Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries

. 2023 May 30 ; 12 (11) : . [epub] 20230530

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37297434

Grantová podpora
IGA_PrF_2023_024 Palacký University, Olomouc

BACKGROUND: Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS: In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS: Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION: Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.

Zobrazit více v PubMed

Trojanowska A., Nogalska A., Valls R.G., Giamberini M., Tylkowski B. Technological solutions for encapsulation. Phys. Sci. Rev. 2017;2 doi: 10.1515/psr-2017-0020. DOI

Huang Y., Stonehouse A., Abeykoon C. Encapsulation methods for phase change materials—A critical review. Int. J. Heat Mass Transf. 2023;200:123458. doi: 10.1016/j.ijheatmasstransfer.2022.123458. DOI

Zabot G.L., Rodrigues F.S., Ody L.P., Tres M.V., Herrera E., Palacin H., Córdova-Ramos J.S., Best I., Olivera-Montenegro L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers. 2022;14:4194. doi: 10.3390/polym14194194. PubMed DOI PMC

Guía-García J.L., Charles-Rodríguez A.V., Reyes-Valdés M.H., Ramírez-Godina F., Robledo-Olivo A., García-Osuna H.T., Cerqueira M.A., Flores-López M.L. Micro and nanoencapsulation of bioactive compounds for agri-food applications: A review. Ind. Crops Prod. 2022;186:115198. doi: 10.1016/j.indcrop.2022.115198. DOI

Sultana M., Chan E.-S., Pushpamalar J., Choo W.S. Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci. Technol. 2022;123:69–86. doi: 10.1016/j.tifs.2022.03.006. DOI

Di Giorgio L., Salgado P.R., Mauri A.N. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocoll. 2019;87:891–901. doi: 10.1016/j.foodhyd.2018.09.024. DOI

Kandasamy S., Naveen R. A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process. Eng. 2022;45:e14059. doi: 10.1111/jfpe.14059. DOI

Bamidele O.P., Emmambux M.N. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Crit. Rev. Food Sci. Nutr. 2021;61:3100–3118. doi: 10.1080/10408398.2020.1793724. PubMed DOI

Devi N., Sarmah M., Khatun B., Maji T.K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv. Colloid Interface Sci. 2017;239:136–145. doi: 10.1016/j.cis.2016.05.009. PubMed DOI

Grgić J., Šelo G., Planinić M., Tišma M., Bucić-Kojić A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants. 2020;9:923. doi: 10.3390/antiox9100923. PubMed DOI PMC

Dias D.R., Botrel D.A., Fernandes R.V.D.B., Borges S.V. Encapsulation as a tool for bioprocessing of functional foods. Curr. Opin. Food Sci. 2017;13:31–37. doi: 10.1016/j.cofs.2017.02.001. DOI

Marcillo-Parra V., Tupuna-Yerovi D.S., González Z., Ruales J. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application—A review. Trends Food Sci. Technol. 2021;116:11–23. doi: 10.1016/j.tifs.2021.07.009. DOI

Food Encapsulation Market Size, Share, Global Trends, Forecasts to 2027. [(accessed on 10 May 2023)]. Available online: https://www.marketsandmarkets.com/Market-Reports/food-encapsulation-advanced-technologies-and-global-market-68.html.

Gao J., Jin P., Zhang Y., Dong H., Wang R. Fast-responsive capsule based on two soluble components for self-healing concrete. Cem. Concr. Compos. 2022;133:104711. doi: 10.1016/j.cemconcomp.2022.104711. DOI

Timilsena Y.P., Haque A., Adhikari B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food Nutr. Sci. 2020;11:481–508. doi: 10.4236/fns.2020.116035. DOI

Mahmood F., Rehman S.K.U., Jameel M., Riaz N., Javed M.F., Salmi A., Awad Y.A. Self-Healing Bio-Concrete Using Bacillus subtilis Encapsulated in Iron Oxide Nanoparticles. Materials. 2022;15:7731. doi: 10.3390/ma15217731. PubMed DOI PMC

Li H., Wang X. Preparation of microcapsules with IPDI monomer and isocyanate prepolymer as self-healing agent and their application in self-healing materials. Polymer. 2022;262:125478. doi: 10.1016/j.polymer.2022.125478. DOI

Papaioannou S., Amenta M., Kilikoglou V., Gournis D., Karatasios I. Critical Aspects in the Development and Integration of Encapsulated Healing Agents in Cement and Concrete. J. Adv. Concr. Technol. 2021;19:301–320. doi: 10.3151/jact.19.301. DOI

Reda M.A., Chidiac S.E. Performance of Capsules in Self-Healing Cementitious Material. Materials. 2022;15:7302. doi: 10.3390/ma15207302. PubMed DOI PMC

Wang H., Zhou Q. Evaluation and failure analysis of linseed oil encapsulated self-healing anticorrosive coating. Prog. Org. Coat. 2018;118:108–115. doi: 10.1016/j.porgcoat.2018.01.024. DOI

