Application of Physical-Chemical Approaches for Encapsulation of Active Substances in Pharmaceutical and Food Industries
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IGA_PrF_2023_024
Palacký University, Olomouc
PubMed
37297434
PubMed Central
PMC10252554
DOI
10.3390/foods12112189
PII: foods12112189
Knihovny.cz E-zdroje
- Klíčová slova
- encapsulation, food, pharmaceutical, physico-chemical properties,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Encapsulation is a valuable method used to protect active substances and enhance their physico-chemical properties. It can also be used as protection from unpleasant scents and flavors or adverse environmental conditions. METHODS: In this comprehensive review, we highlight the methods commonly utilized in the food and pharmaceutical industries, along with recent applications of these methods. RESULTS: Through an analysis of numerous articles published in the last decade, we summarize the key methods and physico-chemical properties that are frequently considered with encapsulation techniques. CONCLUSION: Encapsulation has demonstrated effectiveness and versatility in multiple industries, such as food, nutraceutical, and pharmaceuticals. Moreover, the selection of appropriate encapsulation methods is critical for the effective encapsulation of specific active compounds. Therefore, constant efforts are being made to develop novel encapsulation methods and coating materials for better encapsulation efficiency and to improve properties for specific use.
Zobrazit více v PubMed
Trojanowska A., Nogalska A., Valls R.G., Giamberini M., Tylkowski B. Technological solutions for encapsulation. Phys. Sci. Rev. 2017;2 doi: 10.1515/psr-2017-0020. DOI
Huang Y., Stonehouse A., Abeykoon C. Encapsulation methods for phase change materials—A critical review. Int. J. Heat Mass Transf. 2023;200:123458. doi: 10.1016/j.ijheatmasstransfer.2022.123458. DOI
Zabot G.L., Rodrigues F.S., Ody L.P., Tres M.V., Herrera E., Palacin H., Córdova-Ramos J.S., Best I., Olivera-Montenegro L. Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers. 2022;14:4194. doi: 10.3390/polym14194194. PubMed DOI PMC
Guía-García J.L., Charles-Rodríguez A.V., Reyes-Valdés M.H., Ramírez-Godina F., Robledo-Olivo A., García-Osuna H.T., Cerqueira M.A., Flores-López M.L. Micro and nanoencapsulation of bioactive compounds for agri-food applications: A review. Ind. Crops Prod. 2022;186:115198. doi: 10.1016/j.indcrop.2022.115198. DOI
Sultana M., Chan E.-S., Pushpamalar J., Choo W.S. Advances in extrusion-dripping encapsulation of probiotics and omega-3 rich oils. Trends Food Sci. Technol. 2022;123:69–86. doi: 10.1016/j.tifs.2022.03.006. DOI
Di Giorgio L., Salgado P.R., Mauri A.N. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocoll. 2019;87:891–901. doi: 10.1016/j.foodhyd.2018.09.024. DOI
Kandasamy S., Naveen R. A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process. Eng. 2022;45:e14059. doi: 10.1111/jfpe.14059. DOI
Bamidele O.P., Emmambux M.N. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Crit. Rev. Food Sci. Nutr. 2021;61:3100–3118. doi: 10.1080/10408398.2020.1793724. PubMed DOI
Devi N., Sarmah M., Khatun B., Maji T.K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv. Colloid Interface Sci. 2017;239:136–145. doi: 10.1016/j.cis.2016.05.009. PubMed DOI
Grgić J., Šelo G., Planinić M., Tišma M., Bucić-Kojić A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants. 2020;9:923. doi: 10.3390/antiox9100923. PubMed DOI PMC
Dias D.R., Botrel D.A., Fernandes R.V.D.B., Borges S.V. Encapsulation as a tool for bioprocessing of functional foods. Curr. Opin. Food Sci. 2017;13:31–37. doi: 10.1016/j.cofs.2017.02.001. DOI
Marcillo-Parra V., Tupuna-Yerovi D.S., González Z., Ruales J. Encapsulation of bioactive compounds from fruit and vegetable by-products for food application—A review. Trends Food Sci. Technol. 2021;116:11–23. doi: 10.1016/j.tifs.2021.07.009. DOI
Food Encapsulation Market Size, Share, Global Trends, Forecasts to 2027. [(accessed on 10 May 2023)]. Available online: https://www.marketsandmarkets.com/Market-Reports/food-encapsulation-advanced-technologies-and-global-market-68.html.
