Dynamics of glucose concentration during the initiation of ketogenic diet treatment in children with refractory epilepsy: Results of continuous glucose monitoring
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37345572
PubMed Central
PMC10472364
DOI
10.1002/epi4.12778
Knihovny.cz E-zdroje
- Klíčová slova
- censored data, continuous glucose monitoring, epilepsy, glucose concentration, ketogenic diet,
- MeSH
- dietní tuky metabolismus MeSH
- dítě MeSH
- hypoglykemie * MeSH
- ketogenní dieta * metody MeSH
- krevní glukóza MeSH
- lidé MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- refrakterní epilepsie * MeSH
- selfmonitoring glykemie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dietní tuky MeSH
- krevní glukóza MeSH
OBJECTIVE: The ketogenic diet (KD) is a diet low in carbohydrates and rich in fats which has long been used to treat refractory epilepsy. The metabolic changes related to the KD may increase the risk of hypoglycemia, especially during the first days. The study focused on the impact of KD initiation on glycemia in non-diabetic patients with refractory epilepsy. METHODS: The subjects were 10 pediatric patients (6 boys, mean age 6.1 ± 2.4 years), treated for intractable epilepsy. Blinded continuous glucose monitoring system (CGM) Dexcom G4 was used. Patients started on their regular diet in the first 36 hours of monitoring, followed by an increase in lipids intake and a gradual reduction of carbohydrates (relations 1:1; 2:1; 3:1; 3.5:1). We analyzed changes in glycemia during fat: nonfat ratio changes using a generalized linear model. RESULTS: The mean monitored time per person was 6 days, 10 hours and 44 minutes. The mean ± SD glycemia for the regular diet was 4.84 ± 0.20 mmol/L, for the carbohydrates/fat ratio of 1:1 it was 4.03 ± 0.16, for the ratio of 2:1 it was 3.57 ± 0.10, for the ratio 3:1 it was 3.39 ± 0.13 and for the final ratio of 3.5:1 it was 2.79 ± 0.06 mmol/L (P < 0.001). The portions of time spent in glycemia ≤3.5 mmol/L (≤2.5 mmol/L respectively) were: on the normal diet 0.88% (0.31%) of the monitored period, during 1:1 KD ratio 1.92% (0.95%), during 2:1 ratio 3.18% (1.02%), and during 3:1 and 3.5:1 ratios 13.64% (2.36%) of the monitored time (P < 0.05). SIGNIFICANCE: Continuous glucose monitoring system shows the dynamic of glucose concentration in ketogenic diet treatment initiation. It may be a useful tool to control the effects of this diet on glucose metabolism, especially in hypoglycemia detection.
3rd Medical Faculty Charles University Prague Czech Republic
Center of Nutrition Thomayer University Hospital Prague Czech Republic
Department of Internal Medicine 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Pediatric Neurology Thomayer University Hospital Prague Czech Republic
Institute of Computer Science Academy of Science of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Martin‐McGill KJ, Jackson CF, Bresnahan R, Levy RG, Cooper PN. Ketogenic diet for drug resistant epilepsy. Cochrane Database Syst Rev. 2018;11:CD001903. PubMed PMC
de Campo DM, Kossoff EH. Ketogenic dietary therapies for epilepsy and beyond. Curr Opin Clin Nutr Metab Care. 2019;22:264–8. PubMed
Rho JM. How does the ketogenic diet induce anti‐seizure effects? Neurosci Lett. 2017;637:4–10. PubMed
Schwartz RH, Eaton J, Bower BD, Aynsley‐Green A. Ketogenic diets in the treatment of epilepsy: short‐term clinical effects. Dev Med Child Neurol. 1989;31:145–51. PubMed
Schwartz RM, Boyes S, Aynsley‐Green A. Metabolic effects of three ketogenic diets in the treatment of severe epilepsy. Dev Med Child Neurol. 1989;31:152–60. PubMed
Cai QY, Zhou ZJ, Luo R, Gan J, Li SP, Mu DZ, et al. Safety and tolerability of the ketogenic diet used for the treatment of refractory childhood epilepsy: a systematic review of published prospective studies. World J Pediatr. 2017;13(6):528–36. PubMed
