A Current State of Proteomics in Adult and Pediatric Inflammatory Bowel Diseases: A Systematic Search and Review

. 2023 May 27 ; 24 (11) : . [epub] 20230527

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37298338

Grantová podpora
conceptual development of research organization, Institute for Clinical and Experimental Medicine - IKEM, IN 00023001 Ministry of Health of the Czech Republic
NU21J-06-00027 Ministry of Health of the Czech Republic
NU22-06-00269 Ministry of Health of the Czech Republic

Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission. A substantial portion of the patients also develop severe clinical complications or neoplasia. The need for novel biomarkers that can enhance diagnostic accuracy, more precisely reflect disease activity, and predict a complicated disease course, thus, remains high. Genomic and transcriptomic studies contributed substantially to our understanding of the immunopathological pathways involved in disease initiation and progression. However, eventual genomic alterations do not necessarily translate into the final clinical picture. Proteomics may represent a missing link between the genome, transcriptome, and phenotypical presentation of the disease. Based on the analysis of a large spectrum of proteins in tissues, it seems to be a promising method for the identification of new biomarkers. This systematic search and review summarize the current state of proteomics in human IBD. It comments on the utility of proteomics in research, describes the basic proteomic techniques, and provides an up-to-date overview of available studies in both adult and pediatric IBD.

Zobrazit více v PubMed

Magro F., Langner C., Driessen A., Ensari A., Geboes K., Mantzaris G.J., Villanacci V., Becheanu G., Borralho Nunes P., Cathomas G., et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis. 2013;7:827–851. doi: 10.1016/j.crohns.2013.06.001. PubMed DOI

Levine A., Koletzko S., Turner D., Escher J.C., Cucchiara S., de Ridder L., Kolho K.L., Veres G., Russell R.K., Paerregaard A., et al. ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J. Pediatr. Gastroenterol. Nutr. 2014;58:795–806. doi: 10.1097/MPG.0000000000000239. PubMed DOI

Molodecky N.A., Soon I.S., Rabi D.M., Ghali W.A., Ferris M., Chernoff G., Benchimol E.I., Panaccione R., Ghosh S., Barkema H.W., et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.e42. doi: 10.1053/j.gastro.2011.10.001. quiz e30. PubMed DOI

Benchimol E.I., Fortinsky K.J., Gozdyra P., Van den Heuvel M., Van Limbergen J., Griffiths A.M. Epidemiology of pediatric inflammatory bowel disease: A systematic review of international trends. Inflamm. Bowel Dis. 2011;17:423–439. doi: 10.1002/ibd.21349. PubMed DOI

Burisch J., Pedersen N., Cukovic-Cavka S., Brinar M., Kaimakliotis I., Duricova D., Shonova O., Vind I., Avnstrom S., Thorsgaard N., et al. East-West gradient in the incidence of inflammatory bowel disease in Europe: The ECCO-EpiCom inception cohort. Gut. 2014;63:588–597. doi: 10.1136/gutjnl-2013-304636. PubMed DOI

Conrad M.A., Rosh J.R. Pediatric Inflammatory Bowel Disease. Pediatr. Clin. North Am. 2017;64:577–591. doi: 10.1016/j.pcl.2017.01.005. PubMed DOI

Prenzel F., Uhlig H.H. Frequency of indeterminate colitis in children and adults with IBD—A metaanalysis. J. Crohns Colitis. 2009;3:277–281. doi: 10.1016/j.crohns.2009.07.001. PubMed DOI

Baumgart D.C., Carding S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet. 2007;369:1627–1640. doi: 10.1016/S0140-6736(07)60750-8. PubMed DOI

Rifai N., Gillette M.A., Carr S.A. Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat. Biotechnol. 2006;24:971–983. doi: 10.1038/nbt1235. PubMed DOI

Tyers M., Mann M. From genomics to proteomics. Nature. 2003;422:193–197. doi: 10.1038/nature01510. PubMed DOI

Assadsangabi A., Evans C.A., Corfe B.M., Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol. Res. Pract. 2019;2019:1426954. doi: 10.1155/2019/1426954. PubMed DOI PMC

Baldan-Martin M., Chaparro M., Gisbert J.P. Tissue Proteomic Approaches to Understand the Pathogenesis of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021;27:1184–1200. doi: 10.1093/ibd/izaa352. PubMed DOI

Bennike T., Birkelund S., Stensballe A., Andersen V. Biomarkers in inflammatory bowel diseases: Current status and proteomics identification strategies. World J. Gastroenterol. 2014;20:3231–3244. doi: 10.3748/wjg.v20.i12.3231. PubMed DOI PMC

Lawrance I.C., Klopcic B., Wasinger V.C. Proteomics: An overview. Inflamm. Bowel Dis. 2005;11:927–936. doi: 10.1097/01.MIB.0000178264.41722.0f. PubMed DOI

Liu Y., Beyer A., Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI

Vaiopoulou A., Gazouli M., Theodoropoulos G., Zografos G. Current advantages in the application of proteomics in inflammatory bowel disease. Dig. Dis. Sci. 2012;57:2755–2764. doi: 10.1007/s10620-012-2291-4. PubMed DOI

Gisbert J.P., Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review. J. Crohns Colitis. 2019;13:374–384. doi: 10.1093/ecco-jcc/jjy158. PubMed DOI

Chan P.P., Wasinger V.C., Leong R.W. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016;7:27–37. doi: 10.4291/wjgp.v7.i1.27. PubMed DOI PMC

Aebersold R., Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207. doi: 10.1038/nature01511. PubMed DOI

Zhang H., Ge Y. Comprehensive analysis of protein modifications by top-down mass spectrometry. Circ. Cardiovasc. Genet. 2011;4:711. doi: 10.1161/CIRCGENETICS.110.957829. PubMed DOI PMC

Naryzhny S. Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. J. Proteom. 2019;191:22–28. doi: 10.1016/j.jprot.2018.05.008. PubMed DOI

Durbin K.R., Fornelli L., Fellers R.T., Doubleday P.F., Narita M., Kelleher N.L. Quantitation and Identification of Thousands of Human Proteoforms below 30 kDa. J. Proteome Res. 2016;15:976–982. doi: 10.1021/acs.jproteome.5b00997. PubMed DOI PMC

