A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
U01 HG004438
NHGRI NIH HHS - United States
U01 HG004446
NHGRI NIH HHS - United States
K05 CA154337
NCI NIH HHS - United States
U01 CA164930
NCI NIH HHS - United States
U01 CA167551
NCI NIH HHS - United States
R01 CA042182
NCI NIH HHS - United States
HHSN268201100003I
NHLBI NIH HHS - United States
P01 CA196569
NCI NIH HHS - United States
001
World Health Organization - International
R01 CA059045
NCI NIH HHS - United States
HHSN268201100001I
NHLBI NIH HHS - United States
R01 CA197350
NCI NIH HHS - United States
R01 CA076366
NCI NIH HHS - United States
R35 CA197735
NCI NIH HHS - United States
U10 CA037429
NCI NIH HHS - United States
R01 CA114347
NCI NIH HHS - United States
R01 CA072520
NCI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
P30 CA015704
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
P30 CA006973
NCI NIH HHS - United States
P01 CA055075
NCI NIH HHS - United States
S10 OD028685
NIH HHS - United States
UG1 CA189974
NCI NIH HHS - United States
R01 CA151993
NCI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
P30 DK034987
NIDDK NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
R01 CA048998
NCI NIH HHS - United States
U01 CA137088
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
Z01 CP010200
Intramural NIH HHS - United States
U24 CA074794
NCI NIH HHS - United States
R01 CA066635
NCI NIH HHS - United States
U01 CA206110
NCI NIH HHS - United States
HHSN268201200008C
NHLBI NIH HHS - United States
R01 CA137178
NCI NIH HHS - United States
U01 CA074794
NCI NIH HHS - United States
P30 CA014089
NCI NIH HHS - United States
R01 CA081488
NCI NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA201407
NCI NIH HHS - United States
R01 CA063464
NCI NIH HHS - United States
P01 CA033619
NCI NIH HHS - United States
U01 CA086308
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
HHSN268201100002C
WHI NIH HHS - United States
R03 CA153323
NCI NIH HHS - United States
HHSN261201700006I
NCI NIH HHS - United States
T32 ES013678
NIEHS NIH HHS - United States
R01 CA136726
NCI NIH HHS - United States
R01 CA254108
NCI NIH HHS - United States
14136
Cancer Research UK - United Kingdom
UM1 CA167552
NCI NIH HHS - United States
K05 CA152715
NCI NIH HHS - United States
U01 CA122839
NCI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
U01 CA074783
NCI NIH HHS - United States
U01 CA084968
NCI NIH HHS - United States
KL2 TR000421
NCATS NIH HHS - United States
UM1 CA182883
NCI NIH HHS - United States
HHSN268201200008I
NHLBI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
Z01 CP010200
NCI NIH HHS - United States
R37 CA054281
NCI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
HHSN268201700006C
NHLBI NIH HHS - United States
MR/M012190/1
Medical Research Council - United Kingdom
R01 CA097325
NCI NIH HHS - United States
U19 CA148107
NCI NIH HHS - United States
U01 AG018033
NIA NIH HHS - United States
PubMed
37249599
PubMed Central
PMC10391330
DOI
10.1158/0008-5472.can-22-3713
PII: 727007
Knihovny.cz E-zdroje
- MeSH
- celogenomová asociační studie MeSH
- genetická predispozice k nemoci MeSH
- genetické lokusy MeSH
- index tělesné hmotnosti MeSH
- jednonukleotidový polymorfismus MeSH
- kolorektální nádory * genetika MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny genetika MeSH
- obezita * komplikace genetika MeSH
- rizikové faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- GREM1 protein, human MeSH Prohlížeč
- mezibuněčné signální peptidy a proteiny MeSH
UNLABELLED: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. SIGNIFICANCE: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
Bioinformatics and Data Science Research Center Bina Nusantara University Jakarta Indonesia
BioRealm LLC Walnut California
Broad Institute of Harvard and MIT Cambridge Massachusetts
Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria Australia
Center for Cancer Research Medical University of Vienna Vienna Austria
