Clinical Pathobiochemistry of Vitamin B12 Deficiency: Improving Our Understanding by Exploring Novel Mechanisms with a Focus on Diabetic Neuropathy
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
37299560
PubMed Central
PMC10255445
DOI
10.3390/nu15112597
PII: nu15112597
Knihovny.cz E-resources
- Keywords
- Vitamin B12, cobalamin, diabetes, homocysteine, laboratory biomarker, methylmalonic acid, oxidative stress, peripheral neuropathy, reactive oxygen species, redox,
- MeSH
- Antioxidants therapeutic use MeSH
- Diabetes Mellitus * drug therapy MeSH
- Diabetic Neuropathies * etiology drug therapy MeSH
- Humans MeSH
- Methionine MeSH
- Vitamin B 12 Deficiency * diagnosis MeSH
- Vitamin B 12 therapeutic use MeSH
- Vitamins therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Methionine MeSH
- Vitamin B 12 MeSH
- Vitamins MeSH
Vitamin B12 (B12) is an essential cofactor of two important biochemical pathways, the degradation of methylmalonic acid and the synthesis of methionine from homocysteine. Methionine is an important donor of methyl groups for numerous biochemical reactions, including DNA synthesis and gene regulation. Besides hematological abnormalities (megaloblastic anemia or even pancytopenia), a deficiency in B12 may cause neurological symptoms, including symptoms resembling diabetic neuropathy. Although extensively studied, the underlining molecular mechanism for the development of diabetic peripheral neuropathy (DPN) is still unclear. Most studies have found a contribution of oxidative stress in the development of DPN. Detailed immunohistochemical investigations in sural nerve biopsies obtained from diabetic patients with DPN point to an activation of inflammatory pathways induced via elevated advanced glycation end products (AGE), ultimately resulting in increased oxidative stress. Similar results have been found in patients with B12 deficiency, indicating that the observed neural changes in patients with DPN might be caused by cellular B12 deficiency. Since novel results show that B12 exerts intrinsic antioxidative activity in vitro and in vivo, B12 may act as an intracellular, particularly as an intramitochondrial, antioxidant, independent from its classical, well-known cofactor function. These novel findings may provide a rationale for the use of B12 for the treatment of DPN, even in subclinical early states.
See more in PubMed
Andres E. Vitamin B12 (cobalamin) deficiency in elderly patients. Can. Med. Assoc. J. 2004;171:251–259. doi: 10.1503/cmaj.1031155. PubMed DOI PMC
Vincenti A., Bertuzzo L., Limitone A., D’Antona G., Cena H. Perspective: Practical approach to preventing subclinical B12 deficiency in elderly population. Nutrients. 2021;13:1913. doi: 10.3390/nu13061913. PubMed DOI PMC
Allen L.H., Miller J.W., de Groot L., Rosenberg I.H., Smith A.D., Refsum H., Raiten D.J. Biomarkers of nutrition for development (BOND): Vitamin B-12 review. J. Nutr. 2018;148:1995S–2027S. doi: 10.1093/jn/nxy201. PubMed DOI PMC
Lin Q., Li K., Chen Y., Xie J., Wu C., Cui C., Deng B. Oxidative stress in diabetic peripheral neuropathy: Pathway and mechanism-based treatment. Mol. Neurobiol. 2023:1–21. doi: 10.1007/s12035-023-03342-7. PubMed DOI
Feldman E.L., Callaghan B.C., Pop-Busui R., Zochodne D.W., Wright D.E., Bennett D.L., Bril V., Russell J.W., Viswanathan V. Diabetic neuropathy. Nat. Rev. Dis. Prim. 2019;5:41. doi: 10.1038/s41572-019-0092-1. PubMed DOI
