. Vis. Sci. 2006;47:4660–4664. doi: 10.1167/iovs.06-0568. PubMed DOI
Sypes EE, et al. Higher Body Mass Index Is Associated with Iron Deficiency in Children 1 to 3 Years of Age. J. Pediatr. 2019;207:198–204 e191. doi: 10.1016/j.jpeds.2018.11.035. PubMed DOI
Kamat MA, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–4853. doi: 10.1093/bioinformatics/btz469. PubMed DOI PMC
Prins BP, et al. Genome-wide analysis of health-related biomarkers in the UK Household Longitudinal Study reveals novel associations. Sci. Rep. 2017;7:11008. doi: 10.1038/s41598-017-10812-1. PubMed DOI PMC
Gopal SK, et al. YBX1/YB-1 induces partial EMT and tumourigenicity through secretion of angiogenic factors into the extracellular microenvironment. Oncotarget. 2015;6:13718–13730. doi: 10.18632/oncotarget.3764. PubMed DOI PMC
Tang J, et al. Knockdown of TPT1-AS1 inhibits cell proliferation, cell cycle G1/S transition, and epithelial-mesenchymal transition in gastric cancer. Bosn. J. Basic Med. Sci. 2021;21:39–46. PubMed PMC
Ye Z, et al. ODC1 promotes proliferation and mobility via the AKT/GSK3beta/beta-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther. 2019;12:4081–4092. doi: 10.2147/OTT.S198341. PubMed DOI PMC
Meng Q, et al. Abrogation of glutathione peroxidase-1 drives EMT and chemoresistance in pancreatic cancer by activating ROS-mediated Akt/GSK3beta/Snail signaling. Oncogene. 2018;37:5843–5857. doi: 10.1038/s41388-018-0392-z. PubMed DOI
Xu C, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed. Pharmacother. 2017;91:1167–1177. doi: 10.1016/j.biopha.2017.05.056. PubMed DOI
Soldatov R, et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 2019;364:eaas9536. doi: 10.1126/science.aas9536. PubMed DOI
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis. 2010;48:73–85. PubMed
Wenger MJ, DellaValle DM, Murray-Kolb LE, Haas JD. Effect of iron deficiency on simultaneous measures of behavior, brain activity, and energy expenditure in the performance of a cognitive task. Nutr. Neurosci. 2019;22:196–206. doi: 10.1080/1028415X.2017.1360559. PubMed DOI PMC
Blankenhaus B, et al. Ferritin regulates organismal energy balance and thermogenesis. Mol. Metab. 2019;24:64–79. doi: 10.1016/j.molmet.2019.03.008. PubMed DOI PMC
Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease. Trends Biochem Sci. 2016;41:274–286. doi: 10.1016/j.tibs.2015.11.012. PubMed DOI PMC
Wasserman DH, O’Doherty RM, Zinker BA. Role of the endocrine pancreas in control of fuel metabolism by the liver during exercise. Int J. Obes. Relat. Metab. Disord. 1995;19:S22–S30. PubMed
Bhattacharya D, Azambuja AP, Simoes-Costa M. Metabolic Reprogramming Promotes Neural Crest Migration via Yap/Tead Signaling. Dev. Cell. 2020;53:199–211.e196. doi: 10.1016/j.devcel.2020.03.005. PubMed DOI PMC
Manz DH, Blanchette NL, Paul BT, Torti FM, Torti SV. Iron and cancer: recent insights. Ann. N. Y Acad. Sci. 2016;1368:149–161. doi: 10.1111/nyas.13008. PubMed DOI PMC
Yuan M, et al. N-myristoylation: from cell biology to translational medicine. Acta Pharm. Sin. 2020;41:1005–1015. doi: 10.1038/s41401-020-0388-4. PubMed DOI PMC
Lin CY, et al. Membrane protein-regulated networks across human cancers. Nat. Commun. 2019;10:3131. doi: 10.1038/s41467-019-10920-8. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Carithers LJ, et al. A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project. Biopreserv Biobank. 2015;13:311–319. doi: 10.1089/bio.2015.0032. PubMed DOI PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018;36:411–420. doi: 10.1038/nbt.4096. PubMed DOI PMC
Formstecher E, et al. Protein interaction mapping: a Drosophila case study. Genome Res. 2005;15:376–384. doi: 10.1101/gr.2659105. PubMed DOI PMC
Rain JC, et al. The protein-protein interaction map of Helicobacter pylori. Nature. 2001;409:211–215. doi: 10.1038/35051615. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Zhang X, et al. Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nat. Protoc. 2018;13:530–550. doi: 10.1038/nprot.2017.147. PubMed DOI
Go CD, et al. A proximity-dependent biotinylation map of a human cell. Nature. 2021;595:120–124. doi: 10.1038/s41586-021-03592-2. PubMed DOI
Ransick A, et al. Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the Mouse Kidney. Dev. Cell. 2019;51:399–413 e397. doi: 10.1016/j.devcel.2019.10.005. PubMed DOI PMC
Stuart T, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888–1902.e1821. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC
Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. Cell Syst. 2019;8:281–291.e289. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC
Wilson PC, et al. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl Acad. Sci. USA. 2019;116:19619–19625. doi: 10.1073/pnas.1908706116. PubMed DOI PMC
Chung JJ, et al. Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury. J. Am. Soc. Nephrol. 2020;31:2341–2354. doi: 10.1681/ASN.2020020220. PubMed DOI PMC
Schroeder AW, et al. NOVEL HUMAN KIDNEY CELL SUBSETS IDENTIFIED BY MUX-SEQ. Transplantation. 2020;104:S85. doi: 10.1097/01.tp.0000698680.69665.ce. DOI
Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949;109:1–9. doi: 10.1113/jphysiol.1949.sp004363. PubMed DOI PMC
Even PC, Mokhtarian A, Pele A. Practical aspects of indirect calorimetry in laboratory animals. Neurosci. Biobehav Rev. 1994;18:435–447. doi: 10.1016/0149-7634(94)90056-6. PubMed DOI
Concordet JP, Haeussler M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018;46:W242–W245. doi: 10.1093/nar/gky354. PubMed DOI PMC
Shalem O, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87. doi: 10.1126/science.1247005. PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Beck T, Rowlands T, Shorter T, Brookes AJ. GWAS Central: an expanding resource for finding and visualising genotype and phenotype data from genome-wide association studies. Nucleic Acids Res. 2023;51:D986–D993. doi: 10.1093/nar/gkac1017. PubMed DOI PMC
Howe KL, et al. Ensembl 2021. Nucleic Acids Res. 2021;49:D884–D891. doi: 10.1093/nar/gkaa942. PubMed DOI PMC