Clalit National Cancer Control Center Haifa Israel
Computer Science Department School of Computer Science Bina Nusantara University Jakarta Indonesia
Consortium for Biomedical Research in Epidemiology and Public Health Madrid Spain
Department of Biostatistics University of Washington Seattle Washington
Department of Clinical Sciences Faculty of Medicine University of Barcelona Barcelona Spain
Department of Community Medicine and Epidemiology Lady Davis Carmel Medical Center Haifa Israel
Department of Computer Science Stanford University Stanford California
Department of Epidemiology and Population Health Albert Einstein College of Medicine Bronx New York
Department of Epidemiology Geisel School of Medicine at Dartmouth Hanover New Hampshire
Department of Epidemiology Johns Hopkins Bloomberg School of Public Health Baltimore Maryland
Department of Epidemiology Richard M Fairbanks School of Public Health Indianapolis Indiana
Department of Epidemiology University of Washington School of Public Health Seattle Washington
Department of Family Medicine University of Virginia Charlottesville Virginia
Department of Genetics and Genome Sciences Case Western Reserve University Cleveland Ohio
Department of Genetics Stanford University Stanford California
Department of Hygiene and Epidemiology University of Ioannina School of Medicine Ioannina Greece
Department of Internal Medicine University of Utah Salt Lake City Utah
Department of Laboratory Medicine and Pathology Mayo Clinic Arizona Scottsdale Arizona
Department of Nutritional Sciences University of Michigan School of Public Health Ann Arbor Michigan
Department of Oncologic Pathology Dana Farber Cancer Institute Boston Massachusetts
Department of Pathology School of Medicine Umm Al Qura'a University Mecca Saudi Arabia
Department of Population Health Sciences University of Utah Salt Lake City Utah
Department of Radiation Sciences Oncology Unit Umeå University Umeå Sweden
Digestive Diseases and Microbiota Group Girona Biomedical Research Institute Salt Girona Spain
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Division of Human Nutrition and Health Wageningen University and Research Wageningen the Netherlands
Division of Preventive Oncology German Cancer Research Center Heidelberg Germany
Division of Research Kaiser Permanente Northern California Oakland California
Faculty of Medicine and Biomedical Center in Pilsen Charles University Pilsen Czech Republic
Genomic Medicine and Family Cancer Clinic The Royal Melbourne Hospital Parkville Victoria Australia
Genomic Medicine Institute Cleveland Clinic Cleveland Ohio
German Cancer Consortium Heidelberg Germany
Huntsman Cancer Institute Salt Lake City Utah
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
IU Melvin and Bren Simon Cancer Center Indiana University Indianapolis Indiana
Leeds Institute of Cancer and Pathology University of Leeds Leeds United Kingdom
Medical Faculty Heidelberg Heidelberg University Heidelberg Germany
Memorial University of Newfoundland Discipline of Genetics St John's Canada
ONCOBELL Program Bellvitge Biomedical Research Institute L'Hospitalet de Llobregat Barcelona Spain
Physical Activity Laboratory Baker Heart and Diabetes Institute Melbourne Australia
Public Health Sciences Division Fred Hutchinson Cancer Research Center Seattle Washington
Research Centre for Hauora and Health Massey University Wellington New Zealand
Ruth and Bruce Rappaport Faculty of Medicine Technion Israel Institute of Technology Haifa Israel
School of Public Health Capital Medical University Beijing China
SWOG Statistical Center Fred Hutchinson Cancer Research Center Seattle Washington
Unit of Biomarkers and Susceptibility L'Hospitalet del Llobregat Barcelona Spain
University Medical Centre Hamburg Eppendorf University Cancer Centre Hamburg Hamburg Germany
University of Hawaii Cancer Center Honolulu Hawaii