Gao J., Jin P., Zhang Y., Dong H., Wang R. Fast-responsive capsule based on two soluble components for self-healing concrete. Cem. Concr. Compos. 2022;133:104711. doi: 10.1016/j.cemconcomp.2022.104711. DOI
Timilsena Y.P., Haque A., Adhikari B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food Nutr. Sci. 2020;11:481–508. doi: 10.4236/fns.2020.116035. DOI
Mahmood F., Rehman S.K.U., Jameel M., Riaz N., Javed M.F., Salmi A., Awad Y.A. Self-Healing Bio-Concrete Using Bacillus subtilis Encapsulated in Iron Oxide Nanoparticles. Materials. 2022;15:7731. doi: 10.3390/ma15217731. PubMed DOI PMC
Li H., Wang X. Preparation of microcapsules with IPDI monomer and isocyanate prepolymer as self-healing agent and their application in self-healing materials. Polymer. 2022;262:125478. doi: 10.1016/j.polymer.2022.125478. DOI
Papaioannou S., Amenta M., Kilikoglou V., Gournis D., Karatasios I. Critical Aspects in the Development and Integration of Encapsulated Healing Agents in Cement and Concrete. J. Adv. Concr. Technol. 2021;19:301–320. doi: 10.3151/jact.19.301. DOI
Reda M.A., Chidiac S.E. Performance of Capsules in Self-Healing Cementitious Material. Materials. 2022;15:7302. doi: 10.3390/ma15207302. PubMed DOI PMC
Wang H., Zhou Q. Evaluation and failure analysis of linseed oil encapsulated self-healing anticorrosive coating. Prog. Org. Coat. 2018;118:108–115. doi: 10.1016/j.porgcoat.2018.01.024. DOI
He S., Gao Y., Gong X., Wu C., Cen H. Advance of design and application in self-healing anticorrosive coating: A review. J. Coat. Technol. Res. 2023;20:819–841. doi: 10.1007/s11998-022-00735-6. DOI
Ouarga A., Lebaz N., Tarhini M., Noukrati H., Barroug A., Elaissari A., Ben Youcef H. Towards smart self-healing coatings: Advances in micro/nano-encapsulation processes as carriers for anti-corrosion coatings development. J. Mol. Liq. 2022;354:118862. doi: 10.1016/j.molliq.2022.118862. DOI
Zhang C., Liu R., Chen M., Li X., Zhu Z., Yan J. Effects of independently designed and prepared self-healing granules on self-healing efficiency for cement cracks. Constr. Build. Mater. 2022;347:128626. doi: 10.1016/j.conbuildmat.2022.128626. DOI
Reshma V., Mohanan P. Quantum dots: Applications and safety consequences. J. Lumin. 2019;205:287–298. doi: 10.1016/j.jlumin.2018.09.015. DOI
Lisi F., Sawayama J., Gautam S., Rubanov S., Duan X., Kirkwood N. Re-Examination of the Polymer Encapsulation of Quantum Dots for Biological Applications. ACS Appl. Nano Mater. 2023;6:4046–4055. doi: 10.1021/acsanm.3c00529. DOI
Ahmed S., Lahkar S., Doley S., Mohanta D., Dolui S.K. A hierarchically porous MOF confined CsPbBr3 quantum dots: Fluorescence switching probe for detecting Cu (II) and melamine in food samples. J. Photochem. Photobiol. A Chem. 2023;443:114821. doi: 10.1016/j.jphotochem.2023.114821. DOI
Prieto C., Talón E., Lagaron J. Room temperature encapsulation of algae oil in water insoluble gluten extract. Food Hydrocoll. Health. 2021;1:100022. doi: 10.1016/j.fhfh.2021.100022. DOI
Noor A., Al Murad M., Chitra A.J., Babu S.N., Govindarajan S. Alginate based encapsulation of polyphenols of Piper betel leaves: Development, stability, bio-accessibility and biological activities. Food Biosci. 2022;47:101715. doi: 10.1016/j.fbio.2022.101715. DOI
Wongverawattanakul C., Suklaew P.O., Chusak C., Adisakwattana S., Thilavech T. Encapsulation of Mesona chinensis Benth Extract in Alginate Beads Enhances the Stability and Antioxidant Activity of Polyphenols under Simulated Gastrointestinal Digestion. Foods. 2022;11:2378. doi: 10.3390/foods11152378. PubMed DOI PMC
Zhou Y., Xu D., Yu H., Han J., Liu W., Qu D. Encapsulation of Salmonella phage SL01 in alginate/carrageenan micro-capsules as a delivery system and its application in vitro. Front. Microbiol. 2022;13:2718. PubMed PMC
Gupta P., Preet S., Ananya, Singh N. Preparation of Thymus vulgaris (L.) essential oil nanoemulsion and its chitosan encapsulation for controlling mosquito vectors. Sci. Rep. 2022;12:4335. doi: 10.1038/s41598-022-07676-5. PubMed DOI PMC
Chomchoey S., Klongdee S., Peanparkdee M., Klinkesorn U. Fabrication and characterization of nanoemulsions for encapsulation and delivery of vitexin: Antioxidant activity, storage stability and in vitro digestibility. J. Sci. Food Agric. 2023;103:2532–2543. doi: 10.1002/jsfa.12375. PubMed DOI