Baggerman G., Vierstraete E., De Loof A., Schoofs L. Gel-based versus gel-free proteomics: A review. Comb. Chem. High Throughput Screen. 2005;8:669–677. doi: 10.2174/138620705774962490. PubMed DOI

Westbrook J.A., Noirel J., Brown J.E., Wright P.C., Evans C.A. Quantitation with chemical tagging reagents in biomarker studies. Proteom. Clin. Appl. 2015;9:295–300. doi: 10.1002/prca.201400120. PubMed DOI

Canas B., Pineiro C., Calvo E., Lopez-Ferrer D., Gallardo J.M. Trends in sample preparation for classical and second generation proteomics. J. Chromatogr. A. 2007;1153:235–258. doi: 10.1016/j.chroma.2007.01.045. PubMed DOI

Alex P., Gucek M., Li X. Applications of proteomics in the study of inflammatory bowel diseases: Current status and future directions with available technologies. Inflamm. Bowel Dis. 2009;15:616–629. doi: 10.1002/ibd.20652. PubMed DOI PMC

Aslam B., Basit M., Nisar M.A., Khurshid M., Rasool M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017;55:182–196. doi: 10.1093/chromsci/bmw167. PubMed DOI

Coskun O. Separation techniques: Chromatography. North Clin. Istanb. 2016;3:156–160. PubMed PMC

Ludwig C., Gillet L., Rosenberger G., Amon S., Collins B.C., Aebersold R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018;14:e8126. doi: 10.15252/msb.20178126. PubMed DOI PMC

Bateman N.W., Goulding S.P., Shulman N.J., Gadok A.K., Szumlinski K.K., MacCoss M.J., Wu C.C. Maximizing peptide identification events in proteomic workflows using data-dependent acquisition (DDA) Mol. Cell. Proteom. 2014;13:329–338. doi: 10.1074/mcp.M112.026500. PubMed DOI PMC

Ross P.L., Huang Y.N., Marchese J.N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004;3:1154–1169. doi: 10.1074/mcp.M400129-MCP200. PubMed DOI

Thompson A., Schafer J., Kuhn K., Kienle S., Schwarz J., Schmidt G., Neumann T., Johnstone R., Mohammed A.K., Hamon C. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003;75:1895–1904. doi: 10.1021/ac0262560. PubMed DOI

Ong S.E., Mann M. Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol. 2007;359:37–52. PubMed

Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. PubMed DOI

Schoeters F., Van Dijck P. Protein-Protein Interactions in Candida albicans. Front. Microbiol. 2019;10:1792. doi: 10.3389/fmicb.2019.01792. PubMed DOI PMC

Han X., Aslanian A., Yates J.R., 3rd Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 2008;12:483–490. doi: 10.1016/j.cbpa.2008.07.024. PubMed DOI PMC

Olshina M.A., Sharon M. Mass Spectrometry: A Technique of Many Faces. Q. Rev. Biophys. 2016;49:e18. doi: 10.1017/S0033583516000160. PubMed DOI PMC

Nadler W.M., Waidelich D., Kerner A., Hanke S., Berg R., Trumpp A., Rosli C. MALDI versus ESI: The Impact of the Ion Source on Peptide Identification. J. Proteome Res. 2017;16:1207–1215. doi: 10.1021/acs.jproteome.6b00805. PubMed DOI

Selcuk A.A. A Guide for Systematic Reviews: PRISMA. Turk. Arch. Otorhinolaryngol. 2019;57:57–58. doi: 10.5152/tao.2019.4058. PubMed DOI PMC

Meuwis M.A., Fillet M., Geurts P., de Seny D., Lutteri L., Chapelle J.P., Bours V., Wehenkel L., Belaiche J., Malaise M., et al. Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling. Biochem. Pharmacol. 2007;73:1422–1433. doi: 10.1016/j.bcp.2006.12.019. PubMed DOI

Meuwis M.A., Fillet M., Lutteri L., Maree R., Geurts P., de Seny D., Malaise M., Chapelle J.P., Wehenkel L., Belaiche J., et al. Proteomics for prediction and characterization of response to infliximab in Crohn’s disease: A pilot study. Clin. Biochem. 2008;41:960–967. doi: 10.1016/j.clinbiochem.2008.04.021. PubMed DOI

Shkoda A., Werner T., Daniel H., Gunckel M., Rogler G., Haller D. Differential protein expression profile in the intestinal epithelium from patients with inflammatory bowel disease. J. Proteome Res. 2007;6:1114–1125. doi: 10.1021/pr060433m. PubMed DOI

Brentnall T.A., Pan S., Bronner M.P., Crispin D.A., Mirzaei H., Cooke K., Tamura Y., Nikolskaya T., Jebailey L., Goodlett D.R., et al. Proteins That Underlie Neoplastic Progression of Ulcerative Colitis. Proteom. Clin. Appl. 2009;3:1326. doi: 10.1002/prca.200900061. PubMed DOI PMC

Kanmura S., Uto H., Numata M., Hashimoto S., Moriuchi A., Fujita H., Oketani M., Ido A., Kodama M., Ohi H., et al. Human neutrophil peptides 1–3 are useful biomarkers in patients with active ulcerative colitis. Inflamm. Bowel Dis. 2009;15:909–917. doi: 10.1002/ibd.20854. PubMed DOI

M’Koma A.E., Seeley E.H., Washington M.K., Schwartz D.A., Muldoon R.L., Herline A.J., Wise P.E., Caprioli R.M. Proteomic profiling of mucosal and submucosal colonic tissues yields protein signatures that differentiate the inflammatory colitides. Inflamm. Bowel Dis. 2011;17:875–883. doi: 10.1002/ibd.21442. PubMed DOI PMC

May D., Pan S., Crispin D.A., Lai K., Bronner M.P., Hogan J., Hockenbery D.M., McIntosh M., Brentnall T.A., Chen R. Investigating neoplastic progression of ulcerative colitis with label-free comparative proteomics. J. Proteome Res. 2011;10:200–209. doi: 10.1021/pr100574p. PubMed DOI PMC

Zhao X., Kang B., Lu C., Liu S., Wang H., Yang X., Chen Y., Jiang B., Zhang J., Lu Y., et al. Evaluation of p38 MAPK pathway as a molecular signature in ulcerative colitis. J. Proteome Res. 2011;10:2216–2225. doi: 10.1021/pr100969w. PubMed DOI

