Arabidopsis flippase ALA3 is required for adjustment of early subcellular trafficking in plant response to osmotic stress
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37353222
PubMed Central
PMC10498020
DOI
10.1093/jxb/erad234
PII: 7206353
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, ARF, GEF, endocytosis, flippase, osmotic stress, protein trafficking, secretion,
- MeSH
- Arabidopsis * metabolismus MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- membránové proteiny metabolismus MeSH
- osmotický tlak MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- proteiny huseníčku * MeSH
To compensate for their sessile lifestyle, plants developed several responses to exogenous changes. One of the previously investigated and not yet fully understood adaptations occurs at the level of early subcellular trafficking, which needs to be rapidly adjusted to maintain cellular homeostasis and membrane integrity under osmotic stress conditions. To form a vesicle, the membrane needs to be deformed, which is ensured by multiple factors, including the activity of specific membrane proteins, such as flippases from the family of P4-ATPases. The membrane pumps actively translocate phospholipids from the exoplasmic/luminal to the cytoplasmic membrane leaflet to generate curvature, which might be coupled with recruitment of proteins involved in vesicle formation at specific sites of the donor membrane. We show that lack of the AMINOPHOSPHOLIPID ATPASE3 (ALA3) flippase activity caused defects at the plasma membrane and trans-Golgi network, resulting in altered endocytosis and secretion, processes relying on vesicle formation and movement. The mentioned cellular defects were translated into decreased intracellular trafficking flexibility failing to adjust the root growth on osmotic stress-eliciting media. In conclusion, we show that ALA3 cooperates with ARF-GEF BIG5/BEN1 and ARF1A1C/BEX1 in a similar regulatory pathway to vesicle formation, and together they are important for plant adaptation to osmotic stress.
Zobrazit více v PubMed
Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C.. 2006. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nature Cell Biology 8, 249–256. doi:10.1038/ncb1369. PubMed DOI
Adamowski M, Friml J.. 2015. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell 27, 20–32. doi:10.1105/tpc.114.134874. PubMed DOI PMC
Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B.. 2008. Quantprime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9, 465. doi: 10.1186/1471-2105-9-465. PubMed DOI PMC
Ashraf MA, Rahman A.. 2019. Cold stress response in Arabidopsis thaliana is mediated by GNOM ARF-GEF. The Plant Journal 97, 500–516. doi:10.1111/tpj.14137. PubMed DOI
Axelsen KB, Palmgren MG.. 2001. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology 126, 696–706. doi:10.1104/pp.126.2.696. PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S.. 2015. Fitting linear mixed-effects models using Lme4. Journal of Statistical Software 67, 1–48. doi:10.18637/jss.v067.i01. DOI
Beck R, Sun Z, Adolf F, et al. . 2008. Membrane curvature induced by Arf1-GTP is essential for vesicle formation. Proceedings of the National Academy of Sciences, USA 105, 11731–11736. doi:10.1073/pnas.0805182105. PubMed DOI PMC
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J.. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602. doi:10.1016/s0092-8674(03)00924-3. PubMed DOI
Bhaskar L, Krishnan VS, Thampan RV.. 2007. Cytoskeletal elements and intracellular transport. Journal of Cellular Biochemistry 101, 1097–1108. doi:10.1002/jcb.21347. PubMed DOI
Cajero-Sanchez W, Aceves-Garcia P, Fernández-Marcos M, Gutiérrez C, Rosas U, García-Ponce B, Álvarez-Buylla ER, Sánchez MP, Garay-Arroyo A.. 2019. Natural root cellular variation in responses to osmotic stress in Arabidopsis thaliana accessions. Genes 10, doi:10.3390/genes10120983. PubMed DOI PMC