DCCT Group The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann. Intern. Med. 1995;122:561. doi: 10.7326/0003-4819-122-8-199504150-00001. PubMed DOI
Ishibashi F., Taniguchi M., Kosaka A., Uetake H., Tavakoli M. Improvement in neuropathy outcomes with normalizing HbA1c in patients with type 2 diabetes. Diabetes Care. 2019;42:110–118. doi: 10.2337/dc18-1560. PubMed DOI
Laiteerapong N., Ham S.A., Gao Y., Moffet H.H., Liu J.Y., Huang E.S., Karter A.J. The legacy effect in type 2 diabetes: Impact of early glycemic control on future complications (the diabetes & aging study) Diabetes Care. 2019;42:416–426. doi: 10.2337/dc17-1144. PubMed DOI PMC
Bell D.S.H. Metformin-induced vitamin B12 deficiency can cause or worsen distal symmetrical, autonomic and cardiac neuropathy in the patient with diabetes. Diabetes Obes. Metab. 2022;24:1423–1428. doi: 10.1111/dom.14734. PubMed DOI
Karedath J., Batool S., Arshad A., Khalique S., Raja S., Lal B., Chunchu V.A., Hirani S. The impact of vitamin B12 supplementation on clinical outcomes in patients with diabetic neuropathy: A meta-analysis of randomized controlled trials. Cureus. 2022;14:e31783. doi: 10.7759/cureus.31783. PubMed DOI PMC
Solomon L.R. Functional cobalamin (vitamin B12) deficiency: Role of advanced age and disorders associated with increased oxidative stress. Eur. J. Clin. Nutr. 2015;69:687–692. doi: 10.1038/ejcn.2014.272. PubMed DOI
Gherasim C., Lofgren M., Banerjee R. Navigating the B12 road: Assimilation, delivery, and disorders of cobalamin. J. Biol. Chem. 2013;288:13186–13193. doi: 10.1074/jbc.R113.458810. PubMed DOI PMC
Office of Dietary Supplements Vitamin B12 Fact Sheet for Health Professionals. [(accessed on 19 April 2023)]; Available online: https://ods.od.nih.gov/factsheets/VitaminB12-HealthProfessional/#disc.
Green R., Allen L.H., Bjørke-Monsen A.-L., Brito A., Guéant J.-L., Miller J.W., Molloy A.M., Nexo E., Stabler S., Toh B.-H., et al. Vitamin B12 deficiency. Nat. Rev. Dis. Prim. 2017;3:17040. doi: 10.1038/nrdp.2017.40. PubMed DOI
Lahner E., Norman G.L., Severi C., Encabo S., Shums Z., Vannella L., Fave G.D., Annibale B. Reassessment of intrinsic factor and parietal cell autoantibodies in atrophic gastritis with respect to cobalamin deficiency. Am. J. Gastroenterol. 2009;104:2071–2079. doi: 10.1038/ajg.2009.231. PubMed DOI
Beulens J.W.J., Hart H.E., Kuijs R., Kooijman-Buiting A.M.J., Rutten G.E.H.M. Influence of duration and dose of metformin on cobalamin deficiency in type 2 diabetes patients using metformin. Acta Diabetol. 2015;52:47–53. doi: 10.1007/s00592-014-0597-8. PubMed DOI
Chapman L.E., Darling A.L., Brown J.E. Association between metformin and vitamin B12 deficiency in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab. 2016;42:316–327. doi: 10.1016/j.diabet.2016.03.008. PubMed DOI
Infante M., Leoni M., Caprio M., Fabbri A. Long-term metformin therapy and vitamin B12 deficiency: An association to bear in mind. WJD. 2021;12:916–931. doi: 10.4239/wjd.v12.i7.916. PubMed DOI PMC
Kim J., Ahn C.W., Fang S., Lee H.S., Park J.S. Association between metformin dose and vitamin B12 deficiency in patients with type 2 diabetes. Medicine. 2019;98:e17918. doi: 10.1097/MD.0000000000017918. PubMed DOI PMC
Lam J.R., Schneider J.L., Zhao W., Corley D.A. Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B 12 deficiency. JAMA. 2013;310:2435. doi: 10.1001/jama.2013.280490. PubMed DOI