Poulsen N.A., Andersen V., Moller J.C., Moller H.S., Jessen F., Purup S., Larsen L.B. Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis. BMC Gastroenterol. 2012;12:76. doi: 10.1186/1471-230X-12-76. PubMed DOI PMC

Seeley E.H., Washington M.K., Caprioli R.M., M’Koma A.E. Proteomic patterns of colonic mucosal tissues delineate Crohn’s colitis and ulcerative colitis. Proteom. Clin. Appl. 2013;7:541–549. doi: 10.1002/prca.201200107. PubMed DOI PMC

Zhou Z., Liu H., Gu G., Wang G., Wu W., Zhang C., Ren J. Immunoproteomic to identify antigens in the intestinal mucosa of Crohn’s disease patients. PLoS ONE. 2013;8:e81662. doi: 10.1371/journal.pone.0081662. PubMed DOI PMC

Han N.Y., Choi W., Park J.M., Kim E.H., Lee H., Hahm K.B. Label-free quantification for discovering novel biomarkers in the diagnosis and assessment of disease activity in inflammatory bowel disease. J. Dig. Dis. 2013;14:166–174. doi: 10.1111/1751-2980.12035. PubMed DOI

Gazouli M., Anagnostopoulos A.K., Papadopoulou A., Vaiopoulou A., Papamichael K., Mantzaris G., Theodoropoulos G.E., Anagnou N.P., Tsangaris G.T. Serum protein profile of Crohn’s disease treated with infliximab. J. Crohns Colitis. 2013;7:e461–e470. doi: 10.1016/j.crohns.2013.02.021. PubMed DOI

Vaiopoulou A., Gazouli M., Papadopoulou A., Anagnostopoulos A.K., Karamanolis G., Theodoropoulos G.E., M’Koma A., Tsangaris G.T. Serum protein profiling of adults and children with Crohn disease. J. Pediatr. Gastroenterol. Nutr. 2015;60:42–47. doi: 10.1097/MPG.0000000000000579. PubMed DOI PMC

Bennike T.B., Carlsen T.G., Ellingsen T., Bonderup O.K., Glerup H., Bogsted M., Christiansen G., Birkelund S., Stensballe A., Andersen V. Neutrophil Extracellular Traps in Ulcerative Colitis: A Proteome Analysis of Intestinal Biopsies. Inflamm. Bowel Dis. 2015;21:2052–2067. doi: 10.1097/MIB.0000000000000460. PubMed DOI PMC

Townsend P., Zhang Q., Shapiro J., Webb-Robertson B.J., Bramer L., Schepmoes A.A., Weitz K.K., Mallette M., Moniz H., Bright R., et al. Serum Proteome Profiles in Stricturing Crohn’s Disease: A Pilot Study. Inflamm. Bowel Dis. 2015;21:1935–1941. doi: 10.1097/MIB.0000000000000445. PubMed DOI PMC

Corfe B.M., Majumdar D., Assadsangabi A., Marsh A.M., Cross S.S., Connolly J.B., Evans C.A., Lobo A.J. Inflammation decreases keratin level in ulcerative colitis; inadequate restoration associates with increased risk of colitis-associated cancer. BMJ Open Gastroenterol. 2015;2:e000024. doi: 10.1136/bmjgast-2014-000024. PubMed DOI PMC

Starr A.E., Deeke S.A., Ning Z., Chiang C.K., Zhang X., Mottawea W., Singleton R., Benchimol E.I., Wen M., Mack D.R., et al. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn’s disease from UC. Gut. 2017;66:1573–1583. doi: 10.1136/gutjnl-2015-310705. PubMed DOI PMC

Stidham R.W., Wu J., Shi J., Lubman D.M., Higgins P.D. Serum Glycoproteome Profiles for Distinguishing Intestinal Fibrosis from Inflammation in Crohn’s Disease. PLoS ONE. 2017;12:e0170506. doi: 10.1371/journal.pone.0170506. PubMed DOI PMC

Moriggi M., Pastorelli L., Torretta E., Tontini G.E., Capitanio D., Bogetto S.F., Vecchi M., Gelfi C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. Proteomics. 2017;17:1700164. doi: 10.1002/pmic.201700164. PubMed DOI

Ning L., Shan G., Sun Z., Zhang F., Xu C., Lou X., Li S., Du H., Chen H., Xu G. Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease. Biomed. Res. Int. 2019;2019:3950628. doi: 10.1155/2019/3950628. PubMed DOI PMC

Erdmann P., Bruckmueller H., Martin P., Busch D., Haenisch S., Muller J., Wiechowska-Kozlowska A., Partecke L.I., Heidecke C.D., Cascorbi I., et al. Dysregulation of Mucosal Membrane Transporters and Drug-Metabolizing Enzymes in Ulcerative Colitis. J. Pharm. Sci. 2019;108:1035–1046. doi: 10.1016/j.xphs.2018.09.024. PubMed DOI

Schniers A., Goll R., Pasing Y., Sorbye S.W., Florholmen J., Hansen T. Ulcerative colitis: Functional analysis of the in-depth proteome. Clin. Proteom. 2019;16:4. doi: 10.1186/s12014-019-9224-6. PubMed DOI PMC

Pierre N., Salee C., Massot C., Bletard N., Mazzucchelli G., Smargiasso N., Morsa D., Baiwir D., De Pauw E., Reenaers C., et al. Proteomics Highlights Common and Distinct Pathophysiological Processes Associated with Ileal and Colonic Ulcers in Crohn’s Disease. J. Crohns Colitis. 2020;14:205–215. doi: 10.1093/ecco-jcc/jjz130. PubMed DOI

Arafah K., Kriegsmann M., Renner M., Lasitschka F., Fresnais M., Kriegsmann K., von Winterfeld M., Goeppert B., Kriegsmann J., Casadonte R., et al. Microproteomics and Immunohistochemistry Reveal Differences in Aldo-Keto Reductase Family 1 Member C3 in Tissue Specimens of Ulcerative Colitis and Crohn’s Disease. Proteom. Clin. Appl. 2020;14:e1900110. doi: 10.1002/prca.201900110. PubMed DOI

Merli A.M., Vieujean S., Massot C., Bletard N., Quesada Calvo F., Baiwir D., Mazzucchelli G., Servais L., Wera O., Oury C., et al. Solute carrier family 12 member 2 as a proteomic and histological biomarker of dysplasia and neoplasia in ulcerative colitis. J. Crohns Colitis. 2020;15:287–298. doi: 10.1093/ecco-jcc/jjaa168. PubMed DOI