Chantalat S, Park SK, Hua Z, Liu K, Gobin R, Peyroche A, Rambourg A, Graham TR, Jackson CL.. 2004. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. Journal of Cell Science 117, 711–722. doi:10.1242/jcs.00896. PubMed DOI
Chen CY, Ingram MF, Rosal PH, Graham TR.. 1999. Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. Journal of Cell Biology 147, 1223–1236. doi:10.1083/jcb.147.6.1223. PubMed DOI PMC
Couchoud M, Der C, Girodet S, Vernoud V, Prudent M, Leborgne-Castel N.. 2019. Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner. BMC Plant Biology 19, doi:10.1186/s12870-019-1814-y. PubMed DOI PMC
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR.. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiology 139, 5–17. doi:10.1104/pp.105.063743. PubMed DOI PMC
Deak KI, Malamy J.. 2005. Osmotic regulation of root system architecture. The Plant Journal 43, 17–28. doi:10.1111/j.1365-313X.2005.02425.x. PubMed DOI
DePina AS, Langford GM.. 1999. Vesicle transport: the role of actin filaments and myosin motors. Microscopy Research and Technique 47, 93–106. doi:10.1002/(SICI)1097-0029(19991015)47:2<93::AID-JEMT2>3.0.CO;2-P PubMed DOI
Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K.. 2006. Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in arabidopsis. The Plant Cell 18, 715–730. doi:10.1105/tpc.105.037978. PubMed DOI PMC
Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J.. 2007. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Current Biology 17, 520–527. doi:10.1016/j.cub.2007.01.052. PubMed DOI
Drakakaki G, van der Ven W, Pan SQ, et al. . 2012. Isolation and proteomic analysis of the Syp61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Research 22, 413–424. doi:10.1038/cr.2011.129. PubMed DOI PMC
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G.. 2003. Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426, 147–153. doi:10.1038/nature02085. PubMed DOI
Galvan-Ampudia CS, Testerink C.. 2011. Salt stress signals shape the plant root. Current Opinion in Plant Biology 14, 296–302. doi:10.1016/j.pbi.2011.03.019. PubMed DOI
Gangadharan A, Sreerekha MV, Whitehill J, Ham JH, Mackey D.. 2013. The Pseudomonas syringae pv. tomato type III effector hopm1 suppresses Arabidopsis defenses independent of suppressing salicylic acid signaling and of targeting Atmin7. PLoS One 8, e82032. doi:10.1371/journal.,pone.0082032. PubMed DOI PMC
Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K.. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413, 425–428. doi:10.1038/35096571. PubMed DOI
Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G.. 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230. doi:10.1016/s0092-8674(03)00003-5. PubMed DOI
Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J.. 2009. Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. The Plant Journal 59, 169–178. doi:10.1111/j.1365-313X.2009.03851.x. PubMed DOI PMC
Graham TR. 2004. Flippases and vesicle-mediated protein transport. Trends in Cell Biology 14, 670–677. doi:10.1016/j.tcb.2004.10.008. PubMed DOI
Hachez C, Veljanovski V, Reinhardt H, Guillaumot D, Vanhee C, Chaumont F, Batoko H.. 2014. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein–protein interactions and autophagic degradation. The Plant Cell 26, 4974–4990. doi:10.1105/tpc.114.134080. PubMed DOI PMC
Jahn R, Scheller RH.. 2006. SNAREs—engines for membrane fusion. Nature Reviews. Molecular Cell Biology 7, 631–643. doi:10.1038/nrm2002. PubMed DOI
Janmey PA, Kinnunen PK.. 2006. Biophysical properties of lipids and dynamic membranes. Trends in Cell Biology 16, 538–546. doi:10.1016/j.tcb.2006.08.009. PubMed DOI
Jelinkova A, Malinska K, Simon S, et al. . 2010. Probing plant membranes with FMN dyes: tracking, dragging or blocking? The Plant Journal 61, 883–892. doi:10.1111/j.1365-313X.2009.04102.x. PubMed DOI
Joshi R, Ramanarao MV, Lee S, Kato N, Baisakh N.. 2014. Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture 117, 17–30. doi:10.1007/s11240-013-0416-x. DOI
