Competitive formation of molecular inclusion complexes of chlordecone and β-hexachlorocyclohexane with natural cyclodextrins: DFT and molecular dynamics study

. 2023 Jun 02 ; 29 (6) : 196. [epub] 20230602

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37266689

Grantová podpora
CIMPest-CBA-330810-2018-P-1 Instituto Tecnológico de Santo Domingo
CIMPest-CBA-330810-2018-P-1 Instituto Tecnológico de Santo Domingo
Project DetDePest CAPES, Guadeloupe
Project DetDePest CAPES, Guadeloupe

Odkazy

PubMed 37266689
DOI 10.1007/s00894-023-05600-w
PII: 10.1007/s00894-023-05600-w
Knihovny.cz E-zdroje

CONTEXT: Chlordecone (CLD) and β-hexachlorocyclohexane (β-HCH) are chlorinated pesticides that coexist as persistent organic pollutants in the groundwater of several countries in the Caribbean, being an environmental issue. This work evaluates theoretically the competitive formation of host-guest complexes pesticides@cyclodextrines (CDs) as an alternative for water purification and selective separation of pesticides. METHODS: Quantum mechanical calculations based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were used to achieve information on geometries, energies, structure, and dynamics of guest-host complexes in the gas phase, implicit solvent medium, and in aqueous solutions. RESULTS: DFT studies showed that interactions of both pesticides with CDs are mediated by steric factors and guided by maximization of the hydrophobic interactions either with the other pesticide or with the CD cavity's inner atoms. MD results corroborate the formation of stable complexes of both pesticides with the studied CDs. α-CD exhibited a preference for the smaller β-HCH molecule over the CLD that could not perturb the formed complex. CONCLUSIONS: The simulation of competitive formation with γ-CD illustrated that this molecule could accommodate both pesticides inside its cavity. These results suggest that CDs with smaller cavity sizes such as α-CD could be used for selective separation of β-HCH from CLD in water bodies, while γ-CD could be used for methods that aim to remove both pesticides at the same time.

Zobrazit více v PubMed

Jones KC, De Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–21 PubMed DOI

Lallas PL (2001) The stockholm convention on persistent organic pollutants. Amer J Intern Law 95(3):692–708

Della Rossa P, Jannoyer M, Mottes C, Plet J, Bazizi A, Arnaud L et al (2017) Linking current river pollution to historical pesticide use: insights for territorial management? Sci Total Environ 574:1232–42 PubMed DOI

Robert S (2012) Historique de la contamination des sédiments littoraux des Antilles françaises par la chlordécone (ChloSed). Rapport final de convention MAAP-Ifremer; Ifremer: L’Houmeau, p 92

Alonso-Hernández CM, Gómez-Batista M, Cattini C, Villeneuve J-P, Oh J (2012) Organochlorine pesticides in green mussel, Perna viridis, from the Cienfuegos Bay, Cuba. Bull Environ Contam Toxicol 89:995–9 PubMed DOI

Alonso-Hernandez CM, Mesa-Albernas M, Tolosa I (2014) Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in sediments from the Gulf of Batabanó, Cuba. Chemosphere 94:36–41 PubMed DOI

Dierksmeier G (1996) Pesticide contamination in the Cuban agricultural environment. TrAC Trends Anal Chem 15:154–9 DOI

Tolosa I, Mesa-Albernas M, Alonso-Hernandez CM (2010) Organochlorine contamination (PCBs, DDTs, HCB, HCHs) in sediments from Cienfuegos bay. Cuba. Mar Pollut Bull 60:1619–24 PubMed DOI

Phillips TM, Seech AG, Lee H, Trevors JT (2005) Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation 16:363–92 PubMed DOI

Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–207 DOI

Xiao H, Li N, Wania F (2004) Compilation, evaluation, and selection of physical-chemical property data for α-, β-, and γ-hexachlorocyclohexane. J Chem Eng Data 49:173–85 DOI

Newhouse K, Berner T, Mukerjee D, Rooney A (2009) Toxicological review of chlordecone (kepone) EPA/635/R-07 4:663–677

Cruz-González G, Julcour C, Chaumat H, Bourdon V, Ramon-Portugal F, Gaspard S et al (2018) Degradation of chlordecone and beta-hexachlorocyclohexane by photolysis,(photo-) fenton oxidation and ozonation. J Environ Sci Health B 53:121–5 PubMed DOI