He S., Gao Y., Gong X., Wu C., Cen H. Advance of design and application in self-healing anticorrosive coating: A review. J. Coat. Technol. Res. 2023;20:819–841. doi: 10.1007/s11998-022-00735-6. DOI

Ouarga A., Lebaz N., Tarhini M., Noukrati H., Barroug A., Elaissari A., Ben Youcef H. Towards smart self-healing coatings: Advances in micro/nano-encapsulation processes as carriers for anti-corrosion coatings development. J. Mol. Liq. 2022;354:118862. doi: 10.1016/j.molliq.2022.118862. DOI

Zhang C., Liu R., Chen M., Li X., Zhu Z., Yan J. Effects of independently designed and prepared self-healing granules on self-healing efficiency for cement cracks. Constr. Build. Mater. 2022;347:128626. doi: 10.1016/j.conbuildmat.2022.128626. DOI

Reshma V., Mohanan P. Quantum dots: Applications and safety consequences. J. Lumin. 2019;205:287–298. doi: 10.1016/j.jlumin.2018.09.015. DOI

Lisi F., Sawayama J., Gautam S., Rubanov S., Duan X., Kirkwood N. Re-Examination of the Polymer Encapsulation of Quantum Dots for Biological Applications. ACS Appl. Nano Mater. 2023;6:4046–4055. doi: 10.1021/acsanm.3c00529. DOI

Ahmed S., Lahkar S., Doley S., Mohanta D., Dolui S.K. A hierarchically porous MOF confined CsPbBr3 quantum dots: Fluorescence switching probe for detecting Cu (II) and melamine in food samples. J. Photochem. Photobiol. A Chem. 2023;443:114821. doi: 10.1016/j.jphotochem.2023.114821. DOI

Prieto C., Talón E., Lagaron J. Room temperature encapsulation of algae oil in water insoluble gluten extract. Food Hydrocoll. Health. 2021;1:100022. doi: 10.1016/j.fhfh.2021.100022. DOI

Noor A., Al Murad M., Chitra A.J., Babu S.N., Govindarajan S. Alginate based encapsulation of polyphenols of Piper betel leaves: Development, stability, bio-accessibility and biological activities. Food Biosci. 2022;47:101715. doi: 10.1016/j.fbio.2022.101715. DOI

Wongverawattanakul C., Suklaew P.O., Chusak C., Adisakwattana S., Thilavech T. Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion. Foods. 2022;11:2378. doi: 10.3390/foods11152378. PubMed DOI PMC

Zhou Y., Xu D., Yu H., Han J., Liu W., Qu D. Encapsulation of Salmonella phage SL01 in alginate/carrageenan micro-capsules as a delivery system and its application in vitro. Front. Microbiol. 2022;13:2718. PubMed PMC

Gupta P., Preet S., Ananya, Singh N. Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Sci. Rep. 2022;12:4335. doi: 10.1038/s41598-022-07676-5. PubMed DOI PMC

Chomchoey S., Klongdee S., Peanparkdee M., Klinkesorn U. Fabrication and characterization of nanoemulsions for encapsulation and delivery of vitexin: Antioxidant activity, storage stability and in vitro digestibility. J. Sci. Food Agric. 2023;103:2532–2543. doi: 10.1002/jsfa.12375. PubMed DOI

Opustilová K., Lapčíková B., Lapčík L., Gautam S., Valenta T., Li P. Physico-Chemical Study of Curcumin and Its Application in O/W/O Multiple Emulsion. Foods. 2023;12:1394. doi: 10.3390/foods12071394. PubMed DOI PMC

Paul A., Dutta A., Kundu A., Saha S. Resin Assisted Purification of Anthocyanins and Their Encapsulation. J. Chem. Educ. 2023;100:885–892. doi: 10.1021/acs.jchemed.2c00918. DOI

Savoldi T.E., Scheufele F.B., Drunkler D.A., da Silva G.J., de Lima J.D., Maestre K.L., Triques C.C., da Silva E.A., Fiorese M.L. Microencapsulation of Saccharomyces boulardii using vegan and vegetarian wall materials. J. Food Process. Preserv. 2022;46:e16596. doi: 10.1111/jfpp.16596. DOI

Blagojević B., Četojević-Simin D., Djurić S., Lazzara G., Milioto S., Agić D., Vasile B.S., Popović B.M. Anthocyanins and phenolic acids from Prunus spinosa L. encapsulation in halloysite and maltodextrin based carriers. Appl. Clay Sci. 2022;222:106489. doi: 10.1016/j.clay.2022.106489. DOI

Tavares L., Smaoui S., Lima P.S., de Oliveira M.M., Santos L. Propolis: Encapsulation and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022;127:169–180. doi: 10.1016/j.tifs.2022.06.003. DOI

Shakoury N., Aliyari M.A., Salami M., Emam-Djomeh Z., Vardhanabhuti B., Moosavi-Movahedi A.A. Encapsulation of propolis extract in whey protein nanoparticles. LWT. 2022;158:113138. doi: 10.1016/j.lwt.2022.113138. DOI