Longo S.L., Ryan J.M., Sheehan K.B., Reid D.J., Conley M.P., Bouwmeester C.J. Evaluation of vitamin B12 monitoring in patients on metformin in urban ambulatory care settings. Pharm. Pract. 2019;17:1499. doi: 10.18549/PharmPract.2019.3.1499. PubMed DOI PMC
Miller J.W. Proton pump inhibitors, H2-receptor antagonists, metformin, and vitamin B-12 deficiency: Clinical implications. Adv. Nutr. 2018;9:511S–518S. doi: 10.1093/advances/nmy023. PubMed DOI PMC
de Jager J., Kooy A., Lehert P., Wulffele M.G., van der Kolk J., Bets D., Verburg J., Donker A.J.M., Stehouwer C.D.A. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomised placebo controlled trial. BMJ. 2010;340:c2181. doi: 10.1136/bmj.c2181. PubMed DOI PMC
Ahmed M.A. Metformin and vitamin B12 deficiency: Where do we stand? J. Pharm. Pharm. Sci. 2016;19:382. doi: 10.18433/J3PK7P. PubMed DOI
Ahmed M.A., Muntingh G.L., Rheeder P. Perspectives on peripheral neuropathy as a consequence of metformin-induced vitamin B12 deficiency in T2DM. Int. J. Endocrinol. 2017;2017:2452853. doi: 10.1155/2017/2452853. PubMed DOI PMC
Pratama S., Lauren B.C., Wisnu W. The efficacy of vitamin B12 supplementation for treating vitamin B12 deficiency and peripheral neuropathy in metformin-treated type 2 diabetes mellitus patients: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2022;16:102634. doi: 10.1016/j.dsx.2022.102634. PubMed DOI
Froese D.S., Fowler B., Baumgartner M.R. Vitamin B12, folate, and the methionine remethylation cycle—Biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019;42:673–685. doi: 10.1002/jimd.12009. PubMed DOI
Fettelschoss V., Burda P., Sagné C., Coelho D., De Laet C., Lutz S., Suormala T., Fowler B., Pietrancosta N., Gasnier B., et al. Clinical or ATPase domain mutations in ABCD4 disrupt the interaction between the vitamin B12-trafficking proteins ABCD4 and LMBD1. J. Biol. Chem. 2017;292:11980–11991. doi: 10.1074/jbc.M117.784819. PubMed DOI PMC
Padovani D., Labunska T., Palfey B.A., Ballou D.P., Banerjee R. Adenosyltransferase tailors and delivers coenzyme B12. Nat. Chem. Biol. 2008;4:194–196. doi: 10.1038/nchembio.67. PubMed DOI
Banerjee R., Gouda H., Pillay S. Redox-linked coordination chemistry directs vitamin B 12 trafficking. Acc. Chem. Res. 2021;54:2003–2013. doi: 10.1021/acs.accounts.1c00083. PubMed DOI PMC
Offringa A.K., Bourgonje A.R., Schrier M.S., Deth R.C., van Goor H. Clinical implications of vitamin B12 as redox-active cofactor. Trends Mol. Med. 2021;27:931–934. doi: 10.1016/j.molmed.2021.07.002. PubMed DOI
Huemer M., Baumgartner M.R. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J. Inherit. Metab. Dis. 2019;42:686–705. doi: 10.1002/jimd.12012. PubMed DOI
Palmer A.M., Kamynina E., Field M.S., Stover P.J. Folate rescues vitamin B12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability. Proc. Natl. Acad. Sci. USA. 2017;114:E4095–E4102. doi: 10.1073/pnas.1619582114. PubMed DOI PMC
Scott J. Pathogenesis of subacute combined degeneration: A result of methyl group deficiency. Lancet. 1981;318:334–337. doi: 10.1016/S0140-6736(81)90649-8. PubMed DOI
Boachie J., Adaikalakoteswari A., Samavat J., Saravanan P. Low vitamin B12 and lipid metabolism: Evidence from pre-clinical and clinical studies. Nutrients. 2020;12:1925. doi: 10.3390/nu12071925. PubMed DOI PMC
