A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
conceptual development of research organization, Institute for Clinical and Experimental Medicine - IKEM, IN 00023001
Ministry of Health of the Czech Republic
NU21J-06-00027
Ministry of Health of the Czech Republic
NU22-06-00269
Ministry of Health of the Czech Republic
PubMed
37298338
PubMed Central
PMC10253608
DOI
10.3390/ijms24119386
PII: ijms24119386
Knihovny.cz E-zdroje
- Klíčová slova
- Crohn’s disease, inflammatory bowel disease, pediatric, proteome, proteomics, ulcerative colitis,
- MeSH
- biologické markery metabolismus MeSH
- Crohnova nemoc * metabolismus MeSH
- dítě MeSH
- dospělí MeSH
- idiopatické střevní záněty * metabolismus MeSH
- lidé MeSH
- proteomika metody MeSH
- ulcerózní kolitida * metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.
Institute of Microbiology Czech Academy of Sciences 142 20 Prague Czech Republic
Proteomics Core Facility Faculty of Science Charles University 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Magro F., Langner C., Driessen A., Ensari A., Geboes K., Mantzaris G.J., Villanacci V., Becheanu G., Borralho Nunes P., Cathomas G., et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis. 2013;7:827–851. doi: 10.1016/j.crohns.2013.06.001. PubMed DOI
Levine A., Koletzko S., Turner D., Escher J.C., Cucchiara S., de Ridder L., Kolho K.L., Veres G., Russell R.K., Paerregaard A., et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014;58:795–806. doi: 10.1097/MPG.0000000000000239. PubMed DOI
Molodecky N.A., Soon I.S., Rabi D.M., Ghali W.A., Ferris M., Chernoff G., Benchimol E.I., Panaccione R., Ghosh S., Barkema H.W., et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.e42. doi: 10.1053/j.gastro.2011.10.001. quiz e30. PubMed DOI
Benchimol E.I., Fortinsky K.J., Gozdyra P., Van den Heuvel M., Van Limbergen J., Griffiths A.M. Epidemiology of pediatric inflammatory bowel disease: A systematic review of international trends. Inflamm. Bowel Dis. 2011;17:423–439. doi: 10.1002/ibd.21349. PubMed DOI
Burisch J., Pedersen N., Cukovic-Cavka S., Brinar M., Kaimakliotis I., Duricova D., Shonova O., Vind I., Avnstrom S., Thorsgaard N., et al. East-West gradient in the incidence of inflammatory bowel disease in Europe: The ECCO-EpiCom inception cohort. Gut. 2014;63:588–597. doi: 10.1136/gutjnl-2013-304636. PubMed DOI
Conrad M.A., Rosh J.R. Pediatric Inflammatory Bowel Disease. Pediatr. Clin. North Am. 2017;64:577–591. doi: 10.1016/j.pcl.2017.01.005. PubMed DOI
Prenzel F., Uhlig H.H. Frequency of indeterminate colitis in children and adults with IBD—A metaanalysis. J. Crohns Colitis. 2009;3:277–281. doi: 10.1016/j.crohns.2009.07.001. PubMed DOI
Baumgart D.C., Carding S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet. 2007;369:1627–1640. doi: 10.1016/S0140-6736(07)60750-8. PubMed DOI
Rifai N., Gillette M.A., Carr S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006;24:971–983. doi: 10.1038/nbt1235. PubMed DOI
Tyers M., Mann M. From genomics to proteomics. Nature. 2003;422:193–197. doi: 10.1038/nature01510. PubMed DOI
Assadsangabi A., Evans C.A., Corfe B.M., Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol. Res. Pract. 2019;2019:1426954. doi: 10.1155/2019/1426954. PubMed DOI PMC
Baldan-Martin M., Chaparro M., Gisbert J.P. Tissue Proteomic Approaches to Understand the Pathogenesis of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021;27:1184–1200. doi: 10.1093/ibd/izaa352. PubMed DOI
Bennike T., Birkelund S., Stensballe A., Andersen V. Biomarkers in inflammatory bowel diseases: Current status and proteomics identification strategies. World J. Gastroenterol. 2014;20:3231–3244. doi: 10.3748/wjg.v20.i12.3231. PubMed DOI PMC
Lawrance I.C., Klopcic B., Wasinger V.C. Proteomics: An overview. Inflamm. Bowel Dis. 2005;11:927–936. doi: 10.1097/01.MIB.0000178264.41722.0f. PubMed DOI
Liu Y., Beyer A., Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI
Vaiopoulou A., Gazouli M., Theodoropoulos G., Zografos G. Current advantages in the application of proteomics in inflammatory bowel disease. Dig. Dis. Sci. 2012;57:2755–2764. doi: 10.1007/s10620-012-2291-4. PubMed DOI
Gisbert J.P., Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review. J. Crohns Colitis. 2019;13:374–384. doi: 10.1093/ecco-jcc/jjy158. PubMed DOI
Chan P.P., Wasinger V.C., Leong R.W. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016;7:27–37. doi: 10.4291/wjgp.v7.i1.27. PubMed DOI PMC
Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. doi: 10.1038/nature01511. PubMed DOI
Zhang H., Ge Y. Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ. Cardiovasc. Genet. 2011;4:711. doi: 10.1161/CIRCGENETICS.110.957829. PubMed DOI PMC
Naryzhny S. Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J. Proteom. 2019;191:22–28. doi: 10.1016/j.jprot.2018.05.008. PubMed DOI
Durbin K.R., Fornelli L., Fellers R.T., Doubleday P.F., Narita M., Kelleher N.L. Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J. Proteome Res. 2016;15:976–982. doi: 10.1021/acs.jproteome.5b00997. PubMed DOI PMC