Villar M.A.L., Vidallon M.L.P., Rodriguez E.B. Nanostructured lipid carrier for bioactive rice bran gamma-oryzanol. Food Biosci. 2022;50:102064. doi: 10.1016/j.fbio.2022.102064. DOI

Enayati M., Madarshahian S., Yan B., Ufheil G., Abbaspourrad A. Granulation and encapsulation of N-Acetylcysteine (NAC) by internal phase separation. Food Hydrocoll. 2022;130:107699. doi: 10.1016/j.foodhyd.2022.107699. DOI

Arroyo-Maya I.J., McClements D.J. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Res. Int. 2015;69:1–8. doi: 10.1016/j.foodres.2014.12.005. DOI

Wu Y., Wang X., Yin Z., Dong J. Geotrichum candidum arthrospore cell wall particles as a novel carrier for curcumin encapsulation. Food Chem. 2023;404:134308. doi: 10.1016/j.foodchem.2022.134308. PubMed DOI

Thauer E., Shi X., Zhang S., Chen X., Deeg L., Klingeler R., Wenelska K., Mijowska E. Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. Energy. 2021;217:119399. doi: 10.1016/j.energy.2020.119399. DOI

Ganganboina A.B., Chowdhury A.D., Khoris I.M., Doong R.-A., Li T.-C., Hara T., Abe F., Suzuki T., Park E.Y. Hollow magnetic-fluorescent nanoparticles for dual-modality virus detection. Biosens. Bioelectron. 2020;170:112680. doi: 10.1016/j.bios.2020.112680. PubMed DOI

Surynek M., Spanhel L., Lapcik L., Mrazek J. Tuning the photocatalytic properties of sol–gel-derived single, coupled, and alloyed ZnO–TiO2 nanoparticles. Res. Chem. Intermed. 2019;45:4193–4204. doi: 10.1007/s11164-019-03900-6. DOI

Choińska-Pulit A., Mituła P., Śliwka P., Łaba W., Skaradzińska A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol. 2015;45:212–221. doi: 10.1016/j.tifs.2015.07.001. DOI

Bacteriophage | Definition, Life Cycle, & Research | Britannica. [(accessed on 3 January 2022)]. Available online: https://www.britannica.com/science/bacteriophage.

Rahimzadeh G., Saeedi M., Moosazadeh M., Hashemi S.M.H., Babaei A., Rezai M.S., Kamel K., Asare-Addo K., Nokhodchi A. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea. Sci. Rep. 2021;11:15603. doi: 10.1038/s41598-021-95132-1. PubMed DOI PMC

Huff W., Huff G., Rath N., Donoghue A. Method of administration affects the ability of bacteriophage to prevent colibacillosis in 1-day-old broiler chickens. Poult. Sci. 2013;92:930–934. doi: 10.3382/ps.2012-02916. PubMed DOI

Kaikabo A.A., Mohammed A.S., Abas F. Chitosan Nanoparticles as Carriers for the Delivery of ΦKAZ14 Bacteriophage for Oral Biological Control of Colibacillosis in Chickens. Molecules. 2016;21:256. doi: 10.3390/molecules21030256. PubMed DOI PMC

Camelo-Silva C., Verruck S., Ambrosi A., Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Eng. Rev. 2022;14:462–490. doi: 10.1007/s12393-022-09315-1. DOI

Fujiu K.B., Kobayashi I., Uemura K., Nakajima M. Temperature effect on microchannel oil-in-water emulsification. Microfluid. Nanofluid. 2011;10:773–783. doi: 10.1007/s10404-010-0708-y. DOI

McClements D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter. 2010;7:2297–2316. doi: 10.1039/C0SM00549E. DOI

Ozkan G., Kostka T., Esatbeyoglu T., Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules. 2020;25:5545. doi: 10.3390/molecules25235545. PubMed DOI PMC

Lu W., Kelly A., Miao S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol. 2016;47:1–9. doi: 10.1016/j.tifs.2015.10.015. DOI

Calabrese V., Courtenay J.C., Edler K.J., Scott J.L. Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 2018;12:83–90. doi: 10.1016/j.cogsc.2018.07.002. DOI

Comunian T.A., Anthero A.G.D.S., Bezerra E.O., Moraes I.C.F., Hubinger M.D. Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties. Food Bioprocess Technol. 2019;13:53–66. doi: 10.1007/s11947-019-02380-1. DOI

Dinkgreve M., Velikov K.P., Bonn D. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear. Phys. Chem. Chem. Phys. 2016;18:22973–22977. doi: 10.1039/C6CP03572H. PubMed DOI

Ganley W.J., van Duijneveldt J.S. Controlling the Rheology of Montmorillonite Stabilized Oil-in-Water Emulsions. Langmuir. 2017;33:1679–1686. doi: 10.1021/acs.langmuir.6b04161. PubMed DOI