Opustilová K., Lapčíková B., Lapčík L., Gautam S., Valenta T., Li P. Physico-Chemical Study of Curcumin and Its Application in O/W/O Multiple Emulsion. Foods. 2023;12:1394. doi: 10.3390/foods12071394. PubMed DOI PMC
Paul A., Dutta A., Kundu A., Saha S. Resin Assisted Purification of Anthocyanins and Their Encapsulation. J. Chem. Educ. 2023;100:885–892. doi: 10.1021/acs.jchemed.2c00918. DOI
Savoldi T.E., Scheufele F.B., Drunkler D.A., da Silva G.J., de Lima J.D., Maestre K.L., Triques C.C., da Silva E.A., Fiorese M.L. Microencapsulation of Saccharomyces boulardii using vegan and vegetarian wall materials. J. Food Process. Preserv. 2022;46:e16596. doi: 10.1111/jfpp.16596. DOI
Blagojević B., Četojević-Simin D., Djurić S., Lazzara G., Milioto S., Agić D., Vasile B.S., Popović B.M. Anthocyanins and phenolic acids from Prunus spinosa L. encapsulation in halloysite and maltodextrin based carriers. Appl. Clay Sci. 2022;222:106489. doi: 10.1016/j.clay.2022.106489. DOI
Tavares L., Smaoui S., Lima P.S., de Oliveira M.M., Santos L. Propolis: Encapsulation and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022;127:169–180. doi: 10.1016/j.tifs.2022.06.003. DOI
Shakoury N., Aliyari M.A., Salami M., Emam-Djomeh Z., Vardhanabhuti B., Moosavi-Movahedi A.A. Encapsulation of propolis extract in whey protein nanoparticles. LWT. 2022;158:113138. doi: 10.1016/j.lwt.2022.113138. DOI
Villar M.A.L., Vidallon M.L.P., Rodriguez E.B. Nanostructured lipid carrier for bioactive rice bran gamma-oryzanol. Food Biosci. 2022;50:102064. doi: 10.1016/j.fbio.2022.102064. DOI
Enayati M., Madarshahian S., Yan B., Ufheil G., Abbaspourrad A. Granulation and encapsulation of N-Acetylcysteine (NAC) by internal phase separation. Food Hydrocoll. 2022;130:107699. doi: 10.1016/j.foodhyd.2022.107699. DOI
Arroyo-Maya I.J., McClements D.J. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Res. Int. 2015;69:1–8. doi: 10.1016/j.foodres.2014.12.005. DOI
Wu Y., Wang X., Yin Z., Dong J. Geotrichum candidum arthrospore cell wall particles as a novel carrier for curcumin encapsulation. Food Chem. 2023;404:134308. doi: 10.1016/j.foodchem.2022.134308. PubMed DOI
Thauer E., Shi X., Zhang S., Chen X., Deeg L., Klingeler R., Wenelska K., Mijowska E. Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance. Energy. 2021;217:119399. doi: 10.1016/j.energy.2020.119399. DOI
Ganganboina A.B., Chowdhury A.D., Khoris I.M., Doong R.-A., Li T.-C., Hara T., Abe F., Suzuki T., Park E.Y. Hollow magnetic-fluorescent nanoparticles for dual-modality virus detection. Biosens. Bioelectron. 2020;170:112680. doi: 10.1016/j.bios.2020.112680. PubMed DOI
Surynek M., Spanhel L., Lapcik L., Mrazek J. Tuning the photocatalytic properties of sol–gel-derived single, coupled, and alloyed ZnO–TiO2 nanoparticles. Res. Chem. Intermed. 2019;45:4193–4204. doi: 10.1007/s11164-019-03900-6. DOI
Choińska-Pulit A., Mituła P., Śliwka P., Łaba W., Skaradzińska A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol. 2015;45:212–221. doi: 10.1016/j.tifs.2015.07.001. DOI
Bacteriophage | Definition, Life Cycle, & Research | Britannica. [(accessed on 3 January 2022)]. Available online: https://www.britannica.com/science/bacteriophage.
Rahimzadeh G., Saeedi M., Moosazadeh M., Hashemi S.M.H., Babaei A., Rezai M.S., Kamel K., Asare-Addo K., Nokhodchi A. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea. Sci. Rep. 2021;11:15603. doi: 10.1038/s41598-021-95132-1. PubMed DOI PMC
Huff W., Huff G., Rath N., Donoghue A. Method of administration affects the ability of bacteriophage to prevent colibacillosis in 1-day-old broiler chickens. Poult. Sci. 2013;92:930–934. doi: 10.3382/ps.2012-02916. PubMed DOI
Kaikabo A.A., Mohammed A.S., Abas F. Chitosan Nanoparticles as Carriers for the Delivery of ΦKAZ14 Bacteriophage for Oral Biological Control of Colibacillosis in Chickens. Molecules. 2016;21:256. doi: 10.3390/molecules21030256. PubMed DOI PMC
Camelo-Silva C., Verruck S., Ambrosi A., Di Luccio M. Innovation and Trends in Probiotic Microencapsulation by Emulsification Techniques. Food Eng. Rev. 2022;14:462–490. doi: 10.1007/s12393-022-09315-1. DOI