Durimel A, Passé-Coutrin N, Jean-Marius C, Gadiou R, Enriquez-Victorero C, Hernández-Valdés D et al (2015) Role of acidic sites in beta-hexachlorocyclohexane (β-HCH) adsorption by activated carbons: molecular modelling and adsorption–desorption studies. RSC Adv 5:85153–64 DOI

Gamboa-Carballo JJ, Melchor-Rodríguez K, Hernández-Valdés D, Enriquez-Victorero C, Montero-Alejo AL, Gaspard S et al (2016) Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions. J Mol Graph Model 65:83–93 PubMed DOI

Lee J-U, Lee S-S, Lee S, Oh HB (2020) Noncovalent complexes of cyclodextrin with small organic molecules: applications and insights into host–guest interactions in the gas phase and condensed phase. Molecules 25:4048 PubMed DOI PMC

Oliveri V, Vecchio G (2018) Metallocyclodextrins in medicinal chemistry. Future Med Chem 10:663–77 PubMed DOI

Crini G (2014) A history of cyclodextrins. Chem Rev 114:10940–75 PubMed DOI

Bouhadiba A, Rahali S, Belhocine Y, Allal H, Nouar L, Rahim M (2020) Structural and energetic investigation on the host/guest inclusion process of benzyl isothiocyanate into β-cyclodextrin using dispersion-corrected DFT calculations. Carbohydr Res 491:107980 PubMed DOI

Bilensoy E (ed) (2011) Cyclodextrins in pharmaceutics, cosmetics and biomedicine. Current and future industrial applications. Hoboken, Wiley, p 395. https://doi.org/10.1002/9780470926819

Duca G, Boldescu V (2008) Cyclodextrins–fields of application. Part I. Chem J Moldova. Gen Ind Ecol Chem 3:30–7 DOI

Ferino-Pérez A, Gamboa-Carballo JJ, Ranguin R, Levalois-Grützmacher J, Bercion Y, Gaspard S et al (2019) Evaluation of the molecular inclusion process of β-hexachlorocyclohexane in cyclodextrins. RSC Adv 9:27484–27499 PubMed DOI PMC

Rana VK, Kissner R, Gaspard S, Levalois-Grützmacher J (2016) Cyclodextrin as a complexation agent in the removal of chlordecone from water. Chem Eng J 293:82–9 DOI

Gamboa-Carballo JJ, Ferino-Pérez A, Rana VK, Levalois-Grützmacher J, Gaspard S, Montero-Cabrera LA et al (2020) Theoretical evaluation of the molecular inclusion process between chlordecone and cyclodextrins: a new method for mitigating the basis set superposition error in the case of an implicit solvation model. J Chem Inf Model 60:2115–25 PubMed DOI

Jáuregui-Haza U, Ferino-Pérez A, Gamboa-Carballo JJ, Gaspard S (2020) Guest-host complexes of 1-iodochlordecone and β-1-iodo-pentachlorocyclohexane with cyclodextrins as radiotracers of organochlorine pesticides in polluted water. Environ Sci Pollut Res Int 27:41105–16 PubMed DOI

Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

Case D, Pearlman D, Caldwell J, Cheatham T III, Wang J, Ross W et al (2004) Amber 8. University of California at San Francisco, San Francisco

Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL et al (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates 29:622–655

Zhao Y, Truhlar DG (2008) A prototype for graphene material simulation: structures and interaction potentials of coronene dimers. J Phys Chem C 112:4061–7 DOI

Johnson ER, Mackie ID, DiLabio GA (2009) Dispersion interactions in density-functional theory. J Phys Organ Chem 22:1127–35 DOI

Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–65 PubMed DOI

Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–96 PubMed DOI

Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J et al (2009) GAUSSIAN09. Gaussian Inc., Wallingford

Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–80 DOI

Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–60 PubMed DOI

Martínez JM, Martínez L (2003) Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem 24:819–25 PubMed DOI

Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–64 PubMed DOI

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. Comput Chem 18:1463–72 DOI

Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–92 DOI

Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101 PubMed DOI

Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56 DOI

Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Annu 7:306–17 DOI

Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–18 PubMed DOI

Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–8 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...