Gbassi G.K., Vandamme T. Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut. Pharmaceutics. 2012;4:149–163. doi: 10.3390/pharmaceutics4010149. PubMed DOI PMC

Dini C., Islan G.A., de Urraza P.J., Castro G.R. Novel Biopolymer Matrices for Microencapsulation of Phages: Enhanced Protection Against Acidity and Protease Activity. Macromol. Biosci. 2012;12:1200–1208. doi: 10.1002/mabi.201200109. PubMed DOI

Kim S.-G., Giri S.S., Jo S.-J., Kang J.-W., Lee S.-B., Jung W.-J., Lee Y.-M., Kim H.-J., Kim J.-H., Park S.-C. Prolongation of Fate of Bacteriophages In Vivo by Polylactic-Co-Glycolic-Acid/Alginate-Composite Encapsulation. Antibiotics. 2022;11:1264. doi: 10.3390/antibiotics11091264. PubMed DOI PMC

Koh W.Y., Lim X.X., Tan T.-C., Kobun R., Rasti B. Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Appl. Sci. 2022;12:10005. doi: 10.3390/app121910005. DOI

Safiah Sabrina Hassan, Intan Nabihah Ahmad Fadzil, Anida Yusoff, and Khalilah Abdul Khalil A Review on Microencap-sulation in Improving Probiotic Stability for Beverages Application. [(accessed on 23 January 2023)];2020 Available online: https://myjms.mohe.gov.my/index.php/SL/article/view/7900/5169.

Liliana S.C., Vladimir V.C., Serna-Cock L., Vallejo-Castillo V. Probiotic encapsulation. Afr. J. Microbiol. Res. 2013;7:4743–4753. doi: 10.5897/AJMR2013.5718. DOI

Tang Z., Huang X., Baxi S., Chambers J.R., Sabour P.M., Wang Q. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Res. Int. 2013;52:460–466. doi: 10.1016/j.foodres.2012.12.037. DOI

Yin H., Li J., Huang H., Wang Y., Qian X., Ren J., Xue F., Dai J., Tang F. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Vet. Res. 2021;52:118. doi: 10.1186/s13567-021-00991-1. PubMed DOI PMC

Savic I.M., Gajic I.M.S., Milovanovic M.G., Zerajic S., Gajic D.G. Optimization of Ultrasound-Assisted Extraction and Encapsulation of Antioxidants from Orange Peels in Alginate-Chitosan Microparticles. Antioxidants. 2022;11:297. doi: 10.3390/antiox11020297. PubMed DOI PMC

Albadran H.A., Monteagudo-Mera A., Khutoryanskiy V.V., Charalampopoulos D. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Appl. Microbiol. Biotechnol. 2020;104:5749–5757. doi: 10.1007/s00253-020-10632-w. PubMed DOI PMC

Gupta A. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Elsevier Science; Amsterdam, The Netherlands: 2020. [(accessed on 10 January 2023)]. Nanoemulsions. Available online: https://www.sciencedirect.com/science/article/pii/B9780128166628000217.

Mandal A., Bera A., Ojha K., Kumar T. Characterization of Surfactant Stabilized Nanoemulsion and Its Use in Enhanced Oil Recovery; Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition; Noordwijk, The Netherlands. 12–14 June 2012; DOI

Rodríguez J., Martín M.J., Ruiz M.A., Clares B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int. 2016;83:41–59. doi: 10.1016/j.foodres.2016.01.032. DOI

Jaiswal M., Dudhe R., Sharma P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2014;5:123–127. doi: 10.1007/s13205-014-0214-0. PubMed DOI PMC

Oprea I., Fărcaș A.C., Leopold L.F., Diaconeasa Z., Coman C., Socaci S.A. Nano-Encapsulation of Citrus Essential Oils: Methods and Applications of Interest for the Food Sector. Polymers. 2022;14:4505. doi: 10.3390/polym14214505. PubMed DOI PMC

Singh Y., Meher J.G., Raval K., Khan F.A., Chaurasia M., Jain N.K., Chourasia M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release. 2017;252:28–49. doi: 10.1016/j.jconrel.2017.03.008. PubMed DOI

McClements D.J., Das A.K., Dhar P., Nanda P.K., Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. Front. Sustain. Food Syst. 2021;5:643208. doi: 10.3389/fsufs.2021.643208. DOI

Kale S.N., Deore S.L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017;8:39–47. doi: 10.5530/srp.2017.1.8. DOI

Tayeb H.H., Sainsbury F. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine. 2018;13:2507–2525. doi: 10.2217/nnm-2018-0088. PubMed DOI

Sharma S., Cheng S.-F., Bhattacharya B., Chakkaravarthi S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci. Technol. 2019;91:305–318. doi: 10.1016/j.tifs.2019.07.030. DOI

Salvia-Trujillo L., Martín-Belloso O., McClements D.J. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials. 2016;6:17. doi: 10.3390/nano6010017. PubMed DOI PMC