Baggerman G., Vierstraete E., De Loof A., Schoofs L. Gel-based versus gel-free proteomics: A review. Comb. Chem. High Throughput Screen. 2005;8:669–677. doi: 10.2174/138620705774962490. PubMed DOI
Westbrook J.A., Noirel J., Brown J.E., Wright P.C., Evans C.A. Quantitation with chemical tagging reagents in biomarker studies. Proteom. Clin. Appl. 2015;9:295–300. doi: 10.1002/prca.201400120. PubMed DOI
Canas B., Pineiro C., Calvo E., Lopez-Ferrer D., Gallardo J.M. Trends in sample preparation for classical and second generation proteomics. J. Chromatogr. A. 2007;1153:235–258. doi: 10.1016/j.chroma.2007.01.045. PubMed DOI
Alex P., Gucek M., Li X. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflamm. Bowel Dis. 2009;15:616–629. doi: 10.1002/ibd.20652. PubMed DOI PMC
Aslam B., Basit M., Nisar M.A., Khurshid M., Rasool M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017;55:182–196. doi: 10.1093/chromsci/bmw167. PubMed DOI
Coskun O. Separation techniques: Chromatography. North Clin. Istanb. 2016;3:156–160. PubMed PMC
Ludwig C., Gillet L., Rosenberger G., Amon S., Collins B.C., Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018;14:e8126. doi: 10.15252/msb.20178126. PubMed DOI PMC
Bateman N.W., Goulding S.P., Shulman N.J., Gadok A.K., Szumlinski K.K., MacCoss M.J., Wu C.C. Maximizing peptide identification events in proteomic workflows using data-dependent acquisition (DDA) Mol. Cell. Proteom. 2014;13:329–338. doi: 10.1074/mcp.M112.026500. PubMed DOI PMC
Ross P.L., Huang Y.N., Marchese J.N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004;3:1154–1169. doi: 10.1074/mcp.M400129-MCP200. PubMed DOI
Thompson A., Schafer J., Kuhn K., Kienle S., Schwarz J., Schmidt G., Neumann T., Johnstone R., Mohammed A.K., Hamon C. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003;75:1895–1904. doi: 10.1021/ac0262560. PubMed DOI
Ong S.E., Mann M. Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol. 2007;359:37–52. PubMed
Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. PubMed DOI
Schoeters F., Van Dijck P. Protein-Protein Interactions in Candida albicans. Front. Microbiol. 2019;10:1792. doi: 10.3389/fmicb.2019.01792. PubMed DOI PMC
Han X., Aslanian A., Yates J.R., 3rd Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 2008;12:483–490. doi: 10.1016/j.cbpa.2008.07.024. PubMed DOI PMC
Olshina M.A., Sharon M. Mass Spectrometry: A Technique of Many Faces. Q. Rev. Biophys. 2016;49:e18. doi: 10.1017/S0033583516000160. PubMed DOI PMC
Nadler W.M., Waidelich D., Kerner A., Hanke S., Berg R., Trumpp A., Rosli C. MALDI versus ESI: The Impact of the Ion Source on Peptide Identification. J. Proteome Res. 2017;16:1207–1215. doi: 10.1021/acs.jproteome.6b00805. PubMed DOI
Selcuk A.A. A Guide for Systematic Reviews: PRISMA. Turk. Arch. Otorhinolaryngol. 2019;57:57–58. doi: 10.5152/tao.2019.4058. PubMed DOI PMC
Meuwis M.A., Fillet M., Geurts P., de Seny D., Lutteri L., Chapelle J.P., Bours V., Wehenkel L., Belaiche J., Malaise M., et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem. Pharmacol. 2007;73:1422–1433. doi: 10.1016/j.bcp.2006.12.019. PubMed DOI
Meuwis M.A., Fillet M., Lutteri L., Maree R., Geurts P., de Seny D., Malaise M., Chapelle J.P., Wehenkel L., Belaiche J., et al. Proteomics for prediction and characterization of response to infliximab in Crohn’s disease: A pilot study. Clin. Biochem. 2008;41:960–967. doi: 10.1016/j.clinbiochem.2008.04.021. PubMed DOI
Shkoda A., Werner T., Daniel H., Gunckel M., Rogler G., Haller D. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J. Proteome Res. 2007;6:1114–1125. doi: 10.1021/pr060433m. PubMed DOI
Brentnall T.A., Pan S., Bronner M.P., Crispin D.A., Mirzaei H., Cooke K., Tamura Y., Nikolskaya T., Jebailey L., Goodlett D.R., et al. Proteins That Underlie Neoplastic Progression of Ulcerative Colitis. Proteom. Clin. Appl. 2009;3:1326. doi: 10.1002/prca.200900061. PubMed DOI PMC
Kanmura S., Uto H., Numata M., Hashimoto S., Moriuchi A., Fujita H., Oketani M., Ido A., Kodama M., Ohi H., et al. Human neutrophil peptides 1–3 are useful biomarkers in patients with active ulcerative colitis. Inflamm. Bowel Dis. 2009;15:909–917. doi: 10.1002/ibd.20854. PubMed DOI
M’Koma A.E., Seeley E.H., Washington M.K., Schwartz D.A., Muldoon R.L., Herline A.J., Wise P.E., Caprioli R.M. Proteomic profiling of mucosal and submucosal colonic tissues yields protein signatures that differentiate the inflammatory colitides. Inflamm. Bowel Dis. 2011;17:875–883. doi: 10.1002/ibd.21442. PubMed DOI PMC
May D., Pan S., Crispin D.A., Lai K., Bronner M.P., Hogan J., Hockenbery D.M., McIntosh M., Brentnall T.A., Chen R. Investigating neoplastic progression of ulcerative colitis with label-free comparative proteomics. J. Proteome Res. 2011;10:200–209. doi: 10.1021/pr100574p. PubMed DOI PMC
Zhao X., Kang B., Lu C., Liu S., Wang H., Yang X., Chen Y., Jiang B., Zhang J., Lu Y., et al. Evaluation of p38 MAPK pathway as a molecular signature in ulcerative colitis. J. Proteome Res. 2011;10:2216–2225. doi: 10.1021/pr100969w. PubMed DOI