Groener J.B., Jende J.M.E., Kurz F.T., Kender Z., Treede R.-D., Schuh-Hofer S., Nawroth P.P., Bendszus M., Kopf S. Understanding diabetic neuropathy—From subclinical nerve lesions to severe nerve fiber deficits: A cross-sectional study in patients with type 2 diabetes and healthy control subjects. Diabetes. 2020;69:436–447. doi: 10.2337/db19-0197. PubMed DOI
Malik R.A., Tesfaye S., Newrick P.G., Walker D., Rajbhandari S.M., Siddique I., Sharma A.K., Boulton A.J.M., King R.H.M., Thomas P.K., et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia. 2005;48:578–585. doi: 10.1007/s00125-004-1663-5. PubMed DOI
Pasnoor M., Dimachkie M.M., Kluding P., Barohn R.J. Diabetic neuropathy part 1. Neurol. Clin. 2013;31:425–445. doi: 10.1016/j.ncl.2013.02.004. PubMed DOI PMC
Zenker J., Ziegler D., Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci. 2013;36:439–449. doi: 10.1016/j.tins.2013.04.008. PubMed DOI
Fernandes C.G., Borges C.G., Seminotti B., Amaral A.U., Knebel L.A., Eichler P., de Oliveira A.B., Leipnitz G., Wajner M. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell. Mol. Neurobiol. 2011;31:775–785. doi: 10.1007/s10571-011-9675-4. PubMed DOI PMC
Haslbeck K.M., Neundörfer B., Schlötzer-Schrehardt U., Bierhaus A., Schleicher E., Pauli E., Haslbeck M., Hecht M., Nawroth P., Heuss D. Activation of the RAGE pathway: A general mechanism in the pathogenesis of polyneuropathies? Neurol. Res. 2007;29:103–110. doi: 10.1179/174313206X152564. PubMed DOI
Haslbeck K.-M., Schleicher E., Bierhaus A., Nawroth P., Haslbeck M., Neundörfer B., Heuss D. The AGE/RAGE/NF-ΚB pathway may contribute to the pathogenesis of polyneuropathy in impaired glucose tolerance (IGT) Exp. Clin. Endocrinol. Diabetes. 2005;113:288–291. doi: 10.1055/s-2005-865600. PubMed DOI
International Diabetes Federation . IDF Diabetes Atlas. 10th ed. International Diabetes Federation; Brussels, Belgium: 2021.
Pop-Busui R., Ang L., Boulton A., Feldman E., Marcus R., Mizokami-Stout K., Singleton J.R., Ziegler D. Diagnosis and treatment of painful diabetic peripheral neuropathy. Compendia. 2022;2022:1–32. doi: 10.2337/db2022-01. PubMed DOI
Callaghan B.C., Gallagher G., Fridman V., Feldman E.L. Diabetic neuropathy: What does the future hold? Diabetologia. 2020;63:891–897. doi: 10.1007/s00125-020-05085-9. PubMed DOI PMC
Román-Pintos L.M., Villegas-Rivera G., Rodríguez-Carrizalez A.D., Miranda-Díaz A.G., Cardona-Muñoz E.G. Diabetic polyneuropathy in type 2 diabetes mellitus: Inflammation, oxidative stress, and mitochondrial function. J. Diabetes Res. 2016;2016:3425617. doi: 10.1155/2016/3425617. PubMed DOI PMC
Bennett G.J., Doyle T., Salvemini D. Mitotoxicity in distal symmetrical sensory peripheral neuropathies. Nat. Rev. Neurol. 2014;10:326–336. doi: 10.1038/nrneurol.2014.77. PubMed DOI PMC
Feldman E.L., Nave K.-A., Jensen T.S., Bennett D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron. 2017;93:1296–1313. doi: 10.1016/j.neuron.2017.02.005. PubMed DOI PMC
Pang L., Lian X., Liu H., Zhang Y., Li Q., Cai Y., Ma H., Yu X. Understanding diabetic neuropathy: Focus on oxidative stress. Oxidative Med. Cell. Longev. 2020;2020:9524635. doi: 10.1155/2020/9524635. PubMed DOI PMC
Rumora A.E., Savelieff M.G., Sakowski S.A., Feldman E.L. International Review of Neurobiology. Volume 145. Elsevier; Amsterdam, The Netherlands: 2019. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes; pp. 127–176. PubMed PMC