Sneha K., Kumar A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innov. Food Sci. Emerg. Technol. 2022;76:102914. doi: 10.1016/j.ifset.2021.102914. DOI

Liu Q., Huang H., Chen H., Lin J., Wang Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules. 2019;24:4242. doi: 10.3390/molecules24234242. PubMed DOI PMC

Modarres-Gheisari S.M.M., Gavagsaz-Ghoachani R., Malaki M., Safarpour P., Zandi M. Ultrasonic nano-emulsification—A review. Ultrason. Sonochem. 2019;52:88–105. doi: 10.1016/j.ultsonch.2018.11.005. PubMed DOI

Salem M.A., Ezzat S.M. Some New Aspects of Colloidal Systems in Foods. IntechOpen; London, UK: 2019. Nanoemulsions in Food Industry. DOI

Kumar M., Bishnoi R.S., Shukla A.K., Jain C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019;24:225–234. doi: 10.3746/pnf.2019.24.3.225. PubMed DOI PMC

Gonçalves A., Nikmaram N., Roohinejad S., Estevinho B.N., Rocha F., Greiner R., McClements D.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids Surfaces A Physicochem. Eng. Asp. 2018;538:108–126. doi: 10.1016/j.colsurfa.2017.10.076. DOI

Jasmina H., Džana O., Alisa E., Edina V., Ognjenka R. CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering 2017. Volume 62. Springer Verlag; Berlin/Heidelberg, Germany: 2017. Preparation of Nanoemulsions by high-energy and lowenergy emulsification methods; pp. 317–322. DOI

Solans C., Solé I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012;17:246–254. doi: 10.1016/j.cocis.2012.07.003. DOI

Moghaddasi F., Housaindokht M.R., Darroudi M., Bozorgmehr M.R., Sadeghi A. Synthesis of nano curcumin using black pepper oil by O/W Nanoemulsion Technique and investigation of their biological activities. LWT. 2018;92:92–100. doi: 10.1016/j.lwt.2018.02.023. DOI

Dey T.K., Ghosh S., Ghosh M., Koley H., Dhar P. Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Res. Int. 2012;49:72–79. doi: 10.1016/j.foodres.2012.07.056. DOI

Oh H., Lee J.S., Sung D., Lim J.M., Choi W.I. Potential Antioxidant and Wound Healing Effect of Nano-Liposol with High Loading Amount of Astaxanthin. Int. J. Nanomed. 2020;15:9231–9240. doi: 10.2147/IJN.S272650. PubMed DOI PMC

Bonferoni M.C., Rossi S., Sandri G., Ferrari F., Gavini E., Rassu G., Giunchedi P. Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics. 2019;11:84. doi: 10.3390/pharmaceutics11020084. PubMed DOI PMC

Ulusoy H.G., Sanlier N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020;60:3290–3303. doi: 10.1080/10408398.2019.1683810. PubMed DOI

Lu B., Huang Y., Chen Z., Ye J., Xu H., Chen W., Long X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules. 2019;24:2322. doi: 10.3390/molecules24122322. PubMed DOI PMC

Basha S.K., Muzammil M.S., Dhandayuthabani R., Kumari V.S. Development of nanoemulsion of Alginate/Aloe vera for oral delivery of insulin. Mater. Today Proc. 2021;36:357–363. doi: 10.1016/j.matpr.2020.04.138. DOI

Sánchez-Navarro M., Garcia J., Giralt E., Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv. Drug Deliv. Rev. 2016;106:355–366. doi: 10.1016/j.addr.2016.04.031. PubMed DOI

Meng Q., Long P., Zhou J., Ho C.-T., Zou X., Chen B., Zhang L. Improved absorption of β-carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase. Food Res. Int. 2019;116:731–736. doi: 10.1016/j.foodres.2018.09.004. PubMed DOI

Mohammed N.K., Tan C.P., Manap Y.A., Muhialdin B.J., Hussin A.S.M. Spray Drying for the Encapsulation of Oils—A Review. Molecules. 2020;25:3873. doi: 10.3390/molecules25173873. PubMed DOI PMC

Rajam R., Subramanian P. Encapsulation of probiotics: Past, present and future. Beni-Suef Univ. J. Basic Appl. Sci. 2022;11:46. doi: 10.1186/s43088-022-00228-w. DOI

Malamatari M., Charisi A., Malamataris S., Kachrimanis K., Nikolakakis I. Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes. 2020;8:788. doi: 10.3390/pr8070788. DOI

Estevinho B.N., Rocha F., Santos L., Alves A. Microencapsulation with chitosan by spray drying for industry applications—A review. Trends Food Sci. Technol. 2013;31:138–155. doi: 10.1016/j.tifs.2013.04.001. DOI

Haider M., Abdin S.M., Kamal L., Orive G. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics. 2020;12:288. doi: 10.3390/pharmaceutics12030288. PubMed DOI PMC