Poulsen N.A., Andersen V., Moller J.C., Moller H.S., Jessen F., Purup S., Larsen L.B. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis. BMC Gastroenterol. 2012;12:76. doi: 10.1186/1471-230X-12-76. PubMed DOI PMC
Seeley E.H., Washington M.K., Caprioli R.M., M’Koma A.E. Proteomic patterns of colonic mucosal tissues delineate Crohn’s colitis and ulcerative colitis. Proteom. Clin. Appl. 2013;7:541–549. doi: 10.1002/prca.201200107. PubMed DOI PMC
Zhou Z., Liu H., Gu G., Wang G., Wu W., Zhang C., Ren J. Immunoproteomic to identify antigens in the intestinal mucosa of Crohn’s disease patients. PLoS ONE. 2013;8:e81662. doi: 10.1371/journal.pone.0081662. PubMed DOI PMC
Han N.Y., Choi W., Park J.M., Kim E.H., Lee H., Hahm K.B. Label-free quantification for discovering novel biomarkers in the diagnosis and assessment of disease activity in inflammatory bowel disease. J. Dig. Dis. 2013;14:166–174. doi: 10.1111/1751-2980.12035. PubMed DOI
Gazouli M., Anagnostopoulos A.K., Papadopoulou A., Vaiopoulou A., Papamichael K., Mantzaris G., Theodoropoulos G.E., Anagnou N.P., Tsangaris G.T. Serum protein profile of Crohn’s disease treated with infliximab. J. Crohns Colitis. 2013;7:e461–e470. doi: 10.1016/j.crohns.2013.02.021. PubMed DOI
Vaiopoulou A., Gazouli M., Papadopoulou A., Anagnostopoulos A.K., Karamanolis G., Theodoropoulos G.E., M’Koma A., Tsangaris G.T. Serum protein profiling of adults and children with Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2015;60:42–47. doi: 10.1097/MPG.0000000000000579. PubMed DOI PMC
Bennike T.B., Carlsen T.G., Ellingsen T., Bonderup O.K., Glerup H., Bogsted M., Christiansen G., Birkelund S., Stensballe A., Andersen V. Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies. Inflamm. Bowel Dis. 2015;21:2052–2067. doi: 10.1097/MIB.0000000000000460. PubMed DOI PMC
Townsend P., Zhang Q., Shapiro J., Webb-Robertson B.J., Bramer L., Schepmoes A.A., Weitz K.K., Mallette M., Moniz H., Bright R., et al. Serum Proteome Profiles in Stricturing Crohn’s Disease: A Pilot Study. Inflamm. Bowel Dis. 2015;21:1935–1941. doi: 10.1097/MIB.0000000000000445. PubMed DOI PMC
Corfe B.M., Majumdar D., Assadsangabi A., Marsh A.M., Cross S.S., Connolly J.B., Evans C.A., Lobo A.J. Inflammation decreases keratin level in ulcerative colitis; inadequate restoration associates with increased risk of colitis-associated cancer. BMJ Open Gastroenterol. 2015;2:e000024. doi: 10.1136/bmjgast-2014-000024. PubMed DOI PMC
Starr A.E., Deeke S.A., Ning Z., Chiang C.K., Zhang X., Mottawea W., Singleton R., Benchimol E.I., Wen M., Mack D.R., et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn’s disease from UC. Gut. 2017;66:1573–1583. doi: 10.1136/gutjnl-2015-310705. PubMed DOI PMC
Stidham R.W., Wu J., Shi J., Lubman D.M., Higgins P.D. Serum Glycoproteome Profiles for Distinguishing Intestinal Fibrosis from Inflammation in Crohn’s Disease. PLoS ONE. 2017;12:e0170506. doi: 10.1371/journal.pone.0170506. PubMed DOI PMC
Moriggi M., Pastorelli L., Torretta E., Tontini G.E., Capitanio D., Bogetto S.F., Vecchi M., Gelfi C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. Proteomics. 2017;17:1700164. doi: 10.1002/pmic.201700164. PubMed DOI
Ning L., Shan G., Sun Z., Zhang F., Xu C., Lou X., Li S., Du H., Chen H., Xu G. Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease. Biomed. Res. Int. 2019;2019:3950628. doi: 10.1155/2019/3950628. PubMed DOI PMC
Erdmann P., Bruckmueller H., Martin P., Busch D., Haenisch S., Muller J., Wiechowska-Kozlowska A., Partecke L.I., Heidecke C.D., Cascorbi I., et al. Dysregulation of Mucosal Membrane Transporters and Drug-Metabolizing Enzymes in Ulcerative Colitis. J. Pharm. Sci. 2019;108:1035–1046. doi: 10.1016/j.xphs.2018.09.024. PubMed DOI
Schniers A., Goll R., Pasing Y., Sorbye S.W., Florholmen J., Hansen T. Ulcerative colitis: Functional analysis of the in-depth proteome. Clin. Proteom. 2019;16:4. doi: 10.1186/s12014-019-9224-6. PubMed DOI PMC
Pierre N., Salee C., Massot C., Bletard N., Mazzucchelli G., Smargiasso N., Morsa D., Baiwir D., De Pauw E., Reenaers C., et al. Proteomics Highlights Common and Distinct Pathophysiological Processes Associated with Ileal and Colonic Ulcers in Crohn’s Disease. J. Crohns Colitis. 2020;14:205–215. doi: 10.1093/ecco-jcc/jjz130. PubMed DOI
Arafah K., Kriegsmann M., Renner M., Lasitschka F., Fresnais M., Kriegsmann K., von Winterfeld M., Goeppert B., Kriegsmann J., Casadonte R., et al. Microproteomics and Immunohistochemistry Reveal Differences in Aldo-Keto Reductase Family 1 Member C3 in Tissue Specimens of Ulcerative Colitis and Crohn’s Disease. Proteom. Clin. Appl. 2020;14:e1900110. doi: 10.1002/prca.201900110. PubMed DOI
Merli A.M., Vieujean S., Massot C., Bletard N., Quesada Calvo F., Baiwir D., Mazzucchelli G., Servais L., Wera O., Oury C., et al. Solute carrier family 12 member 2 as a proteomic and histological biomarker of dysplasia and neoplasia in ulcerative colitis. J. Crohns Colitis. 2020;15:287–298. doi: 10.1093/ecco-jcc/jjaa168. PubMed DOI