Fujiu K.B., Kobayashi I., Uemura K., Nakajima M. Temperature effect on microchannel oil-in-water emulsification. Microfluid. Nanofluid. 2011;10:773–783. doi: 10.1007/s10404-010-0708-y. DOI
McClements D.J. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter. 2010;7:2297–2316. doi: 10.1039/C0SM00549E. DOI
Ozkan G., Kostka T., Esatbeyoglu T., Capanoglu E. Effects of Lipid-Based Encapsulation on the Bioaccessibility and Bioavailability of Phenolic Compounds. Molecules. 2020;25:5545. doi: 10.3390/molecules25235545. PubMed DOI PMC
Lu W., Kelly A., Miao S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci. Technol. 2016;47:1–9. doi: 10.1016/j.tifs.2015.10.015. DOI
Calabrese V., Courtenay J.C., Edler K.J., Scott J.L. Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 2018;12:83–90. doi: 10.1016/j.cogsc.2018.07.002. DOI
Comunian T.A., Anthero A.G.D.S., Bezerra E.O., Moraes I.C.F., Hubinger M.D. Encapsulation of Pomegranate Seed Oil by Emulsification Followed by Spray Drying: Evaluation of Different Biopolymers and Their Effect on Particle Properties. Food Bioprocess Technol. 2019;13:53–66. doi: 10.1007/s11947-019-02380-1. DOI
Dinkgreve M., Velikov K.P., Bonn D. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear. Phys. Chem. Chem. Phys. 2016;18:22973–22977. doi: 10.1039/C6CP03572H. PubMed DOI
Ganley W.J., van Duijneveldt J.S. Controlling the Rheology of Montmorillonite Stabilized Oil-in-Water Emulsions. Langmuir. 2017;33:1679–1686. doi: 10.1021/acs.langmuir.6b04161. PubMed DOI
Gbassi G.K., Vandamme T. Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut. Pharmaceutics. 2012;4:149–163. doi: 10.3390/pharmaceutics4010149. PubMed DOI PMC
Dini C., Islan G.A., de Urraza P.J., Castro G.R. Novel Biopolymer Matrices for Microencapsulation of Phages: Enhanced Protection Against Acidity and Protease Activity. Macromol. Biosci. 2012;12:1200–1208. doi: 10.1002/mabi.201200109. PubMed DOI
Kim S.-G., Giri S.S., Jo S.-J., Kang J.-W., Lee S.-B., Jung W.-J., Lee Y.-M., Kim H.-J., Kim J.-H., Park S.-C. Prolongation of Fate of Bacteriophages In Vivo by Polylactic-Co-Glycolic-Acid/Alginate-Composite Encapsulation. Antibiotics. 2022;11:1264. doi: 10.3390/antibiotics11091264. PubMed DOI PMC
Koh W.Y., Lim X.X., Tan T.-C., Kobun R., Rasti B. Encapsulated Probiotics: Potential Techniques and Coating Materials for Non-Dairy Food Applications. Appl. Sci. 2022;12:10005. doi: 10.3390/app121910005. DOI
Safiah Sabrina Hassan, Intan Nabihah Ahmad Fadzil, Anida Yusoff, and Khalilah Abdul Khalil A Review on Microencap-sulation in Improving Probiotic Stability for Beverages Application. [(accessed on 23 January 2023)];2020 Available online: https://myjms.mohe.gov.my/index.php/SL/article/view/7900/5169.
Liliana S.C., Vladimir V.C., Serna-Cock L., Vallejo-Castillo V. Probiotic encapsulation. Afr. J. Microbiol. Res. 2013;7:4743–4753. doi: 10.5897/AJMR2013.5718. DOI
Tang Z., Huang X., Baxi S., Chambers J.R., Sabour P.M., Wang Q. Whey protein improves survival and release characteristics of bacteriophage Felix O1 encapsulated in alginate microspheres. Food Res. Int. 2013;52:460–466. doi: 10.1016/j.foodres.2012.12.037. DOI
Yin H., Li J., Huang H., Wang Y., Qian X., Ren J., Xue F., Dai J., Tang F. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Vet. Res. 2021;52:118. doi: 10.1186/s13567-021-00991-1. PubMed DOI PMC
Savic I.M., Gajic I.M.S., Milovanovic M.G., Zerajic S., Gajic D.G. Optimization of Ultrasound-Assisted Extraction and Encapsulation of Antioxidants from Orange Peels in Alginate-Chitosan Microparticles. Antioxidants. 2022;11:297. doi: 10.3390/antiox11020297. PubMed DOI PMC
Albadran H.A., Monteagudo-Mera A., Khutoryanskiy V.V., Charalampopoulos D. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Appl. Microbiol. Biotechnol. 2020;104:5749–5757. doi: 10.1007/s00253-020-10632-w. PubMed DOI PMC
Gupta A. Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications. Elsevier Science; Amsterdam, The Netherlands: 2020. [(accessed on 10 January 2023)]. Nanoemulsions. Available online: https://www.sciencedirect.com/science/article/pii/B9780128166628000217.