Pierre N., Baiwir D., Huynh-Thu V.A., Mazzucchelli G., Smargiasso N., De Pauw E., Bouhnik Y., Laharie D., Colombel J.F., Meuwis M.A., et al. Discovery of biomarker candidates associated with the risk of short-term and mid/long-term relapse after infliximab withdrawal in Crohn’s patients: A proteomics-based study. Gut. 2020;70:1450–1457. doi: 10.1136/gutjnl-2020-322100. PubMed DOI

Liu L., Pu D., Wang D., Zhang M., Zhou C., Zhang Z., Feng B. Proteomic Analysis of Potential Targets for Non-Response to Infliximab in Patients with Ulcerative Colitis. Front. Pharmacol. 2022;13:905133. doi: 10.3389/fphar.2022.905133. PubMed DOI PMC

Gruver A.M., Westfall M.D., Ackermann B.L., Hill S., Morrison R.D., Bodo J., Lai K.K., Gemperline D.C., Hsi E.D., Liebler D.C., et al. Proteomic characterisations of ulcerative colitis endoscopic biopsies associate with clinically relevant histological measurements of disease severity. J. Clin. Pathol. 2022;75:636–642. doi: 10.1136/jclinpath-2021-207718. PubMed DOI PMC

Vessby J., Wisniewski J.R., Lindskog C., Eriksson N., Gabrysch K., Zettl K., Wanders A., Carlson M., Rorsman F., Aberg M. AGPAT1 as a Novel Colonic Biomarker for Discriminating between Ulcerative Colitis with and without Primary Sclerosing Cholangitis. Clin. Transl. Gastroenterol. 2022;13:e00486. doi: 10.14309/ctg.0000000000000486. PubMed DOI PMC

Louis Sam Titus A.S.C., Vanarsa K., Soomro S., Patel A., Prince J., Kugathasan S., Mohan C. Resistin, Elastase, and Lactoferrin as Potential Plasma Biomarkers of Pediatric Inflammatory Bowel Disease Based on Comprehensive Proteomic Screens. Mol. Cell. Proteom. 2023;22:100487. doi: 10.1016/j.mcpro.2022.100487. PubMed DOI PMC

Hsieh S.Y., Shih T.C., Yeh C.Y., Lin C.J., Chou Y.Y., Lee Y.S. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics. 2006;6:5322–5331. doi: 10.1002/pmic.200500541. PubMed DOI

Berndt U., Bartsch S., Philipsen L., Danese S., Wiedenmann B., Dignass A.U., Hammerle M., Sturm A. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn’s disease and ulcerative colitis. J. Immunol. 2007;179:295–304. doi: 10.4049/jimmunol.179.1.295. PubMed DOI

Nanni P., Parisi D., Roda G., Casale M., Belluzzi A., Roda E., Mayer L., Roda A. Serum protein profiling in patients with inflammatory bowel diseases using selective solid-phase bulk extraction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and chemometric data analysis. Rapid Commun. Mass Spectrom. 2007;21:4142–4148. doi: 10.1002/rcm.3323. PubMed DOI

Fogt F., Jian B., Krieg R.C., Wellmann A. Proteomic analysis of mucosal preparations from patients with ulcerative colitis. Mol. Med. Rep. 2008;1:51–54. PubMed

Nanni P., Levander F., Roda G., Caponi A., James P., Roda A. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn’s disease patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009;877:3127–3136. doi: 10.1016/j.jchromb.2009.08.003. PubMed DOI

Nanni P., Mezzanotte L., Roda G., Caponi A., Levander F., James P., Roda A. Differential proteomic analysis of HT29 Cl.16E and intestinal epithelial cells by LC ESI/QTOF mass spectrometry. J. Proteom. 2009;72:865–873. doi: 10.1016/j.jprot.2008.12.010. PubMed DOI

Hatsugai M., Kurokawa M.S., Kouro T., Nagai K., Arito M., Masuko K., Suematsu N., Okamoto K., Itoh F., Kato T. Protein profiles of peripheral blood mononuclear cells are useful for differential diagnosis of ulcerative colitis and Crohn’s disease. J. Gastroenterol. 2010;45:488–500. doi: 10.1007/s00535-009-0183-y. PubMed DOI

Li N., Wang X., Zhang Y., Zhai J., Zhang T., Wei K. Comparative proteomics analysis of serum proteins in ulcerative colitis patients. Mol. Biol. Rep. 2012;39:5659–5667. doi: 10.1007/s11033-011-1373-2. PubMed DOI

Erickson A.R., Cantarel B.L., Lamendella R., Darzi Y., Mongodin E.F., Pan C., Shah M., Halfvarson J., Tysk C., Henrissat B., et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS ONE. 2012;7:e49138. doi: 10.1371/journal.pone.0049138. PubMed DOI PMC

Presley L.L., Ye J., Li X., Leblanc J., Zhang Z., Ruegger P.M., Allard J., McGovern D., Ippoliti A., Roth B., et al. Host-microbe relationships in inflammatory bowel disease detected by bacterial and metaproteomic analysis of the mucosal-luminal interface. Inflamm. Bowel Dis. 2012;18:409–417. doi: 10.1002/ibd.21793. PubMed DOI PMC

Kwon S.C., Won K.J., Jung S.H., Lee K.P., Lee D.Y., Park E.S., Kim B., Cheon G.J., Han K.H. Proteomic analysis of colonic mucosal tissue from tuberculous and ulcerative colitis patients. Korean J. Physiol. Pharmacol. 2012;16:193–198. doi: 10.4196/kjpp.2012.16.3.193. PubMed DOI PMC

Kohashi M., Nishiumi S., Ooi M., Yoshie T., Matsubara A., Suzuki M., Hoshi N., Kamikozuru K., Yokoyama Y., Fukunaga K., et al. A novel gas chromatography mass spectrometry-based serum diagnostic and assessment approach to ulcerative colitis. J. Crohns Colitis. 2014;8:1010–1021. doi: 10.1016/j.crohns.2014.01.024. PubMed DOI

Piras C.S.A., Grego V., Cassinotti A., Maconi G., Ardizzone S., Amoresano A., Bianchi Porro G., Bonizzi L., Roncada P. Serum protein profiling of early and advanced stage Crohn’s disease. EuPA Open Proteom. 2014;3:48–59. doi: 10.1016/j.euprot.2014.02.010. DOI