Pierre N., Baiwir D., Huynh-Thu V.A., Mazzucchelli G., Smargiasso N., De Pauw E., Bouhnik Y., Laharie D., Colombel J.F., Meuwis M.A., et al. Discovery of biomarker candidates associated with the risk of short-term and mid/long-term relapse after infliximab withdrawal in Crohn’s patients: A proteomics-based study. Gut. 2020;70:1450–1457. doi: 10.1136/gutjnl-2020-322100. PubMed DOI
Liu L., Pu D., Wang D., Zhang M., Zhou C., Zhang Z., Feng B. Proteomic Analysis of Potential Targets for Non-Response to Infliximab in Patients with Ulcerative Colitis. Front. Pharmacol. 2022;13:905133. doi: 10.3389/fphar.2022.905133. PubMed DOI PMC
Gruver A.M., Westfall M.D., Ackermann B.L., Hill S., Morrison R.D., Bodo J., Lai K.K., Gemperline D.C., Hsi E.D., Liebler D.C., et al. Proteomic characterisations of ulcerative colitis endoscopic biopsies associate with clinically relevant histological measurements of disease severity. J. Clin. Pathol. 2022;75:636–642. doi: 10.1136/jclinpath-2021-207718. PubMed DOI PMC
Vessby J., Wisniewski J.R., Lindskog C., Eriksson N., Gabrysch K., Zettl K., Wanders A., Carlson M., Rorsman F., Aberg M. AGPAT1 as a Novel Colonic Biomarker for Discriminating between Ulcerative Colitis with and without Primary Sclerosing Cholangitis. Clin. Transl. Gastroenterol. 2022;13:e00486. doi: 10.14309/ctg.0000000000000486. PubMed DOI PMC
Louis Sam Titus A.S.C., Vanarsa K., Soomro S., Patel A., Prince J., Kugathasan S., Mohan C. Resistin, Elastase, and Lactoferrin as Potential Plasma Biomarkers of Pediatric Inflammatory Bowel Disease Based on Comprehensive Proteomic Screens. Mol. Cell. Proteom. 2023;22:100487. doi: 10.1016/j.mcpro.2022.100487. PubMed DOI PMC
Hsieh S.Y., Shih T.C., Yeh C.Y., Lin C.J., Chou Y.Y., Lee Y.S. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics. 2006;6:5322–5331. doi: 10.1002/pmic.200500541. PubMed DOI
Berndt U., Bartsch S., Philipsen L., Danese S., Wiedenmann B., Dignass A.U., Hammerle M., Sturm A. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn’s disease and ulcerative colitis. J. Immunol. 2007;179:295–304. doi: 10.4049/jimmunol.179.1.295. PubMed DOI
Nanni P., Parisi D., Roda G., Casale M., Belluzzi A., Roda E., Mayer L., Roda A. Serum protein profiling in patients with inflammatory bowel diseases using selective solid-phase bulk extraction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and chemometric data analysis. Rapid Commun. Mass Spectrom. 2007;21:4142–4148. doi: 10.1002/rcm.3323. PubMed DOI
Fogt F., Jian B., Krieg R.C., Wellmann A. Proteomic analysis of mucosal preparations from patients with ulcerative colitis. Mol. Med. Rep. 2008;1:51–54. PubMed
Nanni P., Levander F., Roda G., Caponi A., James P., Roda A. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn’s disease patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:3127–3136. doi: 10.1016/j.jchromb.2009.08.003. PubMed DOI
Nanni P., Mezzanotte L., Roda G., Caponi A., Levander F., James P., Roda A. Differential proteomic analysis of HT29 Cl.16E and intestinal epithelial cells by LC ESI/QTOF mass spectrometry. J. Proteom. 2009;72:865–873. doi: 10.1016/j.jprot.2008.12.010. PubMed DOI
Hatsugai M., Kurokawa M.S., Kouro T., Nagai K., Arito M., Masuko K., Suematsu N., Okamoto K., Itoh F., Kato T. Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease. J. Gastroenterol. 2010;45:488–500. doi: 10.1007/s00535-009-0183-y. PubMed DOI
Li N., Wang X., Zhang Y., Zhai J., Zhang T., Wei K. Comparative proteomics analysis of serum proteins in ulcerative colitis patients. Mol. Biol. Rep. 2012;39:5659–5667. doi: 10.1007/s11033-011-1373-2. PubMed DOI
Erickson A.R., Cantarel B.L., Lamendella R., Darzi Y., Mongodin E.F., Pan C., Shah M., Halfvarson J., Tysk C., Henrissat B., et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS ONE. 2012;7:e49138. doi: 10.1371/journal.pone.0049138. PubMed DOI PMC
Presley L.L., Ye J., Li X., Leblanc J., Zhang Z., Ruegger P.M., Allard J., McGovern D., Ippoliti A., Roth B., et al. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm. Bowel Dis. 2012;18:409–417. doi: 10.1002/ibd.21793. PubMed DOI PMC
Kwon S.C., Won K.J., Jung S.H., Lee K.P., Lee D.Y., Park E.S., Kim B., Cheon G.J., Han K.H. Proteomic analysis of colonic mucosal tissue from tuberculous and ulcerative colitis patients. Korean J. Physiol. Pharmacol. 2012;16:193–198. doi: 10.4196/kjpp.2012.16.3.193. PubMed DOI PMC
Kohashi M., Nishiumi S., Ooi M., Yoshie T., Matsubara A., Suzuki M., Hoshi N., Kamikozuru K., Yokoyama Y., Fukunaga K., et al. A novel gas chromatography mass spectrometry-based serum diagnostic and assessment approach to ulcerative colitis. J. Crohns Colitis. 2014;8:1010–1021. doi: 10.1016/j.crohns.2014.01.024. PubMed DOI
Piras C.S.A., Grego V., Cassinotti A., Maconi G., Ardizzone S., Amoresano A., Bianchi Porro G., Bonizzi L., Roncada P. Serum protein profiling of early and advanced stage Crohn’s disease. EuPA Open Proteom. 2014;3:48–59. doi: 10.1016/j.euprot.2014.02.010. DOI