Bierhaus A., Haslbeck K.-M., Humpert P.M., Liliensiek B., Dehmer T., Morcos M., Sayed A.A.R., Andrassy M., Schiekofer S., Schneider J.G., et al. Loss of pain perception in diabetes is dependent on a receptor of the immunoglobulin superfamily. J. Clin. Investig. 2004;114:1741–1751. doi: 10.1172/JCI18058. PubMed DOI PMC
van Zoelen M.A., Yang H., Florquin S., Meijers J.C., Akira S., Arnold B., Nawroth P.P., Bierhaus A., Tracey K.J., van der Poll T. Role of TOLL-like receptors 2 and 4 and the receptor for advanced glycation end products in high-mobility group box-1- induced inflammation in vivo. Shock. 2009;31:280–284. doi: 10.1097/SHK.0b013e318186262d. PubMed DOI PMC
Ramasamy R., Shekhtman A., Schmidt A.M. The RAGE/DIAPH1 signaling axis & implications for the pathogenesis of diabetic complications. Int. J. Mol. Sci. 2022;23:4579. doi: 10.3390/ijms23094579. PubMed DOI PMC
Thakur V., Sadanandan J., Chattopadhyay M. High-mobility group box 1 protein signaling in painful diabetic neuropathy. Int. J. Mol. Sci. 2020;21:881. doi: 10.3390/ijms21030881. PubMed DOI PMC
Arora K., Sequeira J.M., Alarcon J.M., Wasek B., Arning E., Bottiglieri T., Quadros E.V. Neuropathology of vitamin B12 deficiency in the Cd320 −/− mouse. FASEB J. 2019;33:2563–2573. doi: 10.1096/fj.201800754RR. PubMed DOI PMC
Ahmed M.A., Muntingh G., Rheeder P. Vitamin B12 deficiency in metformin-treated type-2 diabetes patients, prevalence and association with peripheral neuropathy. BMC Pharmacol. Toxicol. 2016;17:44. doi: 10.1186/s40360-016-0088-3. PubMed DOI PMC
Chowdary P.R., Praveen D., Aanandhi M.V. Role of vitamin B12 supplementation on incipient neuropathy in patients with type II diabetes mellitus. Drug Invent. Today. 2019;12:2536–2539.
Didangelos T., Karlafti E., Kotzakioulafi E., Kontoninas Z., Margaritidis C., Giannoulaki P., Kantartzis K. Efficacy and safety of the combination of superoxide dismutase, alpha lipoic acid, vitamin b12, and carnitine for 12 months in patients with diabetic neuropathy. Nutrients. 2020;12:3254. doi: 10.3390/nu12113254. PubMed DOI PMC
Didangelos T., Karlafti E., Kotzakioulafi E., Margariti E., Giannoulaki P., Batanis G., Tesfaye S., Kantartzis K. Vitamin B12 supplementation in diabetic neuropathy: A 1-year, randomized, double-blind, placebo-controlled trial. Nutrients. 2021;13:395. doi: 10.3390/nu13020395. PubMed DOI PMC
Dizaye K.F., Sheet T.A. Therapeutic effect of pregabalin, vitamin B-groups and their combination on patients with diabetic peripheral poly neuropathy. Middle East J. Fam. Med. 2014;12 doi: 10.5742/MEWFM.2014.92556. DOI
Farvid M.S., Homayouni F., Amiri Z., Adelmanesh F. Improving neuropathy scores in type 2 diabetic patients using micronutrients supplementation. Diabetes Res. Clin. Pract. 2011;93:86–94. doi: 10.1016/j.diabres.2011.03.016. PubMed DOI
Fonseca V.A., Lavery L.A., Thethi T.K., Daoud Y., DeSouza C., Ovalle F., Denham D.S., Bottiglieri T., Sheehan P., Rosenstock J. Metanx in type 2 diabetes with peripheral neuropathy: A randomized trial. Am. J. Med. 2013;126:141–149. doi: 10.1016/j.amjmed.2012.06.022. PubMed DOI
Jayabalan B., Low L.L. Vitamin B supplementation for diabetic peripheral neuropathy. Singap. Med. J. 2016;57:55–59. doi: 10.11622/smedj.2016027. PubMed DOI PMC
Jiang D.-Q., Xu L.-C., Jiang L.-L., Li M.-X., Wang Y. Fasudil combined with methylcobalamin or lipoic acid can improve the nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Medicine. 2018;97:e11390. doi: 10.1097/MD.0000000000011390. PubMed DOI PMC