Mandal A., Bera A., Ojha K., Kumar T. Characterization of Surfactant Stabilized Nanoemulsion and Its Use in Enhanced Oil Recovery; Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition; Noordwijk, The Netherlands. 12–14 June 2012; DOI
Rodríguez J., Martín M.J., Ruiz M.A., Clares B. Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Res. Int. 2016;83:41–59. doi: 10.1016/j.foodres.2016.01.032. DOI
Jaiswal M., Dudhe R., Sharma P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech. 2014;5:123–127. doi: 10.1007/s13205-014-0214-0. PubMed DOI PMC
Oprea I., Fărcaș A.C., Leopold L.F., Diaconeasa Z., Coman C., Socaci S.A. Nano-Encapsulation of Citrus Essential Oils: Methods and Applications of Interest for the Food Sector. Polymers. 2022;14:4505. doi: 10.3390/polym14214505. PubMed DOI PMC
Singh Y., Meher J.G., Raval K., Khan F.A., Chaurasia M., Jain N.K., Chourasia M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release. 2017;252:28–49. doi: 10.1016/j.jconrel.2017.03.008. PubMed DOI
McClements D.J., Das A.K., Dhar P., Nanda P.K., Chatterjee N. Nanoemulsion-Based Technologies for Delivering Natural Plant-Based Antimicrobials in Foods. Front. Sustain. Food Syst. 2021;5:643208. doi: 10.3389/fsufs.2021.643208. DOI
Kale S.N., Deore S.L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Syst. Rev. Pharm. 2017;8:39–47. doi: 10.5530/srp.2017.1.8. DOI
Tayeb H.H., Sainsbury F. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine. 2018;13:2507–2525. doi: 10.2217/nnm-2018-0088. PubMed DOI
Sharma S., Cheng S.-F., Bhattacharya B., Chakkaravarthi S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci. Technol. 2019;91:305–318. doi: 10.1016/j.tifs.2019.07.030. DOI
Salvia-Trujillo L., Martín-Belloso O., McClements D.J. Excipient Nanoemulsions for Improving Oral Bioavailability of Bioactives. Nanomaterials. 2016;6:17. doi: 10.3390/nano6010017. PubMed DOI PMC
Sneha K., Kumar A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innov. Food Sci. Emerg. Technol. 2022;76:102914. doi: 10.1016/j.ifset.2021.102914. DOI
Liu Q., Huang H., Chen H., Lin J., Wang Q. Food-Grade Nanoemulsions: Preparation, Stability and Application in Encapsulation of Bioactive Compounds. Molecules. 2019;24:4242. doi: 10.3390/molecules24234242. PubMed DOI PMC
Modarres-Gheisari S.M.M., Gavagsaz-Ghoachani R., Malaki M., Safarpour P., Zandi M. Ultrasonic nano-emulsification—A review. Ultrason. Sonochem. 2019;52:88–105. doi: 10.1016/j.ultsonch.2018.11.005. PubMed DOI
Salem M.A., Ezzat S.M. Some New Aspects of Colloidal Systems in Foods. IntechOpen; London, UK: 2019. Nanoemulsions in Food Industry. DOI
Kumar M., Bishnoi R.S., Shukla A.K., Jain C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019;24:225–234. doi: 10.3746/pnf.2019.24.3.225. PubMed DOI PMC
Gonçalves A., Nikmaram N., Roohinejad S., Estevinho B.N., Rocha F., Greiner R., McClements D.J. Production, properties, and applications of solid self-emulsifying delivery systems (S-SEDS) in the food and pharmaceutical industries. Colloids Surfaces A Physicochem. Eng. Asp. 2018;538:108–126. doi: 10.1016/j.colsurfa.2017.10.076. DOI
Jasmina H., Džana O., Alisa E., Edina V., Ognjenka R. CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering 2017. Volume 62. Springer Verlag; Berlin/Heidelberg, Germany: 2017. Preparation of Nanoemulsions by high-energy and lowenergy emulsification methods; pp. 317–322. DOI
Solans C., Solé I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 2012;17:246–254. doi: 10.1016/j.cocis.2012.07.003. DOI
Moghaddasi F., Housaindokht M.R., Darroudi M., Bozorgmehr M.R., Sadeghi A. Synthesis of nano curcumin using black pepper oil by O/W Nanoemulsion Technique and investigation of their biological activities. LWT. 2018;92:92–100. doi: 10.1016/j.lwt.2018.02.023. DOI
Dey T.K., Ghosh S., Ghosh M., Koley H., Dhar P. Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Res. Int. 2012;49:72–79. doi: 10.1016/j.foodres.2012.07.056. DOI
Oh H., Lee J.S., Sung D., Lim J.M., Choi W.I. Potential Antioxidant and Wound Healing Effect of Nano-Liposol with High Loading Amount of Astaxanthin. Int. J. Nanomed. 2020;15:9231–9240. doi: 10.2147/IJN.S272650. PubMed DOI PMC
Bonferoni M.C., Rossi S., Sandri G., Ferrari F., Gavini E., Rassu G., Giunchedi P. Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics. 2019;11:84. doi: 10.3390/pharmaceutics11020084. PubMed DOI PMC
Ulusoy H.G., Sanlier N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020;60:3290–3303. doi: 10.1080/10408398.2019.1683810. PubMed DOI