Miao J., Niu J., Wang K., Xiao Y., Du Y., Zhou L., Duan L., Li S., Yang G., Chen L., et al. Heat shock factor 2 levels are associated with the severity of ulcerative colitis. PLoS ONE. 2014;9:e88822. doi: 10.1371/journal.pone.0088822. PubMed DOI PMC
Wasinger V.C., Yau Y., Duo X., Zeng M., Campbell B., Shin S., Luber R., Redmond D., Leong R.W. Low Mass Blood Peptides Discriminative of Inflammatory Bowel Disease (IBD) Severity: A Quantitative Proteomic Perspective. Mol. Cell. Proteom. 2016;15:256–265. doi: 10.1074/mcp.M115.055095. PubMed DOI PMC
Zhang F., Xu C., Ning L., Hu F., Shan G., Chen H., Yang M., Chen W., Yu J., Xu G. Exploration of Serum Proteomic Profiling and Diagnostic Model That Differentiate Crohn’s Disease and Intestinal Tuberculosis. PLoS ONE. 2016;11:e0167109. doi: 10.1371/journal.pone.0167109. PubMed DOI PMC
Heier C.R., Fiorillo A.A., Chaisson E., Gordish-Dressman H., Hathout Y., Damsker J.M., Hoffman E.P., Conklin L.S. Identification of Pathway-Specific Serum Biomarkers of Response to Glucocorticoid and Infliximab Treatment in Children with Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2016;7:e192. doi: 10.1038/ctg.2016.49. PubMed DOI PMC
Li X., LeBlanc J., Elashoff D., McHardy I., Tong M., Roth B., Ippoliti A., Barron G., McGovern D., McDonald K., et al. Microgeographic Proteomic Networks of the Human Colonic Mucosa and Their Association with Inflammatory Bowel Disease. Cell. Mol. Gastroenterol. Hepatol. 2016;2:567–583. doi: 10.1016/j.jcmgh.2016.05.003. PubMed DOI PMC
Di Narzo A.F., Telesco S.E., Brodmerkel C., Argmann C., Peters L.A., Li K., Kidd B., Dudley J., Cho J., Schadt E.E., et al. High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genet. 2017;13:e1006565. doi: 10.1371/journal.pgen.1006565. PubMed DOI PMC
Deeke S.A., Starr A.E., Ning Z., Ahmadi S., Zhang X., Mayne J., Chiang C.K., Singleton R., Benchimol E.I., Mack D.R., et al. Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis. Am. J. Gastroenterol. 2018;113:713–724. doi: 10.1038/s41395-018-0024-9. PubMed DOI
Denadai-Souza A., Bonnart C., Tapias N.S., Marcellin M., Gilmore B., Alric L., Bonnet D., Burlet-Schiltz O., Hollenberg M.D., Vergnolle N., et al. Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Sci. Rep. 2018;8:7834. doi: 10.1038/s41598-018-26282-y. PubMed DOI PMC
Di Narzo A.F., Brodmerkel C., Telesco S.E., Argmann C., Peters L.A., Li K., Kidd B., Dudley J., Cho J., Schadt E.E., et al. High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease. J. Crohns Colitis. 2019;13:462–471. doi: 10.1093/ecco-jcc/jjy190. PubMed DOI PMC
Jin L., Li L., Hu C., Paez-Cortez J., Bi Y., Macoritto M., Cao S., Tian Y. Integrative Analysis of Transcriptomic and Proteomic Profiling in Inflammatory Bowel Disease Colon Biopsies. Inflamm. Bowel Dis. 2019;25:1906–1918. doi: 10.1093/ibd/izz111. PubMed DOI
van der Post S., Jabbar K.S., Birchenough G., Arike L., Akhtar N., Sjovall H., Johansson M.E.V., Hansson G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019;68:2142–2151. doi: 10.1136/gutjnl-2018-317571. PubMed DOI PMC
Basso D., Padoan A., D’Inca R., Arrigoni G., Scapellato M.L., Contran N., Franchin C., Lorenzon G., Mescoli C., Moz S., et al. Peptidomic and proteomic analysis of stool for diagnosing IBD and deciphering disease pathogenesis. Clin. Chem. Lab. Med. 2020;58:968–979. doi: 10.1515/cclm-2019-1125. PubMed DOI
Yuan X., Chen B., Duan Z., Xia Z., Ding Y., Chen T., Liu H., Wang B., Yang B., Wang X., et al. Depression and anxiety in patients with active ulcerative colitis: Crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes. 2021;13:1987779. doi: 10.1080/19490976.2021.1987779. PubMed DOI PMC
Sun X.L., Qiao L.C., Gong J., Wen K., Xu Z.Z., Yang B.L. Proteomics identifies a novel role of fibrinogen-like protein 1 in Crohn’s disease. World J. Gastroenterol. 2021;27:5946–5957. doi: 10.3748/wjg.v27.i35.5946. PubMed DOI PMC
Park J., Jeong D., Chung Y.W., Han S., Kim D.H., Yu J., Cheon J.H., Ryu J.H. Proteomic analysis-based discovery of a novel biomarker that differentiates intestinal Behcet’s disease from Crohn’s disease. Sci. Rep. 2021;11:11019. doi: 10.1038/s41598-021-90250-2. PubMed DOI PMC
Kalla R., Adams A.T., Bergemalm D., Vatn S., Kennedy N.A., Ricanek P., Lindstrom J., Ocklind A., Hjelm F., Ventham N.T., et al. Serum proteomic profiling at diagnosis predicts clinical course, and need for intensification of treatment in inflammatory bowel disease. J. Crohns Colitis. 2021;15:699–708. doi: 10.1093/ecco-jcc/jjaa230. PubMed DOI PMC
Bourgonje A.R., Wichers S.J., Hu S., van Dullemen H.M., Visschedijk M.C., Faber K.N., Festen E.A.M., Dijkstra G., Samsom J.N., Weersma R.K., et al. Proteomic analyses do not reveal subclinical inflammation in fatigued patients with clinically quiescent inflammatory bowel disease. Sci. Rep. 2022;12:14581. doi: 10.1038/s41598-022-17504-5. PubMed DOI PMC
Alfredsson J., Fabrik I., Gorreja F., Caer C., Sihlbom C., Block M., Borjesson L.G., Lindskog E.B., Wick M.J. Isobaric labeling-based quantitative proteomics of FACS-purified immune cells and epithelial cells from the intestine of Crohn’s disease patients reveals proteome changes of potential importance in disease pathogenesis. Proteomics. 2023;23:e2200366. doi: 10.1002/pmic.202200366. PubMed DOI