Sun-Waterhouse D., Wadhwa S.S., Waterhouse G.I.N. Spray-Drying Microencapsulation of Polyphenol Bioactives: A Comparative Study Using Different Natural Fibre Polymers as Encapsulants. Food Bioprocess Technol. 2013;6:2376–2388. doi: 10.1007/s11947-012-0946-y. DOI

Halahlah A., Piironen V., Mikkonen K.S., Ho T.M. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit. Rev. Food Sci. Nutr. 2022:1–33. doi: 10.1080/10408398.2022.2038080. PubMed DOI

Veiga R.D.S.D., Aparecida Da Silva-Buzanello R., Corso M.P., Canan C. Essential oils microencapsulated obtained by spray drying: A review. J. Essent. Oil Res. 2019;31:457–473. doi: 10.1080/10412905.2019.1612788. DOI

Kemp I.C., Wadley R., Hartwig T., Cocchini U., See-Toh Y., Gorringe L., Fordham K., Ricard F. Experimental Study of Spray Drying and Atomization with a Two-Fluid Nozzle to Produce Inhalable Particles. Dry. Technol. 2013;31:930–941. doi: 10.1080/07373937.2012.710693. DOI

Spray Drying Basics—Spray Drying Nozzles. [(accessed on 16 January 2023)]. Available online: https://spraydryingnozzles.com/spray-drying-basics/

Van Deventer H., Houben R., Koldeweij R. New Atomization Nozzle for Spray Drying. Dry. Technol. 2013;31:891–897. doi: 10.1080/07373937.2012.735734. DOI

Vicente J., Pinto J., Menezes J., Gaspar F. Fundamental analysis of particle formation in spray drying. Powder Technol. 2013;247:1–7. doi: 10.1016/j.powtec.2013.06.038. DOI

Fioramonti S.A., Stepanic E.M., Tibaldo A.M., Pavón Y.L., Santiago L.G. Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Res. Int. 2019;119:931–940. doi: 10.1016/j.foodres.2018.10.079. PubMed DOI

Aguiar M.C.S., da Silva M.F.d.G.F., Fernandes J.B., Forim M.R. Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Sci. Rep. 2020;10:11799. doi: 10.1038/s41598-020-68823-4. PubMed DOI PMC

Jiang J., Ma C., Song X., Zeng J., Zhang L., Gong P. Spray drying co-encapsulation of lactic acid bacteria and lipids: A review. Trends Food Sci. Technol. 2022;129:134–143. doi: 10.1016/j.tifs.2022.09.010. DOI

Martinić A., Kalušević A., Lević S., Nedović V., Cebin A.V., Karlović S., Špoljarić I., Mršić G., Žižek K., Komes D. Microencapsulation of Dandelion (Taraxacum officinale L.) Leaf Extract by Spray Drying. Food Technol. Biotechnol. 2022;60:237–252. doi: 10.17113/ftb.60.02.22.7384. PubMed DOI PMC

Belscak-Cvitanovic A., Levic S., Kalusevic A., Špoljarić I., Đorđević V., Komes D., Mršić G., Nedovic V. Efficiency Assessment of Natural Biopolymers as Encapsulants of Green Tea (Camellia sinensis L.) Bioactive Compounds by Spray Drying. Food Bioprocess Technol. 2015;8:2444–2460. doi: 10.1007/s11947-015-1592-y. DOI

Hategekimana J., Masamba K.G., Ma J., Zhong F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015;124:172–179. doi: 10.1016/j.carbpol.2015.01.060. PubMed DOI

Oyinloye T.M., Yoon W.B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes. 2020;8:354. doi: 10.3390/pr8030354. DOI

Nowak D., Jakubczyk E. The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods. 2020;9:1488. doi: 10.3390/foods9101488. PubMed DOI PMC

Bhatta S., Janezic T.S., Ratti C. Freeze-Drying of Plant-Based Foods. Foods. 2020;9:87. doi: 10.3390/foods9010087. PubMed DOI PMC

Siddiqui S.A., Redha A.A., Esmaeili Y., Mehdizadeh M. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit. Rev. Food Sci. Nutr. 2022:1–16. doi: 10.1080/10408398.2022.2026290. PubMed DOI

Ray S., Raychaudhuri U., Chakraborty R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci. 2016;13:76–83. doi: 10.1016/j.fbio.2015.12.009. DOI

Pudziuvelyte L., Marksa M., Sosnowska K., Winnicka K., Morkuniene R., Bernatoniene J. Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules. 2020;25:2237. doi: 10.3390/molecules25092237. PubMed DOI PMC

Li W., Liu L., Tian H., Luo X., Liu S. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydr. Polym. 2019;223:115065. doi: 10.1016/j.carbpol.2019.115065. PubMed DOI

Guowei S., Yang X., Li C., Huang D., Lei Z., He C. Comprehensive optimization of composite cryoprotectant for Saccharomyces boulardii during freeze-drying and evaluation of its storage stability. Prep. Biochem. Biotechnol. 2019;49:846–857. doi: 10.1080/10826068.2019.1630649. PubMed DOI