Kuwabara S., Nakazawa R., Azuma N., Suzuki M., Miyajima K., Fukutake T., Hattori T. Intravenous methylcobalamin treatment for uremic and diabetic neuropathy in chronic hemodialysis patients. Intern. Med. 1999;38:472–475. doi: 10.2169/internalmedicine.38.472. PubMed DOI
Li S., Chen X., Li Q., Du J., Liu Z., Peng Y., Xu M., Li Q., Lei M., Wang C., et al. Effects of acetyl-L-carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double-blind, controlled trial. J. Diabetes Investig. 2016;7:777–785. doi: 10.1111/jdi.12493. PubMed DOI PMC
Yaqub B.A., Siddique A., Sulimani R. Effects of methylcobalamin on diabetic neuropathy. Clin. Neurol. Neurosurg. 1992;94:105–111. doi: 10.1016/0303-8467(92)90066-C. PubMed DOI
Wang X., Yang W., Zhu Y., Zhang S., Jiang M., Hu J., Zhang H.-H. Genomic DNA methylation in diabetic chronic complications in patients with type 2 diabetes mellitus. Front. Endocrinol. 2022;13:896511. doi: 10.3389/fendo.2022.896511. PubMed DOI PMC
Guo K., Elzinga S., Eid S., Figueroa-Romero C., Hinder L.M., Pacut C., Feldman E.L., Hur J. Genome-wide DNA methylation profiling of human diabetic peripheral neuropathy in subjects with type 2 diabetes mellitus. Epigenetics. 2019;14:766–779. doi: 10.1080/15592294.2019.1615352. PubMed DOI PMC
Guo K., Eid S.A., Elzinga S.E., Pacut C., Feldman E.L., Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin. Epigenet. 2020;12:123. doi: 10.1186/s13148-020-00913-6. PubMed DOI PMC
Haslbeck K., Schleicher E., Friess U., Kirchner A., Neundörfer B., Heuss D. N ε-carboxymethyllysine in diabetic and non-diabetic polyneuropathies. Acta Neuropathol. 2002;104:45–52. doi: 10.1007/s00401-002-0518-8. PubMed DOI
Luciani A., Schumann A., Berquez M., Chen Z., Nieri D., Failli M., Debaix H., Festa B.P., Tokonami N., Raimondi A., et al. Impaired mitophagy links mitochondrial disease to epithelial stress in methylmalonyl-CoA mutase deficiency. Nat Commun. 2020;11:970. doi: 10.1038/s41467-020-14729-8. PubMed DOI PMC
Suarez-Moreira E., Yun J., Birch C.S., Williams J.H.H., McCaddon A., Brasch N.E. Vitamin B12 and redox homeostasis: Cob(II)alamin reacts with superoxide at rates approaching superoxide dismutase (SOD) J. Am. Chem. Soc. 2009;131:15078–15079. doi: 10.1021/ja904670x. PubMed DOI
Moreira E.S., Brasch N.E., Yun J. Vitamin B12 protects against superoxide-induced cell injury in human aortic endothelial cells. Free Radic. Biol. Med. 2011;51:876–883. doi: 10.1016/j.freeradbiomed.2011.05.034. PubMed DOI PMC
Chan W., Almasieh M., Catrinescu M.-M., Levin L.A. Cobalamin-associated superoxide scavenging in neuronal cells is a potential mechanism for vitamin B12–Deprivation optic neuropathy. Am. J. Pathol. 2018;188:160–172. doi: 10.1016/j.ajpath.2017.08.032. PubMed DOI PMC
Birch C.S., Brasch N.E., McCaddon A., Williams J.H.H. A novel role for vitamin B12: Cobalamins are intracellular antioxidants in vitro. Free Radic. Biol. Med. 2009;47:184–188. doi: 10.1016/j.freeradbiomed.2009.04.023. PubMed DOI
van de Lagemaat E., de Groot L., van den Heuvel E. Vitamin B12 in relation to oxidative stress: A systematic review. Nutrients. 2019;11:482. doi: 10.3390/nu11020482. PubMed DOI PMC
Mizukami H., Ogasawara S., Yamagishi S.-I., Takahashi K., Yagihashi S. Methylcobalamin effects on diabetic neuropathy and nerve protein kinase C in rats: Methylcobalamin and PKC in diabetic neuropathy. Eur. J. Clin. Investig. 2011;41:442–450. doi: 10.1111/j.1365-2362.2010.02430.x. PubMed DOI