Filipenko N.R., MacLeod T.J., Yoon C.S., Waisman D.M. Annexin A2 is a novel RNA-binding protein. J. Biol. Chem. 2004;279:8723–8731. doi: 10.1074/jbc.M311951200. PubMed DOI
Canto C., Menzies K.J., Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell. Metab. 2015;22:31–53. doi: 10.1016/j.cmet.2015.05.023. PubMed DOI PMC
Lund F.E., Cockayne D.A., Randall T.D., Solvason N., Schuber F., Howard M.C. CD38: A new paradigm in lymphocyte activation and signal transduction. Immunol. Rev. 1998;161:79–93. doi: 10.1111/j.1600-065X.1998.tb01573.x. PubMed DOI
Torres J., Bonovas S., Doherty G., Kucharzik T., Gisbert J.P., Raine T., Adamina M., Armuzzi A., Bachmann O., Bager P., et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis. 2020;14:4–22. doi: 10.1093/ecco-jcc/jjz180. PubMed DOI
Ruemmele F.M., Veres G., Kolho K.L., Griffiths A., Levine A., Escher J.C., Amil Dias J., Barabino A., Braegger C.P., Bronsky J., et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis. 2014;8:1179–1207. doi: 10.1016/j.crohns.2014.04.005. PubMed DOI
Raine T., Bonovas S., Burisch J., Kucharzik T., Adamina M., Annese V., Bachmann O., Bettenworth D., Chaparro M., Czuber-Dochan W., et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis. 2022;16:2–17. doi: 10.1093/ecco-jcc/jjab178. PubMed DOI
Gouni-Berthold I., Baumeister B., Wegel E., Berthold H.K., Vetter H., Schmidt C. Neutrophil-elastase in chronic inflammatory bowel disease: A marker of disease activity? Hepatogastroenterology. 1999;46:2315–2320. PubMed
Dabek M., Ferrier L., Roka R., Gecse K., Annahazi A., Moreau J., Escourrou J., Cartier C., Chaumaz G., Leveque M., et al. Luminal cathepsin g and protease-activated receptor 4: A duet involved in alterations of the colonic epithelial barrier in ulcerative colitis. Am. J. Pathol. 2009;175:207–214. doi: 10.2353/ajpath.2009.080986. PubMed DOI PMC
Boyapati R.K., Rossi A.G., Satsangi J., Ho G.T. Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications. Mucosal. Immunol. 2016;9:567–582. doi: 10.1038/mi.2016.14. PubMed DOI
Mishra S., Ande S.R., Nyomba B.L. The role of prohibitin in cell signaling. FEBS J. 2010;277:3937–3946. doi: 10.1111/j.1742-4658.2010.07809.x. PubMed DOI
Li Q.F., Liang Y., Shi S.L., Liu Q.R., Xu D.H., Jing G.J., Wang S.Y., Kong H.Y. Localization of prohibitin in the nuclear matrix and alteration of its expression during differentiation of human neuroblastoma SK-N-SH cells induced by retinoic acid. Cell. Mol. Neurobiol. 2011;31:203–211. doi: 10.1007/s10571-010-9608-7. PubMed DOI PMC
Michalak M., Groenendyk J., Szabo E., Gold L.I., Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 2009;417:651–666. doi: 10.1042/BJ20081847. PubMed DOI
Bennett T.A., Edwards B.S., Sklar L.A., Rogelj S. Sulfhydryl regulation of L-selectin shedding: Phenylarsine oxide promotes activation-independent L-selectin shedding from leukocytes. J. Immunol. 2000;164:4120–4129. doi: 10.4049/jimmunol.164.8.4120. PubMed DOI
Datta R., deSchoolmeester M.L., Hedeler C., Paton N.W., Brass A.M., Else K.J. Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite. Infect. Immun. 2005;73:4025–4033. doi: 10.1128/IAI.73.7.4025-4033.2005. PubMed DOI PMC
Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005;45:51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857. PubMed DOI
Silverberg M.S., Satsangi J., Ahmad T., Arnott I.D., Bernstein C.N., Brant S.R., Caprilli R., Colombel J.F., Gasche C., Geboes K., et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. 2005;19((Suppl. SA)):5A–36A. doi: 10.1155/2005/269076. PubMed DOI
Levine A., Griffiths A., Markowitz J., Wilson D.C., Turner D., Russell R.K., Fell J., Ruemmele F.M., Walters T., Sherlock M., et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm. Bowel Dis. 2011;17:1314–1321. doi: 10.1002/ibd.21493. PubMed DOI
Tan K., Lawler J. The interaction of Thrombospondins with extracellular matrix proteins. J. Cell Commun. Signal. 2009;3:177–187. doi: 10.1007/s12079-009-0074-2. PubMed DOI PMC
Farina G., Lemaire R., Pancari P., Bayle J., Widom R.L., Lafyatis R. Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor beta. Ann. Rheum. Dis. 2009;68:435–441. doi: 10.1136/ard.2007.086850. PubMed DOI
Kataoka H., Kawaguchi M. Hepatocyte growth factor activator (HGFA): Pathophysiological functions in vivo. FEBS J. 2010;277:2230–2237. doi: 10.1111/j.1742-4658.2010.07640.x. PubMed DOI
Owen K.A., Qiu D., Alves J., Schumacher A.M., Kilpatrick L.M., Li J., Harris J.L., Ellis V. Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem. J. 2010;426:219–228. doi: 10.1042/BJ20091448. PubMed DOI
Cui Q., Fu S., Li Z. Hepatocyte growth factor inhibits TGF-beta1-induced myofibroblast differentiation in tendon fibroblasts: Role of AMPK signaling pathway. J. Physiol. Sci. 2013;63:163–170. doi: 10.1007/s12576-013-0251-1. PubMed DOI PMC