Miao J., Niu J., Wang K., Xiao Y., Du Y., Zhou L., Duan L., Li S., Yang G., Chen L., et al. Heat shock factor 2 levels are associated with the severity of ulcerative colitis. PLoS ONE. 2014;9:e88822. doi: 10.1371/journal.pone.0088822. PubMed DOI PMC

Wasinger V.C., Yau Y., Duo X., Zeng M., Campbell B., Shin S., Luber R., Redmond D., Leong R.W. Low Mass Blood Peptides Discriminative of Inflammatory Bowel Disease (IBD) Severity: A Quantitative Proteomic Perspective. Mol. Cell. Proteom. 2016;15:256–265. doi: 10.1074/mcp.M115.055095. PubMed DOI PMC

Zhang F., Xu C., Ning L., Hu F., Shan G., Chen H., Yang M., Chen W., Yu J., Xu G. Exploration of Serum Proteomic Profiling and Diagnostic Model That Differentiate Crohn’s Disease and Intestinal Tuberculosis. PLoS ONE. 2016;11:e0167109. doi: 10.1371/journal.pone.0167109. PubMed DOI PMC

Heier C.R., Fiorillo A.A., Chaisson E., Gordish-Dressman H., Hathout Y., Damsker J.M., Hoffman E.P., Conklin L.S. Identification of Pathway-Specific Serum Biomarkers of Response to Glucocorticoid and Infliximab Treatment in Children with Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2016;7:e192. doi: 10.1038/ctg.2016.49. PubMed DOI PMC

Li X., LeBlanc J., Elashoff D., McHardy I., Tong M., Roth B., Ippoliti A., Barron G., McGovern D., McDonald K., et al. Microgeographic Proteomic Networks of the Human Colonic Mucosa and Their Association with Inflammatory Bowel Disease. Cell. Mol. Gastroenterol. Hepatol. 2016;2:567–583. doi: 10.1016/j.jcmgh.2016.05.003. PubMed DOI PMC

Di Narzo A.F., Telesco S.E., Brodmerkel C., Argmann C., Peters L.A., Li K., Kidd B., Dudley J., Cho J., Schadt E.E., et al. High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genet. 2017;13:e1006565. doi: 10.1371/journal.pgen.1006565. PubMed DOI PMC

Deeke S.A., Starr A.E., Ning Z., Ahmadi S., Zhang X., Mayne J., Chiang C.K., Singleton R., Benchimol E.I., Mack D.R., et al. Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis. Am. J. Gastroenterol. 2018;113:713–724. doi: 10.1038/s41395-018-0024-9. PubMed DOI

Denadai-Souza A., Bonnart C., Tapias N.S., Marcellin M., Gilmore B., Alric L., Bonnet D., Burlet-Schiltz O., Hollenberg M.D., Vergnolle N., et al. Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Sci. Rep. 2018;8:7834. doi: 10.1038/s41598-018-26282-y. PubMed DOI PMC

Di Narzo A.F., Brodmerkel C., Telesco S.E., Argmann C., Peters L.A., Li K., Kidd B., Dudley J., Cho J., Schadt E.E., et al. High-Throughput Identification of the Plasma Proteomic Signature of Inflammatory Bowel Disease. J. Crohns Colitis. 2019;13:462–471. doi: 10.1093/ecco-jcc/jjy190. PubMed DOI PMC

Jin L., Li L., Hu C., Paez-Cortez J., Bi Y., Macoritto M., Cao S., Tian Y. Integrative Analysis of Transcriptomic and Proteomic Profiling in Inflammatory Bowel Disease Colon Biopsies. Inflamm. Bowel Dis. 2019;25:1906–1918. doi: 10.1093/ibd/izz111. PubMed DOI

van der Post S., Jabbar K.S., Birchenough G., Arike L., Akhtar N., Sjovall H., Johansson M.E.V., Hansson G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019;68:2142–2151. doi: 10.1136/gutjnl-2018-317571. PubMed DOI PMC

Basso D., Padoan A., D’Inca R., Arrigoni G., Scapellato M.L., Contran N., Franchin C., Lorenzon G., Mescoli C., Moz S., et al. Peptidomic and proteomic analysis of stool for diagnosing IBD and deciphering disease pathogenesis. Clin. Chem. Lab. Med. 2020;58:968–979. doi: 10.1515/cclm-2019-1125. PubMed DOI

Yuan X., Chen B., Duan Z., Xia Z., Ding Y., Chen T., Liu H., Wang B., Yang B., Wang X., et al. Depression and anxiety in patients with active ulcerative colitis: Crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes. 2021;13:1987779. doi: 10.1080/19490976.2021.1987779. PubMed DOI PMC

Sun X.L., Qiao L.C., Gong J., Wen K., Xu Z.Z., Yang B.L. Proteomics identifies a novel role of fibrinogen-like protein 1 in Crohn’s disease. World J. Gastroenterol. 2021;27:5946–5957. doi: 10.3748/wjg.v27.i35.5946. PubMed DOI PMC

Park J., Jeong D., Chung Y.W., Han S., Kim D.H., Yu J., Cheon J.H., Ryu J.H. Proteomic analysis-based discovery of a novel biomarker that differentiates intestinal Behcet’s disease from Crohn’s disease. Sci. Rep. 2021;11:11019. doi: 10.1038/s41598-021-90250-2. PubMed DOI PMC

Kalla R., Adams A.T., Bergemalm D., Vatn S., Kennedy N.A., Ricanek P., Lindstrom J., Ocklind A., Hjelm F., Ventham N.T., et al. Serum proteomic profiling at diagnosis predicts clinical course, and need for intensification of treatment in inflammatory bowel disease. J. Crohns Colitis. 2021;15:699–708. doi: 10.1093/ecco-jcc/jjaa230. PubMed DOI PMC

Bourgonje A.R., Wichers S.J., Hu S., van Dullemen H.M., Visschedijk M.C., Faber K.N., Festen E.A.M., Dijkstra G., Samsom J.N., Weersma R.K., et al. Proteomic analyses do not reveal subclinical inflammation in fatigued patients with clinically quiescent inflammatory bowel disease. Sci. Rep. 2022;12:14581. doi: 10.1038/s41598-022-17504-5. PubMed DOI PMC