Wallenberg Centre for Molecular Medicine Umeå University Umeå Sweden
Zobrazit více v PubMed
Papadimitriou N, Markozannes G, Kanellopoulou A, Critselis E, Alhardan S, Karafousia V, et al. . An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat Commun 2021;12:4579. PubMed PMC
Murphy N, Moreno V, Hughes DJ, Vodicka L, Vodicka P, Aglago EK, et al. . Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol Aspects Med 2019;69:2–9. PubMed
Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, et al. . Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J Clin 2018;68:31–54. PubMed
Goon S, Kim H, Giovannucci E. Population attributable risk for colorectal and breast cancer in England, Wales, Scotland, Northern Ireland, and the United Kingdom [version 1; peer review: 1 approved, 1 not approved]. AMRC Open Research 2021;3. PubMed PMC
Campbell PT. Obesity: a certain and avoidable cause of cancer. Lancet 2014;384:727–8. PubMed
Brandkvist M, Bjørngaard JH, Ødegård RA, Åsvold BO, Sund ER, Vie G. Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT study. BMJ 2019;366:l4067. PubMed PMC
Di Cesare M, Bentham J, Stevens G, Zhou B, Danaei G, Lu Y, et al. . Trends in adult body mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet North Am Ed 2016;387:1377–96. PubMed PMC
Huyghe JR, Bien SA, Harrison TA, Kang HM, Chen S, Schmit SL, et al. . Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet 2019;51:76–87. PubMed PMC
Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut 2015;64:1623–36. PubMed PMC
Peters U, Jiao S, Schumacher FR, Hutter CM, Aragaki AK, Baron JA, et al. . Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology 2013;144:799–807. PubMed PMC
Schmit SL, Schumacher FR, Edlund CK, Conti DV, Ihenacho U, Wan P, et al. . Genome-wide association study of colorectal cancer in Hispanics. Carcinogenesis 2016;37:547–56. PubMed PMC
Schmit SL, Edlund CK, Schumacher FR, Gong J, Harrison TA, Huyghe JR, et al. . Novel common genetic susceptibility loci for colorectal cancer. J Natl Cancer Inst 2019;111:146–57. PubMed PMC
Fernandez-Rozadilla C, Timofeeva M, Chen Z, Law P, Thomas M, Schmit S, et al. . Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat Genet 2023;55:89–99. PubMed PMC
Campbell PT, Lin Y, Bien SA, Figueiredo JC, Harrison TA, Guinter MA, et al. . Association of body mass index with colorectal cancer risk by genome-wide variants. J Natl Cancer Inst 2021;113:38–47. PubMed PMC
He J, Wilkens LR, Stram DO, Kolonel LN, Henderson BE, Wu AH, et al. . Generalizability and epidemiologic characterization of eleven colorectal cancer GWAS hits in multiple populations. Cancer Epidemiol Biomarkers Prev 2011;20:70–81. PubMed PMC
Kantor ED, Hutter CM, Minnier J, Berndt SI, Brenner H, Caan BJ, et al. . Gene-environment interaction involving recently identified colorectal cancer susceptibility Loci. Cancer Epidemiol Biomarkers Prev 2014;23:1824–33. PubMed PMC
Gauderman WJ, Zhang P, Morrison JL, Lewinger JP. Finding novel genes by testing G × E interactions in a genome-wide association study. Genet Epidemiol 2013;37:603–13. PubMed PMC
Gauderman WJ, Mukherjee B, Aschard H, Hsu L, Lewinger JP, Patel CJ, et al. . Update on the state of the science for analytical methods for gene-environment interactions. Am J Epidemiol 2017;186:762–70. PubMed PMC
Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al. . Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res 2012;72:2036–44. PubMed PMC
Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N, Wormser D, Gao P, Kaptoge S, et al. . Body mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016;388:776–86. PubMed PMC
Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. . Next-generation genotype imputation service and methods. Nat Genet 2016;48:1284–7. PubMed PMC
Guido Schwarzer JRC, Rücker Gerta. Meta-Analysis with R. Switzerland: Springer, Cham; 2015. 252 p.
Morrison J. GxEScanR: run GWAS/GWEIS scans using binary dosage files. 2.0.22020.