Gonczi L., Bessissow T., Lakatos P.L. Disease monitoring strategies in inflammatory bowel diseases: What do we mean by “tight control”? World J. Gastroenterol. 2019;25:6172–6189. doi: 10.3748/wjg.v25.i41.6172. PubMed DOI PMC
Annese V., Daperno M., Rutter M.D., Amiot A., Bossuyt P., East J., Ferrante M., Gotz M., Katsanos K.H., Kiesslich R., et al. European evidence based consensus for endoscopy in inflammatory bowel disease. J. Crohns Colitis. 2013;7:982–1018. doi: 10.1016/j.crohns.2013.09.016. PubMed DOI
Travis S.P., Higgins P.D., Orchard T., Van Der Woude C.J., Panaccione R., Bitton A., O’Morain C., Panes J., Sturm A., Reinisch W., et al. Review article: Defining remission in ulcerative colitis. Aliment. Pharmacol. Ther. 2011;34:113–124. doi: 10.1111/j.1365-2036.2011.04701.x. PubMed DOI
Bryant R.V., Burger D.C., Delo J., Walsh A.J., Thomas S., von Herbay A., Buchel O.C., White L., Brain O., Keshav S., et al. Beyond endoscopic mucosal healing in UC: Histological remission better predicts corticosteroid use and hospitalisation over 6 years of follow-up. Gut. 2016;65:408–414. doi: 10.1136/gutjnl-2015-309598. PubMed DOI
Christensen B., Hanauer S.B., Erlich J., Kassim O., Gibson P.R., Turner J.R., Hart J., Rubin D.T. Histologic Normalization Occurs in Ulcerative Colitis and Is Associated with Improved Clinical Outcomes. Clin. Gastroenterol. Hepatol. 2017;15:1557–1564.e1551. doi: 10.1016/j.cgh.2017.02.016. PubMed DOI PMC
Christensen B., Erlich J., Gibson P.R., Turner J.R., Hart J., Rubin D.T. Histologic Healing Is More Strongly Associated with Clinical Outcomes in Ileal Crohn’s Disease than Endoscopic Healing. Clin. Gastroenterol. Hepatol. 2020;18:2518–2525.e2511. doi: 10.1016/j.cgh.2019.11.056. PubMed DOI PMC
Rubin D.T., Huo D., Kinnucan J.A., Sedrak M.S., McCullom N.E., Bunnag A.P., Raun-Royer E.P., Cohen R.D., Hanauer S.B., Hart J., et al. Inflammation is an independent risk factor for colonic neoplasia in patients with ulcerative colitis: A case-control study. Clin. Gastroenterol. Hepatol. 2013;11:1601–1608.e4. doi: 10.1016/j.cgh.2013.06.023. PubMed DOI PMC
Gupta R.B., Harpaz N., Itzkowitz S., Hossain S., Matula S., Kornbluth A., Bodian C., Ullman T. Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: A cohort study. Gastroenterology. 2007;133:1099–1105. doi: 10.1053/j.gastro.2007.08.001. quiz 1340–1091. PubMed DOI PMC
Park S., Abdi T., Gentry M., Laine L. Histological Disease Activity as a Predictor of Clinical Relapse Among Patients with Ulcerative Colitis: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2016;111:1692–1701. doi: 10.1038/ajg.2016.418. PubMed DOI
Peyrin-Biroulet L., Lemann M. Review article: Remission rates achievable by current therapies for inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011;33:870–879. doi: 10.1111/j.1365-2036.2011.04599.x. PubMed DOI
Ford A.C., Sandborn W.J., Khan K.J., Hanauer S.B., Talley N.J., Moayyedi P. Efficacy of biological therapies in inflammatory bowel disease: Systematic review and meta-analysis. Am. J. Gastroenterol. 2011;106:644–659. doi: 10.1038/ajg.2011.73. quiz 660. PubMed DOI
Lindsay J.O., Armuzzi A., Gisbert J.P., Bokemeyer B., Peyrin-Biroulet L., Nguyen G.C., Smyth M., Patel H. Indicators of suboptimal tumor necrosis factor antagonist therapy in inflammatory bowel disease. Dig. Liver Dis. 2017;49:1086–1091. doi: 10.1016/j.dld.2017.07.010. PubMed DOI
Munkholm P. Review article: The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2003;18((Suppl. S2)):1–5. doi: 10.1046/j.1365-2036.18.s2.2.x. PubMed DOI
Ekbom A., Helmick C., Zack M., Adami H.O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 1990;323:1228–1233. doi: 10.1056/NEJM199011013231802. PubMed DOI
Eaden J.A., Abrams K.R., Mayberry J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut. 2001;48:526–535. doi: 10.1136/gut.48.4.526. PubMed DOI PMC
Torres J., Pineton de Chambrun G., Itzkowitz S., Sachar D.B., Colombel J.F. Review article: Colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011;34:497–508. doi: 10.1111/j.1365-2036.2011.04753.x. PubMed DOI
Askling J., Dickman P.W., Karlen P., Brostrom O., Lapidus A., Lofberg R., Ekbom A. Family history as a risk factor for colorectal cancer in inflammatory bowel disease. Gastroenterology. 2001;120:1356–1362. doi: 10.1053/gast.2001.24052. PubMed DOI
Rutter M., Saunders B., Wilkinson K., Rumbles S., Schofield G., Kamm M., Williams C., Price A., Talbot I., Forbes A. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology. 2004;126:451–459. doi: 10.1053/j.gastro.2003.11.010. PubMed DOI
Salama I., Malone P.S., Mihaimeed F., Jones J.L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. 2008;34:357–364. doi: 10.1016/j.ejso.2007.04.009. PubMed DOI
Mitchell S., Ellingson C., Coyne T., Hall L., Neill M., Christian N., Higham C., Dobrowolski S.F., Tuchman M., Summar M., et al. Genetic variation in the urea cycle: A model resource for investigating key candidate genes for common diseases. Hum. Mutat. 2009;30:56–60. doi: 10.1002/humu.20813. PubMed DOI
Wink D.A., Ridnour L.A., Hussain S.P., Harris C.C. The reemergence of nitric oxide and cancer. Nitric Oxide. 2008;19:65–67. doi: 10.1016/j.niox.2008.05.003. PubMed DOI PMC