Lu B., Huang Y., Chen Z., Ye J., Xu H., Chen W., Long X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules. 2019;24:2322. doi: 10.3390/molecules24122322. PubMed DOI PMC
Basha S.K., Muzammil M.S., Dhandayuthabani R., Kumari V.S. Development of nanoemulsion of Alginate/Aloe vera for oral delivery of insulin. Mater. Today Proc. 2021;36:357–363. doi: 10.1016/j.matpr.2020.04.138. DOI
Sánchez-Navarro M., Garcia J., Giralt E., Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv. Drug Deliv. Rev. 2016;106:355–366. doi: 10.1016/j.addr.2016.04.031. PubMed DOI
Meng Q., Long P., Zhou J., Ho C.-T., Zou X., Chen B., Zhang L. Improved absorption of β-carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase. Food Res. Int. 2019;116:731–736. doi: 10.1016/j.foodres.2018.09.004. PubMed DOI
Mohammed N.K., Tan C.P., Manap Y.A., Muhialdin B.J., Hussin A.S.M. Spray Drying for the Encapsulation of Oils—A Review. Molecules. 2020;25:3873. doi: 10.3390/molecules25173873. PubMed DOI PMC
Rajam R., Subramanian P. Encapsulation of probiotics: Past, present and future. Beni-Suef Univ. J. Basic Appl. Sci. 2022;11:46. doi: 10.1186/s43088-022-00228-w. DOI
Malamatari M., Charisi A., Malamataris S., Kachrimanis K., Nikolakakis I. Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes. 2020;8:788. doi: 10.3390/pr8070788. DOI
Estevinho B.N., Rocha F., Santos L., Alves A. Microencapsulation with chitosan by spray drying for industry applications—A review. Trends Food Sci. Technol. 2013;31:138–155. doi: 10.1016/j.tifs.2013.04.001. DOI
Haider M., Abdin S.M., Kamal L., Orive G. Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics. 2020;12:288. doi: 10.3390/pharmaceutics12030288. PubMed DOI PMC
Sun-Waterhouse D., Wadhwa S.S., Waterhouse G.I.N. Spray-Drying Microencapsulation of Polyphenol Bioactives: A Comparative Study Using Different Natural Fibre Polymers as Encapsulants. Food Bioprocess Technol. 2013;6:2376–2388. doi: 10.1007/s11947-012-0946-y. DOI
Halahlah A., Piironen V., Mikkonen K.S., Ho T.M. Polysaccharides as wall materials in spray-dried microencapsulation of bioactive compounds: Physicochemical properties and characterization. Crit. Rev. Food Sci. Nutr. 2022:1–33. doi: 10.1080/10408398.2022.2038080. PubMed DOI
Veiga R.D.S.D., Aparecida Da Silva-Buzanello R., Corso M.P., Canan C. Essential oils microencapsulated obtained by spray drying: A review. J. Essent. Oil Res. 2019;31:457–473. doi: 10.1080/10412905.2019.1612788. DOI
Kemp I.C., Wadley R., Hartwig T., Cocchini U., See-Toh Y., Gorringe L., Fordham K., Ricard F. Experimental Study of Spray Drying and Atomization with a Two-Fluid Nozzle to Produce Inhalable Particles. Dry. Technol. 2013;31:930–941. doi: 10.1080/07373937.2012.710693. DOI
Spray Drying Basics—Spray Drying Nozzles. [(accessed on 16 January 2023)]. Available online: https://spraydryingnozzles.com/spray-drying-basics/
Van Deventer H., Houben R., Koldeweij R. New Atomization Nozzle for Spray Drying. Dry. Technol. 2013;31:891–897. doi: 10.1080/07373937.2012.735734. DOI
Vicente J., Pinto J., Menezes J., Gaspar F. Fundamental analysis of particle formation in spray drying. Powder Technol. 2013;247:1–7. doi: 10.1016/j.powtec.2013.06.038. DOI
Fioramonti S.A., Stepanic E.M., Tibaldo A.M., Pavón Y.L., Santiago L.G. Spray dried flaxseed oil powdered microcapsules obtained using milk whey proteins-alginate double layer emulsions. Food Res. Int. 2019;119:931–940. doi: 10.1016/j.foodres.2018.10.079. PubMed DOI
Aguiar M.C.S., da Silva M.F.d.G.F., Fernandes J.B., Forim M.R. Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Sci. Rep. 2020;10:11799. doi: 10.1038/s41598-020-68823-4. PubMed DOI PMC
Jiang J., Ma C., Song X., Zeng J., Zhang L., Gong P. Spray drying co-encapsulation of lactic acid bacteria and lipids: A review. Trends Food Sci. Technol. 2022;129:134–143. doi: 10.1016/j.tifs.2022.09.010. DOI
Martinić A., Kalušević A., Lević S., Nedović V., Cebin A.V., Karlović S., Špoljarić I., Mršić G., Žižek K., Komes D. Microencapsulation of Dandelion (Taraxacum officinale L.) Leaf Extract by Spray Drying. Food Technol. Biotechnol. 2022;60:237–252. doi: 10.17113/ftb.60.02.22.7384. PubMed DOI PMC
Belscak-Cvitanovic A., Levic S., Kalusevic A., Špoljarić I., Đorđević V., Komes D., Mršić G., Nedovic V. Efficiency Assessment of Natural Biopolymers as Encapsulants of Green Tea (Camellia sinensis L.) Bioactive Compounds by Spray Drying. Food Bioprocess Technol. 2015;8:2444–2460. doi: 10.1007/s11947-015-1592-y. DOI