Brožová K, Holubová A, Bořilová P, Brabec M, Kohout P, Hadač J, et al. Hypoglycemia during treatment with the ketogenic diet in a child with refractory epilepsy‐results of continuous glucose monitoring. Neuro Endocrinol Lett. 2021;42(4):277–81. PubMed
Schiller K, Avigdor T, Kortas A, Kunz M, Unterholzner G, Klingelhöfer M, et al. Monitoring glucose concentrations in children with epilepsy on a ketogenic diet. Healthcare. 2022;10(2):245. 10.3390/healthcare10020245 PubMed DOI PMC
Holubová A, Vlasáková M, Mužík J, Brož J. Customizing the types of technologies used by patients with type 1 diabetes mellitus for diabetes treatment: case series on patient experience. JMIR Mhealth Uhealth. 2019;7(7):e11527. 10.2196/11527 PubMed DOI PMC
Brož J, Janíčková Žďárská D, Urbanová J, Brabec M, Doničová V, Štěpánová R, et al. Current level of glycemic control and clinical inertia in subjects using insulin for the treatment of type 1 and type 2 diabetes in The Czech Republic and the Slovak Republic: results of a multinational, multicenter, observational survey (DIAINFORM). Diabetes Ther. 2018;9(5):1897–906. PubMed PMC
Mian Z, Hermayer KL, Jenkins A. Continuous glucose monitoring: review of an innovation in diabetes management. Am J Med Sci. 2019;358(5):332–9. 10.1016/j.amjms.2019.07.003 PubMed DOI
Kossoff EH, Zupec‐Kania BA, Auvin S, Ballaban‐Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;21:175–92. PubMed PMC
In vitro diagnostic test systems—requirements for blood‐glucose monitoring systems for self‐testing in managing diabetes mellitus [Internet]. International Organization for Standardization; 2018 [cited 2022 Feb 1]. Available from: https://www.iso.org/standard/54976.html
Collett D. Modelling survival data in medical research. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2003.
Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. Hoboken: Wiley; 2002.
R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2022.
Wand MP, Jones MC. Kernel smoothing. London: Chapman & Hall/CRC; 1995.
Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF. Brain metabolism during fasting. J Clin Invest. 1967;46(10):1589–95. PubMed PMC
Sokoloff L. Metabolism of ketone bodies by the brain. Annu Rev Med. 1973;24:271–80. PubMed
Randle P, Garland P, Hales C, Newsholme E. The glucose fatty‐acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;281(7285):785–9. PubMed
Clanton RM, Wu G, Akabani G, Aramayo R. Control of seizures by ketogenic diet‐induced modulation of metabolic pathways. Amino Acids. 2017;49(1):1–20. 10.1007/s00726-016-2336-7 PubMed DOI
Napoleão A, Fernandes L, Miranda C, Marum AP. Effects of calorie restriction on health span and insulin resistance: classic calorie restriction diet vs ketosis‐inducing diet. Nutrients. 2021;13(4):1302. PubMed PMC
Paoli A. Ketogenic diet for obesity: friend or foe? Int J Environ Res Public Health. 2014;11(2):2092–107. PubMed PMC
Christiansen M, Bailey T, Watkins E, Liljenquist D, Price D, Nakamura K, et al. A new‐generation continuous glucose monitoring system: improved accuracy and reliability compared with a previous‐generation system. Diabetes Technol Ther. 2013;15(10):881–8. PubMed PMC
Ly TT, Gallego PH, Davis EA, Jones TW. Impaired awareness of hypoglycemia in a population‐based sample of children and adolescents with type 1 diabetes. Diabetes Care. 2009;32(10):1802–6. PubMed PMC
Graveling AJ, Frier BM. Impaired awareness of hypoglycaemia: a review. Diabetes Metab. 2010;36(Suppl 3):S64–74. PubMed
Seaquist ER, Teff K, Heller SR. Impaired awareness of hypoglycemia in type 1 diabetes: a report of an NIDDK Workshop in October 2021. Diabetes Care. 2022;45(12):2799–805. PubMed PMC