Arroyo J.P., Kahle K.T., Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol. Aspects Med. 2013;34:288–298. doi: 10.1016/j.mam.2012.05.002. PubMed DOI
Van Limbergen J., Russell R.K., Drummond H.E., Aldhous M.C., Round N.K., Nimmo E.R., Smith L., Gillett P.M., McGrogan P., Weaver L.T., et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology. 2008;135:1114–1122. doi: 10.1053/j.gastro.2008.06.081. PubMed DOI
Levine A., de Bie C.I., Turner D., Cucchiara S., Sladek M., Murphy M.S., Escher J.C., The EUROKIDS Porto IBD Working Group of ESPGHAN Atypical disease phenotypes in pediatric ulcerative colitis: 5-year analyses of the EUROKIDS Registry. Inflamm. Bowel Dis. 2013;19:370–377. doi: 10.1002/ibd.23013. PubMed DOI
Fabian O., Hradsky O., Potuznikova K., Kalfusova A., Krskova L., Hornofova L., Zamecnik J., Bronsky J. Low predictive value of histopathological scoring system for complications development in children with Crohn’s disease. Pathol. Res. Pract. 2017;213:353–358. doi: 10.1016/j.prp.2017.01.009. PubMed DOI
Fabian O., Hradsky O., Lerchova T., Mikus F., Zamecnik J., Bronsky J. Limited clinical significance of tissue calprotectin levels in bowel mucosa for the prediction of complicated course of the disease in children with ulcerative colitis. Pathol. Res. Pract. 2019;215:152689. doi: 10.1016/j.prp.2019.152689. PubMed DOI
Samygina V.R., Sokolov A.V., Bourenkov G., Petoukhov M.V., Pulina M.O., Zakharova E.T., Vasilyev V.B., Bartunik H., Svergun D.I. Ceruloplasmin: Macromolecular assemblies with iron-containing acute phase proteins. PLoS ONE. 2013;8:e67145. doi: 10.1371/journal.pone.0067145. PubMed DOI PMC
Zhang H., Kim J.K., Edwards C.A., Xu Z., Taichman R., Wang C.Y. Clusterin inhibits apoptosis by interacting with activated Bax. Nat. Cell Biol. 2005;7:909–915. doi: 10.1038/ncb1291. PubMed DOI
Ignjatovic V., Lai C., Summerhayes R., Mathesius U., Tawfilis S., Perugini M.A., Monagle P. Age-related differences in plasma proteins: How plasma proteins change from neonates to adults. PLoS ONE. 2011;6:e17213. doi: 10.1371/journal.pone.0017213. PubMed DOI PMC
Bostrom E.A., Tarkowski A., Bokarewa M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta. 2009;1793:1894–1900. doi: 10.1016/j.bbamcr.2009.09.008. PubMed DOI
Dai J., Liu W.Z., Zhao Y.P., Hu Y.B., Ge Z.Z. Relationship between fecal lactoferrin and inflammatory bowel disease. Scand. J. Gastroenterol. 2007;42:1440–1444. doi: 10.1080/00365520701427094. PubMed DOI
Alipour M., Zaidi D., Valcheva R., Jovel J., Martinez I., Sergi C., Walter J., Mason A.L., Wong G.K., Dieleman L.A., et al. Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. J. Crohns Colitis. 2016;10:462–471. doi: 10.1093/ecco-jcc/jjv223. PubMed DOI PMC
Schaeffer D.F., Win L.L., Hafezi-Bakhtiari S., Cino M., Hirschfield G.M., El-Zimaity H. The phenotypic expression of inflammatory bowel disease in patients with primary sclerosing cholangitis differs in the distribution of colitis. Dig. Dis. Sci. 2013;58:2608–2614. doi: 10.1007/s10620-013-2697-7. PubMed DOI
Sinakos E., Samuel S., Enders F., Loftus E.V., Jr., Sandborn W.J., Lindor K.D. Inflammatory bowel disease in primary sclerosing cholangitis: A robust yet changing relationship. Inflamm. Bowel Dis. 2013;19:1004–1009. doi: 10.1097/MIB.0b013e3182802893. PubMed DOI
Mertz A., Nguyen N.A., Katsanos K.H., Kwok R.M. Primary sclerosing cholangitis and inflammatory bowel disease comorbidity: An update of the evidence. Ann. Gastroenterol. 2019;32:124–133. doi: 10.20524/aog.2019.0344. PubMed DOI PMC
Terg R., Sambuelli A., Coronel E., Mazzuco J., Cartier M., Negreira S., Munoz A., Gil A., Miguez C., Huernos S., et al. Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis and the risk of developing malignancies. A large prospective study. Acta Gastroenterol. Latinoam. 2008;38:26–33. PubMed
Fevery J., Henckaerts L., Van Oirbeek R., Vermeire S., Rutgeerts P., Nevens F., Van Steenbergen W. Malignancies and mortality in 200 patients with primary sclerosering cholangitis: A long-term single-centre study. Liver Int. 2012;32:214–222. doi: 10.1111/j.1478-3231.2011.02575.x. PubMed DOI
Claessen M.M., Vleggaar F.P., Tytgat K.M., Siersema P.D., van Buuren H.R. High lifetime risk of cancer in primary sclerosing cholangitis. J. Hepatol. 2009;50:158–164. doi: 10.1016/j.jhep.2008.08.013. PubMed DOI
Aguado B., Campbell R.D. Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 1998;273:4096–4105. doi: 10.1074/jbc.273.7.4096. PubMed DOI
Titz B., Gadaleta R.M., Lo Sasso G., Elamin A., Ekroos K., Ivanov N.V., Peitsch M.C., Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int. J. Mol. Sci. 2018;19:2775. doi: 10.3390/ijms19092775. PubMed DOI PMC
Vargas T., Moreno-Rubio J., Herranz J., Cejas P., Molina S., Gonzalez-Vallinas M., Mendiola M., Burgos E., Aguayo C., Custodio A.B., et al. ColoLipidGene: Signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget. 2015;6:7348–7363. doi: 10.18632/oncotarget.3130. PubMed DOI PMC