Hategekimana J., Masamba K.G., Ma J., Zhong F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015;124:172–179. doi: 10.1016/j.carbpol.2015.01.060. PubMed DOI
Oyinloye T.M., Yoon W.B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes. 2020;8:354. doi: 10.3390/pr8030354. DOI
Nowak D., Jakubczyk E. The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods. 2020;9:1488. doi: 10.3390/foods9101488. PubMed DOI PMC
Bhatta S., Janezic T.S., Ratti C. Freeze-Drying of Plant-Based Foods. Foods. 2020;9:87. doi: 10.3390/foods9010087. PubMed DOI PMC
Siddiqui S.A., Redha A.A., Esmaeili Y., Mehdizadeh M. Novel insights on extraction and encapsulation techniques of elderberry bioactive compounds. Crit. Rev. Food Sci. Nutr. 2022:1–16. doi: 10.1080/10408398.2022.2026290. PubMed DOI
Ray S., Raychaudhuri U., Chakraborty R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci. 2016;13:76–83. doi: 10.1016/j.fbio.2015.12.009. DOI
Pudziuvelyte L., Marksa M., Sosnowska K., Winnicka K., Morkuniene R., Bernatoniene J. Freeze-Drying Technique for Microencapsulation of Elsholtzia ciliata Ethanolic Extract Using Different Coating Materials. Molecules. 2020;25:2237. doi: 10.3390/molecules25092237. PubMed DOI PMC
Li W., Liu L., Tian H., Luo X., Liu S. Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability. Carbohydr. Polym. 2019;223:115065. doi: 10.1016/j.carbpol.2019.115065. PubMed DOI
Guowei S., Yang X., Li C., Huang D., Lei Z., He C. Comprehensive optimization of composite cryoprotectant for Saccharomyces boulardii during freeze-drying and evaluation of its storage stability. Prep. Biochem. Biotechnol. 2019;49:846–857. doi: 10.1080/10826068.2019.1630649. PubMed DOI
Lombardo D., Kiselev M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics. 2022;14:543. doi: 10.3390/pharmaceutics14030543. PubMed DOI PMC
Li C., Deng Y. A novel method for the preparation of liposomes: Freeze drying of monophase solutions. J. Pharm. Sci. 2004;93:1403–1414. doi: 10.1002/jps.20055. PubMed DOI
Ghasemi S., Assadpour E., Kharazmi M.S., Jafarzadeh S., Zargar M., Jafari S.M. Encapsulation of Orange Peel Oil in Biopolymeric Nanocomposites to Control Its Release under Different Conditions. Foods. 2023;12:831. doi: 10.3390/foods12040831. PubMed DOI PMC
Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:102. doi: 10.1186/1556-276X-8-102. PubMed DOI PMC
Hudiyanti D., Fawrin H., Siahaan P. Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum L.) liposomes. IOP Conf. Ser. Mater. Sci. Eng. 2018;349:012014. doi: 10.1088/1757-899X/349/1/012014. DOI
Gomez A.G., Hosseinidoust Z. Liposomes for Antibiotic Encapsulation and Delivery. ACS Infect. Dis. 2020;6:896–908. doi: 10.1021/acsinfecdis.9b00357. PubMed DOI
Shukla S., Haldorai Y., Hwang S.K., Bajpai V.K., Huh Y.S., Han Y.-K. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector. Front. Microbiol. 2017;8:2398. doi: 10.3389/fmicb.2017.02398. PubMed DOI PMC
El-Kader A.A., Abu Hashish H. Encapsulation techniques of food bioproduct. Egypt. J. Chem. 2020;63:1881–1909. doi: 10.21608/ejchem.2019.16269.1993. DOI
Subramani T., Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J. Food Sci. Technol. 2020;57:3545–3555. doi: 10.1007/s13197-020-04360-2. PubMed DOI PMC
Castañeda-Reyes E.D., Perea-Flores M.D.J., Davila-Ortiz G., Lee Y., de Mejia E.G. Development, Characterization and Use of Liposomes as Amphipathic Transporters of Bioactive Compounds for Melanoma Treatment and Reduction of Skin Inflammation: A Review. Int. J. Nanomed. 2020;15:7627–7650. doi: 10.2147/IJN.S263516. PubMed DOI PMC
Esposto B.S., Jauregi P., Tapia-Blácido D.R., Martelli-Tosi M. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci. Technol. 2021;108:40–48. doi: 10.1016/j.tifs.2020.12.003. DOI
Tripathy S., Srivastav P.P. Encapsulation of Centella asiatica leaf extract in liposome: Study on structural stability, degradation kinetics and fate of bioactive compounds during storage. Food Chem. Adv. 2023;2:100202. doi: 10.1016/j.focha.2023.100202. DOI
Mohammadi M., Hamishehkar H., McClements D.J., Shahvalizadeh R., Barri A. Encapsulation of Spirulina protein hydrolysates in liposomes: Impact on antioxidant activity and gastrointestinal behavior. Food Chem. 2023;400:133973. doi: 10.1016/j.foodchem.2022.133973. PubMed DOI
Liposomes and Lipid Nanoparticles as Delivery Vehicles for Personalized Medicine. [(accessed on 13 April 2023)]. Available online: https://www.exeleadbiopharma.com/news/liposomes-and-lipid-nanoparticles-as-delivery-vehicles-for-personalized-medicine.