Karan R, Subudhi PK.. 2014. Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Reports 33, 373–384. doi:10.1007/s00299-013-1537-8. PubMed DOI
Ketelaar T, Allwood EG, Anthony R, Voigt B, Menzel D, Hussey PJ.. 2004. The actin-interacting protein AIP1 is essential for actin organization and plant development. Current Biology 14, 352–149. doi:10.1016/j.cub.2004.01.004. PubMed DOI
Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J.. 2010. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proceedings of the National Academy of Sciences, USA 107, 22344–22349. doi:10.1073/pnas.1013145107. PubMed DOI PMC
Kleine-Vehn J, Friml J.. 2008. Polar targeting and endocytic recycling in auxin-dependent plant development. Annual Review of Cell and Developmental Biology 24, 447–473. doi:10.1146/annurev.cellbio.24.110707.175254. PubMed DOI
Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J.. 2008. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proceedings of the National Academy of Sciences, USA 105, 17812–17817. doi:10.1073/pnas.0808073105. PubMed DOI PMC
Kleine-Vehn J, Wabnik K, Martiniere A, et al. . 2011. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Molecular Systems Biology 7, 540. doi:10.1038/msb.2011.72. PubMed DOI PMC
Konopka CA, Backues SK, Bednarek SY.. 2008. Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. The Plant Cell 20, 1363–1380. doi:10.1105/tpc.108.059428. PubMed DOI PMC
Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazimalova E.. 2009. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biology 10, 249. doi:10.1186/gb-2009-10-12-249. PubMed DOI PMC
Kutsuna N, Kumagai F, Sato MH, Hasezawa S.. 2003. Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells. Plant and Cell Physiology 44, 1045–1054. doi:10.1093/pcp/pcg124. PubMed DOI
Langowski L, Wabnik K, Li HJ, Vanneste S, Naramoto S, Tanaka H, Friml J.. 2016. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discovery 2, 16018. doi:10.1038/celldisc.2016.18. PubMed DOI PMC
Lenth RV. 2023. Emmeans: estimated marginal means, aka least-squares means. https://rdrr.io/cran/emmeans/man/emmeans.html
Levine A. 2002. Regulation of stress responses by intracellular vesicle trafficking? Plant Physiology and Biochemistry 40, 531–535. doi:10.1016/s0981-9428(02)01398-0. DOI
Li H, von Wangenheim D, Zhang X, et al. . 2021. Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana. New Phytologist 229, 351–369. doi:10.1111/nph.16887. PubMed DOI PMC
Liu Z, Persson S, Sánchez-Rodríguez C.. 2015. At the border: the plasma membrane–cell wall continuum. Journal of Experimental Botany 66, 1553–1563. doi:10.1093/jxb/erv019. PubMed DOI
Lopez-Marques RL. 2021. Lipid flippases as key players in plant adaptation to their environment. Nature Plants 7, 1188–1199. doi:10.1038/s41477-021-00993-z. PubMed DOI
López-Marqués RL, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG.. 2010. Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA alpha-subunit. Molecular Biology of the Cell 21, 791–801. doi:10.1091/mbc.e09-08-0656. PubMed DOI PMC
Luschnig C, Vert G.. 2014. The dynamics of plant plasma membrane proteins: PINs and beyond. Development 141, 2924–2938. doi:10.1242/dev.103424. PubMed DOI
Mazel A, Leshem Y, Tiwari BS, Levine A.. 2004. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabg3e). Plant Physiology 134, 118–128. doi:10.1104/pp.103.025379. PubMed DOI PMC
McDowell SC, Lopez-Marques RL, Poulsen LR, Palmgren MG, Harper JF.. 2013. Loss of the Arabidopsis thaliana P-4-ATPase ALA3 reduces adaptability to temperature stresses and impairs vegetative, pollen, and ovule development. PLoS One 8, e62577. doi:10.1371/journal.,pone.0062577. PubMed DOI PMC
McDowell SC, López-Marqués RL, Cohen T, Brown E, Rosenberg A, Palmgren MG, Harper JF.. 2015. Loss of the Arabidopsis thaliana P4-ATPases ALA6 and ALA7 impairs pollen fitness and alters the pollen tube plasma membrane. Frontiers in Plant Science 6, 197. doi:10.3389/fpls.2015.00197. PubMed DOI PMC