Alfredsson J., Fabrik I., Gorreja F., Caer C., Sihlbom C., Block M., Borjesson L.G., Lindskog E.B., Wick M.J. Isobaric labeling-based quantitative proteomics of FACS-purified immune cells and epithelial cells from the intestine of Crohn’s disease patients reveals proteome changes of potential importance in disease pathogenesis. Proteomics. 2023;23:e2200366. doi: 10.1002/pmic.202200366. PubMed DOI

Filipenko N.R., MacLeod T.J., Yoon C.S., Waisman D.M. Annexin A2 is a novel RNA-binding protein. J. Biol. Chem. 2004;279:8723–8731. doi: 10.1074/jbc.M311951200. PubMed DOI

Canto C., Menzies K.J., Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell. Metab. 2015;22:31–53. doi: 10.1016/j.cmet.2015.05.023. PubMed DOI PMC

Lund F.E., Cockayne D.A., Randall T.D., Solvason N., Schuber F., Howard M.C. CD38: A new paradigm in lymphocyte activation and signal transduction. Immunol. Rev. 1998;161:79–93. doi: 10.1111/j.1600-065X.1998.tb01573.x. PubMed DOI

Torres J., Bonovas S., Doherty G., Kucharzik T., Gisbert J.P., Raine T., Adamina M., Armuzzi A., Bachmann O., Bager P., et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Medical Treatment. J. Crohns Colitis. 2020;14:4–22. doi: 10.1093/ecco-jcc/jjz180. PubMed DOI

Ruemmele F.M., Veres G., Kolho K.L., Griffiths A., Levine A., Escher J.C., Amil Dias J., Barabino A., Braegger C.P., Bronsky J., et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohns Colitis. 2014;8:1179–1207. doi: 10.1016/j.crohns.2014.04.005. PubMed DOI

Raine T., Bonovas S., Burisch J., Kucharzik T., Adamina M., Annese V., Bachmann O., Bettenworth D., Chaparro M., Czuber-Dochan W., et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Medical Treatment. J. Crohns Colitis. 2022;16:2–17. doi: 10.1093/ecco-jcc/jjab178. PubMed DOI

Gouni-Berthold I., Baumeister B., Wegel E., Berthold H.K., Vetter H., Schmidt C. Neutrophil-elastase in chronic inflammatory bowel disease: A marker of disease activity? Hepatogastroenterology. 1999;46:2315–2320. PubMed

Dabek M., Ferrier L., Roka R., Gecse K., Annahazi A., Moreau J., Escourrou J., Cartier C., Chaumaz G., Leveque M., et al. Luminal cathepsin g and protease-activated receptor 4: A duet involved in alterations of the colonic epithelial barrier in ulcerative colitis. Am. J. Pathol. 2009;175:207–214. doi: 10.2353/ajpath.2009.080986. PubMed DOI PMC

Boyapati R.K., Rossi A.G., Satsangi J., Ho G.T. Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications. Mucosal. Immunol. 2016;9:567–582. doi: 10.1038/mi.2016.14. PubMed DOI

Mishra S., Ande S.R., Nyomba B.L. The role of prohibitin in cell signaling. FEBS J. 2010;277:3937–3946. doi: 10.1111/j.1742-4658.2010.07809.x. PubMed DOI

Li Q.F., Liang Y., Shi S.L., Liu Q.R., Xu D.H., Jing G.J., Wang S.Y., Kong H.Y. Localization of prohibitin in the nuclear matrix and alteration of its expression during differentiation of human neuroblastoma SK-N-SH cells induced by retinoic acid. Cell. Mol. Neurobiol. 2011;31:203–211. doi: 10.1007/s10571-010-9608-7. PubMed DOI PMC

Michalak M., Groenendyk J., Szabo E., Gold L.I., Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 2009;417:651–666. doi: 10.1042/BJ20081847. PubMed DOI

Bennett T.A., Edwards B.S., Sklar L.A., Rogelj S. Sulfhydryl regulation of L-selectin shedding: Phenylarsine oxide promotes activation-independent L-selectin shedding from leukocytes. J. Immunol. 2000;164:4120–4129. doi: 10.4049/jimmunol.164.8.4120. PubMed DOI

Datta R., deSchoolmeester M.L., Hedeler C., Paton N.W., Brass A.M., Else K.J. Identification of novel genes in intestinal tissue that are regulated after infection with an intestinal nematode parasite. Infect. Immun. 2005;73:4025–4033. doi: 10.1128/IAI.73.7.4025-4033.2005. PubMed DOI PMC

Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005;45:51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857. PubMed DOI

Silverberg M.S., Satsangi J., Ahmad T., Arnott I.D., Bernstein C.N., Brant S.R., Caprilli R., Colombel J.F., Gasche C., Geboes K., et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. 2005;19((Suppl. SA)):5A–36A. doi: 10.1155/2005/269076. PubMed DOI

Levine A., Griffiths A., Markowitz J., Wilson D.C., Turner D., Russell R.K., Fell J., Ruemmele F.M., Walters T., Sherlock M., et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm. Bowel Dis. 2011;17:1314–1321. doi: 10.1002/ibd.21493. PubMed DOI

Tan K., Lawler J. The interaction of Thrombospondins with extracellular matrix proteins. J. Cell Commun. Signal. 2009;3:177–187. doi: 10.1007/s12079-009-0074-2. PubMed DOI PMC

Farina G., Lemaire R., Pancari P., Bayle J., Widom R.L., Lafyatis R. Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor beta. Ann. Rheum. Dis. 2009;68:435–441. doi: 10.1136/ard.2007.086850. PubMed DOI

Kataoka H., Kawaguchi M. Hepatocyte growth factor activator (HGFA): Pathophysiological functions in vivo. FEBS J. 2010;277:2230–2237. doi: 10.1111/j.1742-4658.2010.07640.x. PubMed DOI

Owen K.A., Qiu D., Alves J., Schumacher A.M., Kilpatrick L.M., Li J., Harris J.L., Ellis V. Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem. J. 2010;426:219–228. doi: 10.1042/BJ20091448. PubMed DOI

Cui Q., Fu S., Li Z. Hepatocyte growth factor inhibits TGF-beta1-induced myofibroblast differentiation in tendon fibroblasts: Role of AMPK signaling pathway. J. Physiol. Sci. 2013;63:163–170. doi: 10.1007/s12576-013-0251-1. PubMed DOI PMC