Gauderman WJ, Kim A, Conti DV, Morrison J, Thomas DC, Vora H, et al. . A unified model for the analysis of gene-environment interaction. Am J Epidemiol 2019;188:760–7. PubMed PMC
Vanderweele TJ, Ko YA, Mukherjee B. Environmental confounding in gene-environment interaction studies. Am J Epidemiol 2013;178:144–52. PubMed PMC
Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. . LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010;26:2336–7. PubMed PMC
Díez-Obrero V, Dampier CH, Moratalla-Navarro F, Devall M, Plummer SJ, Díez-Villanueva A, et al. . Genetic effects on transcriptome profiles in colon epithelium provide functional insights for genetic risk loci. Cell Mol Gastroenterol Hepatol 2021;12:181–97. PubMed PMC
Du M, Jiao S, Bien SA, Gala M, Abecasis G, Bezieau S, et al. . Fine-mapping of common genetic variants associated with colorectal tumor risk identified potential functional variants. PLoS One 2016;11:e0157521. PubMed PMC
Law PJ, Timofeeva M, Fernandez-Rozadilla C, Broderick P, Studd J, Fernandez-Tajes J, et al. . Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat Commun 2019;10:2154. PubMed PMC
Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. . A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 2008;40:623–30. PubMed
Al-Tassan NA, Whiffin N, Hosking FJ, Palles C, Farrington SM, Dobbins SE, et al. . A new GWAS and meta-analysis with 1000Genomes imputation identifies novel risk variants for colorectal cancer. Sci Rep 2015;5:10442. PubMed PMC
Kasi PM, Zafar SY, Grothey A. Is obesity an advantage in patients with colorectal cancer? Expert Rev Gastroenterol Hepatol 2015;9:1339–42. PubMed
Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. . Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009;41:18–24. PubMed
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. . A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889–94. PubMed PMC
Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD, et al. . Genome-wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One 2007;2:e1361. PubMed PMC
Scuteri A, Sanna S, Chen WM, Uda M, Albai G, Strait J, et al. . Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 2007;3:e115. PubMed PMC
Pulit SL, Stoneman C, Morris AP, Wood AR, Glastonbury CA, Tyrrell J, et al. . Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 2019;28:166–74. PubMed PMC
Labat-de-Hoz L, Alonso MA. Formins in human disease. Cells 2021;10:2554. PubMed PMC
Zhou F, Leder P, Martin SS. Formin-1 protein associates with microtubules through a peptide domain encoded by exon-2. Exp Cell Res 2006;312:1119–26. PubMed
Yang Y, Qu R, Fan T, Zhu X, Feng Y, Yang Y, et al. . Cross-talk between microtubules and the linker of nucleoskeleton complex plays a critical role in the adipogenesis of human adipose-derived stem cells. Stem Cell Res Ther 2018;9:125-. PubMed PMC
Gagné-Ouellet V, Breton E, Thibeault K, Fortin CA, Desgagné V, Girard Tremblay É, et al. . Placental epigenome-wide association study identified loci associated with childhood adiposity at 3 years of age. Int J Mol Sci 2020;21:7201. PubMed PMC
Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, et al. . Role of formins in actin assembly: nucleation and barbed-end association. Science 2002;297:612–5. PubMed
Shimada A, Nyitrai M, Vetter IR, Kühlmann D, Bugyi B, Narumiya S, et al. . The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization. Mol Cell 2004;13:511–22. PubMed
Higgs HN, Peterson KJ. Phylogenetic analysis of the formin homology 2 domain. Mol Biol Cell 2005;16:1–13. PubMed PMC
Woychik RP, Maas RL, Zeller R, Vogt TF, Leder P. ‘Formins': proteins deduced from the alternative transcripts of the limb deformity gene. Nature 1990;346:850–3. PubMed
Al-Qattan MM, Alkuraya FS. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am J Med Genet A 2019;179:266–79. PubMed
Patel N, Faqeih E, Anazi S, Alfawareh M, Wakil SM, Colak D, et al. . A novel APC mutation defines a second locus for Cenani-Lenz syndrome. J Med Genet 2015;52:317–21. PubMed
Lee HK, Deneen B. Daam2 is required for dorsal patterning via modulation of canonical Wnt signaling in the developing spinal cord. Dev Cell 2012;22:183–96. PubMed PMC
Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, Martin JF, et al. . Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell 2013;26:629–44. PubMed PMC
Coghill A, Passarelli M, Makar K, Zheng Y, Potter J, Wernli K, et al. . Abstract B73: Body mass index modifies the association between SMAD7 polymorphism rs4939827 and colorectal cancer risk. Cancer Prev Res 2010;3:B73–B.
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT signaling and bone: lessons from skeletal dysplasias and disorders. Front Endocrinol 2020;11:165. PubMed PMC
Dutton LR, Hoare OP, McCorry AMB, Redmond KL, Adam NE, Canamara S, et al. . Fibroblast-derived Gremlin1 localises to epithelial cells at the base of the intestinal crypt. Oncotarget 2019;10:4630–9. PubMed PMC
Todd GM, Gao Z, Hyvönen M, Brazil DP. Ten Dijke P. Secreted BMP antagonists and their role in cancer and bone metastases. Bone 2020;137:115455. PubMed
Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, et al. . Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med 2015;21:62–70. PubMed PMC
Koppens MAJ, Davis H, Valbuena GN, Mulholland EJ, Nasreddin N, Colombe M, et al. . Bone morphogenetic protein pathway antagonism by grem1 regulates epithelial cell fate in intestinal regeneration. Gastroenterology 2021;161:239–54. PubMed PMC