Wolffenbuttel B.H.R., Wouters H.J.C.M., Heiner-Fokkema M.R., van der Klauw M.M. The many faces of cobalamin (vitamin B12) deficiency. Mayo Clin. Proc. Innov. Qual. Outcomes. 2019;3:200–214. doi: 10.1016/j.mayocpiqo.2019.03.002. PubMed DOI PMC
Nexo E., Hoffmann-Lücke E. Holotranscobalamin, a marker of vitamin B-12 status: Analytical aspects and clinical utility. Am. J. Clin. Nutr. 2011;94:359S–365S. doi: 10.3945/ajcn.111.013458. PubMed DOI PMC
Clarke R., Sherliker P., Hin H., Nexo E., Hvas A.M., Schneede J., Birks J., Ueland P.M., Emmens K., Scott J.M., et al. Detection of vitamin B12 deficiency in older people by measuring vitamin B12 or the active fraction of vitamin B12, holotranscobalamin. Clin. Chem. 2007;53:963–970. doi: 10.1373/clinchem.2006.080382. PubMed DOI
Gwathmey K.G., Grogan J. Nutritional neuropathies. Muscle Nerve. 2020;62:13–29. doi: 10.1002/mus.26783. PubMed DOI
Herrmann W., Obeid R., Schorr H., Geisel J. Functional vitamin B12 deficiency and determination of holotranscobalamin in populations at risk. Clin. Chem. Lab. Med. 2003;41:1478–1488. doi: 10.1515/CCLM.2003.227. PubMed DOI
Golding P.H. Holotranscobalamin (HoloTC, Active-B12) and herbert’s model for the development of vitamin B12 deficiency: A review and alternative hypothesis. SpringerPlus. 2016;5:668. doi: 10.1186/s40064-016-2252-z. PubMed DOI PMC
Risch M., Meier D.W., Sakem B., Escobar P.M., Risch C., Nydegger U., Risch L. Vitamin B12 and folate levels in healthy swiss senior citizens: A prospective study evaluating reference intervals and decision limits. BMC Geriatr. 2015;15:82. doi: 10.1186/s12877-015-0060-x. PubMed DOI PMC
Aparicio-Ugarriza R., Palacios G., Alder M., González-Gross M. A review of the cut-off points for the diagnosis of vitamin B12 deficiency in the general population. Clin. Chem. Lab. Med. CCLM. 2015;53:1149–1159. doi: 10.1515/cclm-2014-0784. PubMed DOI
Hannibal L., Lysne V., Bjørke-Monsen A.-L., Behringer S., Grünert S.C., Spiekerkoetter U., Jacobsen D.W., Blom H.J. Biomarkers and algorithms for the diagnosis of vitamin B12 deficiency. Front. Mol. Biosci. 2016;3:27. doi: 10.3389/fmolb.2016.00027. PubMed DOI PMC
Herrmann W., Obeid R. Causes and early diagnosis of vitamin B12 deficiency. Dtsch. Ärzteblatt Int. 2008;105:680–685. doi: 10.3238/arztebl.2008.0680. PubMed DOI PMC
Abildgaard A., Knudsen C.S., Hoejskov C.S., Greibe E., Parkner T. Reference intervals for plasma vitamin B12 and plasma/serum methylmalonic acid in Danish children, adults and elderly. Clin. Chim. Acta. 2022;525:62–68. doi: 10.1016/j.cca.2021.12.015. PubMed DOI
Department of Medicine and Geriatrics, Caritas Medical Centre, Shamshuipo, Hong Kong. Wong C. Vitamin B12 deficiency in the elderly: Is it worth screening? Hong Kong Med. J. 2015;21:155–164. doi: 10.12809/hkmj144383. PubMed DOI
Porter K.M., Hoey L., Hughes C.F., Ward M., Clements M., Strain J., Cunningham C., Casey M.C., Tracey F., O’Kane M., et al. Associations of atrophic gastritis and proton-pump inhibitor drug use with vitamin B-12 status, and the impact of fortified foods, in older adults. Am. J. Clin. Nutr. 2021;114:1286–1294. doi: 10.1093/ajcn/nqab193. PubMed DOI PMC
Nardin R.A., Amick A.N.H., Raynor E.M. Vitamin B12 and methylmalonic acid levels in patients presenting with polyneuropathy. Muscle Nerve. 2007;36:532–535. doi: 10.1002/mus.20845. PubMed DOI