Gonczi L., Bessissow T., Lakatos P.L. Disease monitoring strategies in inflammatory bowel diseases: What do we mean by “tight control”? World J. Gastroenterol. 2019;25:6172–6189. doi: 10.3748/wjg.v25.i41.6172. PubMed DOI PMC

Annese V., Daperno M., Rutter M.D., Amiot A., Bossuyt P., East J., Ferrante M., Gotz M., Katsanos K.H., Kiesslich R., et al. European evidence based consensus for endoscopy in inflammatory bowel disease. J. Crohns Colitis. 2013;7:982–1018. doi: 10.1016/j.crohns.2013.09.016. PubMed DOI

Travis S.P., Higgins P.D., Orchard T., Van Der Woude C.J., Panaccione R., Bitton A., O’Morain C., Panes J., Sturm A., Reinisch W., et al. Review article: Defining remission in ulcerative colitis. Aliment. Pharmacol. Ther. 2011;34:113–124. doi: 10.1111/j.1365-2036.2011.04701.x. PubMed DOI

Bryant R.V., Burger D.C., Delo J., Walsh A.J., Thomas S., von Herbay A., Buchel O.C., White L., Brain O., Keshav S., et al. Beyond endoscopic mucosal healing in UC: Histological remission better predicts corticosteroid use and hospitalisation over 6 years of follow-up. Gut. 2016;65:408–414. doi: 10.1136/gutjnl-2015-309598. PubMed DOI

Christensen B., Hanauer S.B., Erlich J., Kassim O., Gibson P.R., Turner J.R., Hart J., Rubin D.T. Histologic Normalization Occurs in Ulcerative Colitis and Is Associated with Improved Clinical Outcomes. Clin. Gastroenterol. Hepatol. 2017;15:1557–1564.e1551. doi: 10.1016/j.cgh.2017.02.016. PubMed DOI PMC

Christensen B., Erlich J., Gibson P.R., Turner J.R., Hart J., Rubin D.T. Histologic Healing Is More Strongly Associated with Clinical Outcomes in Ileal Crohn’s Disease than Endoscopic Healing. Clin. Gastroenterol. Hepatol. 2020;18:2518–2525.e2511. doi: 10.1016/j.cgh.2019.11.056. PubMed DOI PMC

Rubin D.T., Huo D., Kinnucan J.A., Sedrak M.S., McCullom N.E., Bunnag A.P., Raun-Royer E.P., Cohen R.D., Hanauer S.B., Hart J., et al. Inflammation is an independent risk factor for colonic neoplasia in patients with ulcerative colitis: A case-control study. Clin. Gastroenterol. Hepatol. 2013;11:1601–1608.e4. doi: 10.1016/j.cgh.2013.06.023. PubMed DOI PMC

Gupta R.B., Harpaz N., Itzkowitz S., Hossain S., Matula S., Kornbluth A., Bodian C., Ullman T. Histologic inflammation is a risk factor for progression to colorectal neoplasia in ulcerative colitis: A cohort study. Gastroenterology. 2007;133:1099–1105. doi: 10.1053/j.gastro.2007.08.001. quiz 1340–1091. PubMed DOI PMC

Park S., Abdi T., Gentry M., Laine L. Histological Disease Activity as a Predictor of Clinical Relapse Among Patients with Ulcerative Colitis: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2016;111:1692–1701. doi: 10.1038/ajg.2016.418. PubMed DOI

Peyrin-Biroulet L., Lemann M. Review article: Remission rates achievable by current therapies for inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011;33:870–879. doi: 10.1111/j.1365-2036.2011.04599.x. PubMed DOI

Ford A.C., Sandborn W.J., Khan K.J., Hanauer S.B., Talley N.J., Moayyedi P. Efficacy of biological therapies in inflammatory bowel disease: Systematic review and meta-analysis. Am. J. Gastroenterol. 2011;106:644–659. doi: 10.1038/ajg.2011.73. quiz 660. PubMed DOI

Lindsay J.O., Armuzzi A., Gisbert J.P., Bokemeyer B., Peyrin-Biroulet L., Nguyen G.C., Smyth M., Patel H. Indicators of suboptimal tumor necrosis factor antagonist therapy in inflammatory bowel disease. Dig. Liver Dis. 2017;49:1086–1091. doi: 10.1016/j.dld.2017.07.010. PubMed DOI

Munkholm P. Review article: The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2003;18((Suppl. S2)):1–5. doi: 10.1046/j.1365-2036.18.s2.2.x. PubMed DOI

Ekbom A., Helmick C., Zack M., Adami H.O. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 1990;323:1228–1233. doi: 10.1056/NEJM199011013231802. PubMed DOI

Eaden J.A., Abrams K.R., Mayberry J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut. 2001;48:526–535. doi: 10.1136/gut.48.4.526. PubMed DOI PMC

Torres J., Pineton de Chambrun G., Itzkowitz S., Sachar D.B., Colombel J.F. Review article: Colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011;34:497–508. doi: 10.1111/j.1365-2036.2011.04753.x. PubMed DOI

Askling J., Dickman P.W., Karlen P., Brostrom O., Lapidus A., Lofberg R., Ekbom A. Family history as a risk factor for colorectal cancer in inflammatory bowel disease. Gastroenterology. 2001;120:1356–1362. doi: 10.1053/gast.2001.24052. PubMed DOI

Rutter M., Saunders B., Wilkinson K., Rumbles S., Schofield G., Kamm M., Williams C., Price A., Talbot I., Forbes A. Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology. 2004;126:451–459. doi: 10.1053/j.gastro.2003.11.010. PubMed DOI

Salama I., Malone P.S., Mihaimeed F., Jones J.L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. 2008;34:357–364. doi: 10.1016/j.ejso.2007.04.009. PubMed DOI

Mitchell S., Ellingson C., Coyne T., Hall L., Neill M., Christian N., Higham C., Dobrowolski S.F., Tuchman M., Summar M., et al. Genetic variation in the urea cycle: A model resource for investigating key candidate genes for common diseases. Hum. Mutat. 2009;30:56–60. doi: 10.1002/humu.20813. PubMed DOI

Wink D.A., Ridnour L.A., Hussain S.P., Harris C.C. The reemergence of nitric oxide and cancer. Nitric Oxide. 2008;19:65–67. doi: 10.1016/j.niox.2008.05.003. PubMed DOI PMC