da Silva G.H.R., de Moura L.D., de Carvalho F.V., Geronimo G., Mendonça T.C., de Lima F.F., de Paula E. Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules. 2021;26:6929. doi: 10.3390/molecules26226929. PubMed DOI PMC
Azar F.A.N., Pezeshki A., Ghanbarzadeh B., Hamishehkar H., Mohammadi M. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. J. Agric. Food Res. 2020;2:100084. doi: 10.1016/j.jafr.2020.100084. DOI
Huguet-Casquero A., Moreno-Sastre M., López-Méndez T.B., Gainza E., Pedraz J.L. Encapsulation of Oleuropein in Nanostructured Lipid Carriers: Biocompatibility and Antioxidant Efficacy in Lung Epithelial Cells. Pharmaceutics. 2020;12:429. doi: 10.3390/pharmaceutics12050429. PubMed DOI PMC
Tang C.-H., Chen H.-L., Dong J.-R. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Food-Grade Nanovehicles for Hydrophobic Nutraceuticals or Bioactives. Appl. Sci. 2023;13:1726. doi: 10.3390/app13031726. DOI
Lin Y., Yin W., Li Y., Liu G. Influence of different solid lipids on the properties of a novel nanostructured lipid carrier containing Antarctic krill oil. Int. J. Food Sci. Technol. 2022;57:2886–2895. doi: 10.1111/ijfs.15588. DOI
Ziani K., Fang Y., McClements D.J. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food Chem. 2012;134:1106–1112. doi: 10.1016/j.foodchem.2012.03.027. PubMed DOI
Pavani M., Singha P., Dash D.R., Asaithambi N., Singh S.K. Novel encapsulation approaches for phytosterols and their importance in food products: A review. J. Food Process. Eng. 2022;45:e14041. doi: 10.1111/jfpe.14041. DOI
Gómez-Mascaraque L.G., Tordera F., Fabra M.J., Martínez-Sanz M., Lopez-Rubio A. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innov. Food Sci. Emerg. Technol. 2019;51:2–11. doi: 10.1016/j.ifset.2018.03.023. DOI
Jayaprakash P., Maudhuit A., Gaiani C., Desobry S. Encapsulation of bioactive compounds using competitive emerging techniques: Electrospraying, nano spray drying, and electrostatic spray drying. J. Food Eng. 2023;339:111260. doi: 10.1016/j.jfoodeng.2022.111260. DOI
Zadbashkhanshir K., Fadaei V., Fahimdanesh M. Canola meal phenolic compounds electrosprayed into capsules to increase the oxidative stability of canola oil. Chem. Biol. Technol. Agric. 2023;10:4. doi: 10.1186/s40538-023-00378-8. DOI
Mahalakshmi L., Choudhary P., Moses J., Anandharamakrishnan C. Emulsion electrospraying and spray drying of whey protein nano and microparticles with curcumin. Food Hydrocoll. Health. 2023;3:100122. doi: 10.1016/j.fhfh.2023.100122. DOI
Tapia-Hernández J.A., Torres-Chávez P.I., Ramírez-Wong B., Rascón-Chu A., Plascencia-Jatomea M., Barreras-Urbina C.G., Rangel-Vázquez N.A., Rodríguez-Félix F. Micro- and Nanoparticles by Electrospray: Advances and Applications in Foods. J. Agric. Food Chem. 2015;63:4699–4707. doi: 10.1021/acs.jafc.5b01403. PubMed DOI
Bellan L.M., Craighead H.G. Applications of controlled electrospinning systems. Polym. Adv. Technol. 2011;22:304–309. doi: 10.1002/pat.1790. DOI
Du Z., Lv H., Wang C., He D., Xu E., Jin Z., Yuan C., Guo L., Wu Z., Liu P., et al. Organic solvent-free starch-based green electrospun nanofiber mats for curcumin encapsulation and delivery. Int. J. Biol. Macromol. 2023;232:123497. doi: 10.1016/j.ijbiomac.2023.123497. PubMed DOI
Wang Y., Khan M.A., Chen K., Zhang L., Chen X. Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. Food Bioprocess Technol. 2022;16:704–725. doi: 10.1007/s11947-022-02896-z. DOI
Pires J.B., Fonseca L.M., Siebeneichler T.J., Crizel R.L., dos Santos F.N., Hackbart H.C.D.S., Kringel D.H., Meinhart A.D., Zavareze E.D.R., Dias A.R.G. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: Thermal resistance and antioxidant activity. Food Res. Int. 2022;162:112111. doi: 10.1016/j.foodres.2022.112111. PubMed DOI
Reis D.R., Ambrosi A., Di Luccio M. Encapsulated essential oils: A perspective in food preservation. Futur. Foods. 2022;5:100126. doi: 10.1016/j.fufo.2022.100126. DOI
Mudalip S.A., Khatiman M., Hashim N., Man R.C., Arshad Z. A short review on encapsulation of bioactive compounds using different drying techniques. Mater. Today Proc. 2021;42:288–296. doi: 10.1016/j.matpr.2021.01.543. DOI
Sosnik A., Seremeta K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015;223:40–54. doi: 10.1016/j.cis.2015.05.003. PubMed DOI
Barroso L., Viegas C., Vieira J., Ferreira-Pêgo C., Costa J., Fonte P. Lipid-based carriers for food ingredients delivery. J. Food Eng. 2021;295:110451. doi: 10.1016/j.jfoodeng.2020.110451. DOI
Akbari J., Saeedi M., Ahmadi F., Hashemi S.M.H., Babaei A., Yaddollahi S., Rostamkalaei S.S., Asare-Addo K., Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm. Dev. Technol. 2022;27:525–544. doi: 10.1080/10837450.2022.2084554. PubMed DOI
Kahraman E., Güngör S., Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv. 2017;8:967–985. doi: 10.4155/tde-2017-0075. PubMed DOI
Plati F., Paraskevopoulou A. Micro- and Nano-encapsulation as Tools for Essential Oils Advantages’ Exploitation in Food Applications: The Case of Oregano Essential Oil. Food Bioprocess Technol. 2022;15:949–977. doi: 10.1007/s11947-021-02746-4. DOI
Souto E.B., Cano A., Martins-Gomes C., Coutinho T.E., Zielińska A., Silva A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering. 2022;9:158. doi: 10.3390/bioengineering9040158. PubMed DOI PMC
Fathi M., Donsi F., McClements D.J. Protein-Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr. Rev. Food Sci. Food Saf. 2018;17:920–936. doi: 10.1111/1541-4337.12360. PubMed DOI
Yan X., Li M., Xu X., Liu X., Liu F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Front. Nutr. 2022;9:2147. doi: 10.3389/fnut.2022.999373. PubMed DOI PMC