Lombardo D., Kiselev M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics. 2022;14:543. doi: 10.3390/pharmaceutics14030543. PubMed DOI PMC

Li C., Deng Y. A novel method for the preparation of liposomes: Freeze drying of monophase solutions. J. Pharm. Sci. 2004;93:1403–1414. doi: 10.1002/jps.20055. PubMed DOI

Ghasemi S., Assadpour E., Kharazmi M.S., Jafarzadeh S., Zargar M., Jafari S.M. Encapsulation of Orange Peel Oil in Biopolymeric Nanocomposites to Control Its Release under Different Conditions. Foods. 2023;12:831. doi: 10.3390/foods12040831. PubMed DOI PMC

Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. doi: 10.1186/1556-276X-8-102. PubMed DOI PMC

Hudiyanti D., Fawrin H., Siahaan P. Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum L.) liposomes. IOP Conf. Ser. Mater. Sci. Eng. 2018;349:012014. doi: 10.1088/1757-899X/349/1/012014. DOI

Gomez A.G., Hosseinidoust Z. Liposomes for Antibiotic Encapsulation and Delivery. ACS Infect. Dis. 2020;6:896–908. doi: 10.1021/acsinfecdis.9b00357. PubMed DOI

Shukla S., Haldorai Y., Hwang S.K., Bajpai V.K., Huh Y.S., Han Y.-K. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector. Front. Microbiol. 2017;8:2398. doi: 10.3389/fmicb.2017.02398. PubMed DOI PMC

El-Kader A.A., Abu Hashish H. Encapsulation techniques of food bioproduct. Egypt. J. Chem. 2020;63:1881–1909. doi: 10.21608/ejchem.2019.16269.1993. DOI

Subramani T., Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020;57:3545–3555. doi: 10.1007/s13197-020-04360-2. PubMed DOI PMC

Castañeda-Reyes E.D., Perea-Flores M.D.J., Davila-Ortiz G., Lee Y., de Mejia E.G. Development, Characterization and Use of Liposomes as Amphipathic Transporters of Bioactive Compounds for Melanoma Treatment and Reduction of Skin Inflammation: A Review. Int. J. Nanomed. 2020;15:7627–7650. doi: 10.2147/IJN.S263516. PubMed DOI PMC

Esposto B.S., Jauregi P., Tapia-Blácido D.R., Martelli-Tosi M. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci. Technol. 2021;108:40–48. doi: 10.1016/j.tifs.2020.12.003. DOI

Tripathy S., Srivastav P.P. Encapsulation of Centella asiatica leaf extract in liposome: Study on structural stability, degradation kinetics and fate of bioactive compounds during storage. Food Chem. Adv. 2023;2:100202. doi: 10.1016/j.focha.2023.100202. DOI

Mohammadi M., Hamishehkar H., McClements D.J., Shahvalizadeh R., Barri A. Encapsulation of Spirulina protein hydrolysates in liposomes: Impact on antioxidant activity and gastrointestinal behavior. Food Chem. 2023;400:133973. doi: 10.1016/j.foodchem.2022.133973. PubMed DOI

Liposomes and Lipid Nanoparticles as Delivery Vehicles for Personalized Medicine. [(accessed on 13 April 2023)]. Available online: https://www.exeleadbiopharma.com/news/liposomes-and-lipid-nanoparticles-as-delivery-vehicles-for-personalized-medicine.

da Silva G.H.R., de Moura L.D., de Carvalho F.V., Geronimo G., Mendonça T.C., de Lima F.F., de Paula E. Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules. 2021;26:6929. doi: 10.3390/molecules26226929. PubMed DOI PMC

Azar F.A.N., Pezeshki A., Ghanbarzadeh B., Hamishehkar H., Mohammadi M. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. J. Agric. Food Res. 2020;2:100084. doi: 10.1016/j.jafr.2020.100084. DOI

Huguet-Casquero A., Moreno-Sastre M., López-Méndez T.B., Gainza E., Pedraz J.L. Encapsulation of Oleuropein in Nanostructured Lipid Carriers: Biocompatibility and Antioxidant Efficacy in Lung Epithelial Cells. Pharmaceutics. 2020;12:429. doi: 10.3390/pharmaceutics12050429. PubMed DOI PMC

Tang C.-H., Chen H.-L., Dong J.-R. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Food-Grade Nanovehicles for Hydrophobic Nutraceuticals or Bioactives. Appl. Sci. 2023;13:1726. doi: 10.3390/app13031726. DOI

Lin Y., Yin W., Li Y., Liu G. Influence of different solid lipids on the properties of a novel nanostructured lipid carrier containing Antarctic krill oil. Int. J. Food Sci. Technol. 2022;57:2886–2895. doi: 10.1111/ijfs.15588. DOI