Arroyo J.P., Kahle K.T., Gamba G. The SLC12 family of electroneutral cation-coupled chloride cotransporters. Mol. Aspects Med. 2013;34:288–298. doi: 10.1016/j.mam.2012.05.002. PubMed DOI

Van Limbergen J., Russell R.K., Drummond H.E., Aldhous M.C., Round N.K., Nimmo E.R., Smith L., Gillett P.M., McGrogan P., Weaver L.T., et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology. 2008;135:1114–1122. doi: 10.1053/j.gastro.2008.06.081. PubMed DOI

Levine A., de Bie C.I., Turner D., Cucchiara S., Sladek M., Murphy M.S., Escher J.C., The EUROKIDS Porto IBD Working Group of ESPGHAN Atypical disease phenotypes in pediatric ulcerative colitis: 5-year analyses of the EUROKIDS Registry. Inflamm. Bowel Dis. 2013;19:370–377. doi: 10.1002/ibd.23013. PubMed DOI

Fabian O., Hradsky O., Potuznikova K., Kalfusova A., Krskova L., Hornofova L., Zamecnik J., Bronsky J. Low predictive value of histopathological scoring system for complications development in children with Crohn’s disease. Pathol. Res. Pract. 2017;213:353–358. doi: 10.1016/j.prp.2017.01.009. PubMed DOI

Fabian O., Hradsky O., Lerchova T., Mikus F., Zamecnik J., Bronsky J. Limited clinical significance of tissue calprotectin levels in bowel mucosa for the prediction of complicated course of the disease in children with ulcerative colitis. Pathol. Res. Pract. 2019;215:152689. doi: 10.1016/j.prp.2019.152689. PubMed DOI

Samygina V.R., Sokolov A.V., Bourenkov G., Petoukhov M.V., Pulina M.O., Zakharova E.T., Vasilyev V.B., Bartunik H., Svergun D.I. Ceruloplasmin: Macromolecular assemblies with iron-containing acute phase proteins. PLoS ONE. 2013;8:e67145. doi: 10.1371/journal.pone.0067145. PubMed DOI PMC

Zhang H., Kim J.K., Edwards C.A., Xu Z., Taichman R., Wang C.Y. Clusterin inhibits apoptosis by interacting with activated Bax. Nat. Cell Biol. 2005;7:909–915. doi: 10.1038/ncb1291. PubMed DOI

Ignjatovic V., Lai C., Summerhayes R., Mathesius U., Tawfilis S., Perugini M.A., Monagle P. Age-related differences in plasma proteins: How plasma proteins change from neonates to adults. PLoS ONE. 2011;6:e17213. doi: 10.1371/journal.pone.0017213. PubMed DOI PMC

Bostrom E.A., Tarkowski A., Bokarewa M. Resistin is stored in neutrophil granules being released upon challenge with inflammatory stimuli. Biochim. Biophys. Acta. 2009;1793:1894–1900. doi: 10.1016/j.bbamcr.2009.09.008. PubMed DOI

Dai J., Liu W.Z., Zhao Y.P., Hu Y.B., Ge Z.Z. Relationship between fecal lactoferrin and inflammatory bowel disease. Scand. J. Gastroenterol. 2007;42:1440–1444. doi: 10.1080/00365520701427094. PubMed DOI

Alipour M., Zaidi D., Valcheva R., Jovel J., Martinez I., Sergi C., Walter J., Mason A.L., Wong G.K., Dieleman L.A., et al. Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. J. Crohns Colitis. 2016;10:462–471. doi: 10.1093/ecco-jcc/jjv223. PubMed DOI PMC

Schaeffer D.F., Win L.L., Hafezi-Bakhtiari S., Cino M., Hirschfield G.M., El-Zimaity H. The phenotypic expression of inflammatory bowel disease in patients with primary sclerosing cholangitis differs in the distribution of colitis. Dig. Dis. Sci. 2013;58:2608–2614. doi: 10.1007/s10620-013-2697-7. PubMed DOI

Sinakos E., Samuel S., Enders F., Loftus E.V., Jr., Sandborn W.J., Lindor K.D. Inflammatory bowel disease in primary sclerosing cholangitis: A robust yet changing relationship. Inflamm. Bowel Dis. 2013;19:1004–1009. doi: 10.1097/MIB.0b013e3182802893. PubMed DOI

Mertz A., Nguyen N.A., Katsanos K.H., Kwok R.M. Primary sclerosing cholangitis and inflammatory bowel disease comorbidity: An update of the evidence. Ann. Gastroenterol. 2019;32:124–133. doi: 10.20524/aog.2019.0344. PubMed DOI PMC

Terg R., Sambuelli A., Coronel E., Mazzuco J., Cartier M., Negreira S., Munoz A., Gil A., Miguez C., Huernos S., et al. Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis and the risk of developing malignancies. A large prospective study. Acta Gastroenterol. Latinoam. 2008;38:26–33. PubMed

Fevery J., Henckaerts L., Van Oirbeek R., Vermeire S., Rutgeerts P., Nevens F., Van Steenbergen W. Malignancies and mortality in 200 patients with primary sclerosering cholangitis: A long-term single-centre study. Liver Int. 2012;32:214–222. doi: 10.1111/j.1478-3231.2011.02575.x. PubMed DOI

Claessen M.M., Vleggaar F.P., Tytgat K.M., Siersema P.D., van Buuren H.R. High lifetime risk of cancer in primary sclerosing cholangitis. J. Hepatol. 2009;50:158–164. doi: 10.1016/j.jhep.2008.08.013. PubMed DOI

Aguado B., Campbell R.D. Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 1998;273:4096–4105. doi: 10.1074/jbc.273.7.4096. PubMed DOI

Titz B., Gadaleta R.M., Lo Sasso G., Elamin A., Ekroos K., Ivanov N.V., Peitsch M.C., Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification. Int. J. Mol. Sci. 2018;19:2775. doi: 10.3390/ijms19092775. PubMed DOI PMC

Vargas T., Moreno-Rubio J., Herranz J., Cejas P., Molina S., Gonzalez-Vallinas M., Mendiola M., Burgos E., Aguayo C., Custodio A.B., et al. ColoLipidGene: Signature of lipid metabolism-related genes to predict prognosis in stage-II colon cancer patients. Oncotarget. 2015;6:7348–7363. doi: 10.18632/oncotarget.3130. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...