Ziani K., Fang Y., McClements D.J. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food Chem. 2012;134:1106–1112. doi: 10.1016/j.foodchem.2012.03.027. PubMed DOI

Pavani M., Singha P., Dash D.R., Asaithambi N., Singh S.K. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J. Food Process. Eng. 2022;45:e14041. doi: 10.1111/jfpe.14041. DOI

Gómez-Mascaraque L.G., Tordera F., Fabra M.J., Martínez-Sanz M., Lopez-Rubio A. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innov. Food Sci. Emerg. Technol. 2019;51:2–11. doi: 10.1016/j.ifset.2018.03.023. DOI

Jayaprakash P., Maudhuit A., Gaiani C., Desobry S. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. J. Food Eng. 2023;339:111260. doi: 10.1016/j.jfoodeng.2022.111260. DOI

Zadbashkhanshir K., Fadaei V., Fahimdanesh M. Canola meal phenolic compounds electrosprayed into capsules to increase the oxidative stability of canola oil. Chem. Biol. Technol. Agric. 2023;10:4. doi: 10.1186/s40538-023-00378-8. DOI

Mahalakshmi L., Choudhary P., Moses J., Anandharamakrishnan C. Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin. Food Hydrocoll. Health. 2023;3:100122. doi: 10.1016/j.fhfh.2023.100122. DOI

Tapia-Hernández J.A., Torres-Chávez P.I., Ramírez-Wong B., Rascón-Chu A., Plascencia-Jatomea M., Barreras-Urbina C.G., Rangel-Vázquez N.A., Rodríguez-Félix F. Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. J. Agric. Food Chem. 2015;63:4699–4707. doi: 10.1021/acs.jafc.5b01403. PubMed DOI

Bellan L.M., Craighead H.G. Applications of controlled electrospinning systems. Polym. Adv. Technol. 2011;22:304–309. doi: 10.1002/pat.1790. DOI

Du Z., Lv H., Wang C., He D., Xu E., Jin Z., Yuan C., Guo L., Wu Z., Liu P., et al. Organic solvent-free starch-based green electrospun nanofiber mats for curcumin encapsulation and delivery. Int. J. Biol. Macromol. 2023;232:123497. doi: 10.1016/j.ijbiomac.2023.123497. PubMed DOI

Wang Y., Khan M.A., Chen K., Zhang L., Chen X. Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. Food Bioprocess Technol. 2022;16:704–725. doi: 10.1007/s11947-022-02896-z. DOI

Pires J.B., Fonseca L.M., Siebeneichler T.J., Crizel R.L., dos Santos F.N., Hackbart H.C.D.S., Kringel D.H., Meinhart A.D., Zavareze E.D.R., Dias A.R.G. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: Thermal resistance and antioxidant activity. Food Res. Int. 2022;162:112111. doi: 10.1016/j.foodres.2022.112111. PubMed DOI

Reis D.R., Ambrosi A., Di Luccio M. Encapsulated essential oils: A perspective in food preservation. Futur. Foods. 2022;5:100126. doi: 10.1016/j.fufo.2022.100126. DOI

Mudalip S.A., Khatiman M., Hashim N., Man R.C., Arshad Z. A short review on encapsulation of bioactive compounds using different drying techniques. Mater. Today Proc. 2021;42:288–296. doi: 10.1016/j.matpr.2021.01.543. DOI

Sosnik A., Seremeta K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015;223:40–54. doi: 10.1016/j.cis.2015.05.003. PubMed DOI

Barroso L., Viegas C., Vieira J., Ferreira-Pêgo C., Costa J., Fonte P. Lipid-based carriers for food ingredients delivery. J. Food Eng. 2021;295:110451. doi: 10.1016/j.jfoodeng.2020.110451. DOI

Akbari J., Saeedi M., Ahmadi F., Hashemi S.M.H., Babaei A., Yaddollahi S., Rostamkalaei S.S., Asare-Addo K., Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm. Dev. Technol. 2022;27:525–544. doi: 10.1080/10837450.2022.2084554. PubMed DOI

Kahraman E., Güngör S., Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv. 2017;8:967–985. doi: 10.4155/tde-2017-0075. PubMed DOI

Plati F., Paraskevopoulou A. Micro- and Nano-encapsulation as Tools for Essential Oils Advantages’ Exploitation in Food Applications: The Case of Oregano Essential Oil. Food Bioprocess Technol. 2022;15:949–977. doi: 10.1007/s11947-021-02746-4. DOI

Souto E.B., Cano A., Martins-Gomes C., Coutinho T.E., Zielińska A., Silva A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering. 2022;9:158. doi: 10.3390/bioengineering9040158. PubMed DOI PMC

Fathi M., Donsi F., McClements D.J. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr. Rev. Food Sci. Food Saf. 2018;17:920–936. doi: 10.1111/1541-4337.12360. PubMed DOI

Yan X., Li M., Xu X., Liu X., Liu F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Front. Nutr. 2022;9:2147. doi: 10.3389/fnut.2022.999373. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...