McFarlane HE, Döring A, Persson S.. 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology 65, 69–94. doi:10.1146/annurev-arplant-050213-040240. PubMed DOI
McMahon HT, Boucrot E.. 2015. Membrane curvature at a glance. Journal of Cell Scieince 128, 1065–1070. doi:10.1242/jcs.114454. PubMed DOI PMC
McMahon HT, Mills IG.. 2004. COP and clathrin-coated vesicle budding: different pathways, common approaches. Current Opinion in Cell Biology 16, 379–391. doi:10.1016/j.ceb.2004.06.009. PubMed DOI
Munns R, Tester M.. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681. doi:10.1146/annurev.arplant.59.032607.092911. PubMed DOI
Nakamura Y. 2017. Plant phospholipid diversity: emerging functions in metabolism and protein–lipid interactions. Trends in Plant Science 22, 1027–1040. doi:10.1016/j.tplants.2017.09.002. PubMed DOI
Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C.. 2012. Mechanical regulation of auxin-mediated growth. Current Biology 22, 1468–1476. doi:10.1016/j.cub.2012.06.050. PubMed DOI
Naramoto S, Kleine-Vehn J, Robert S, et al. . 2010. ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proceedings of the National Academy of Sciences, USA 107, 21890–21895. doi:10.1073/pnas.1016260107. PubMed DOI PMC
Narasimhan M, Johnson A, Prizak R, Kaufmann WA, Tan S, Casillas-Pérez B, Friml J.. 2020. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife 9, e52067. doi:10.7554/eLife.52067. PubMed DOI PMC
Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR.. 2009. Regulation of a Golgi flippase by phosphoinositides and an ARFGEF. Nature Cell Biology 11, 1421–1426. doi:10.1038/ncb1989. PubMed DOI PMC
Nebenfuhr A, Ritzenthaler C, Robinson DG.. 2002. Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiology 130, 1102–1108. doi:10.1104/pp.011569. PubMed DOI PMC
Nodzynski T, Feraru MI, Hirsch S, De Rycke R, Niculaes C, Boerjan W, Van Leene J, De Jaeger G, Vanneste S, Friml J.. 2013. Retromer subunits Vps35a and Vps29 mediate prevacuolar compartment (PVC) function in Arabidopsis. Molecular Plant 6, 1849–1862. doi:10.1093/mp/sst044. PubMed DOI
Oparka KJ. 1994. Plasmolysis—new insights into an old process. New Phytologist 126, 571–591. doi:10.1111/j.1469-8137.1994.tb02952.x. DOI
Palmgren MG, Nissen P.. 2011. P-type ATPases. Annual Review of Biophysics 40, 243–266. doi:10.1146/annurev.biophys.093008.131331. PubMed DOI
Phair RD, Gorski SA, Misteli T.. 2004. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. Methods in Enzymology 375, 393–414. doi:10.1016/s0076-6879(03)75025-3. PubMed DOI
Pimpl P, Movafeghi A, Coughlan S, Denecke J, Hillmer S, Robinson DG.. 2000. In situ localization and in vitro induction of plant COPI-coated vesicles. The Plant Cell 12, 2219–2236. doi:10.1105/tpc.12.11.2219. PubMed DOI PMC
Poulsen LR, López-Marqués RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG.. 2008. The Arabidopsis P4-ATPase ALA3 localizes to the Golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation. The Plant Cell 20, 658–676. doi:10.1105/tpc.107.054767. PubMed DOI PMC
Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J.. 2011. Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal 67, 817–826. doi:10.1111/j.1365-313X.2011.04636.x. PubMed DOI
R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Retzer K, Lacek J, Skokan R, et al. . 2017. Evolutionary conserved cysteines function as cis-acting regulators of Arabidopsis PIN-FORMED 2 distribution. International Journal of Molecular Science 18, 2274. doi:10.3390/ijms18112274. PubMed DOI PMC
Ripmaster TL, Vaughn GP, Woolford JL Jr. 1993. Drs1 to Drs7, novel genes required for ribosome assembly and function in Saccharomyces cerevisiae. Molecular and Cellular Biology 13, 7901–7912. doi:10.1128/mcb.13.12.7901-7912.1993. PubMed DOI PMC
Robert S, Chary SN, Drakakaki G, Li S, Yang Z, Raikhel NV, Hicks GR.. 2008. Endosidin1 defines a compartment involved in endocytosis of the brassinosteroid receptor BRI1 and the auxin transporters PIN2 and AUX1. Proceedings of the National Academy of Sciences, USA 105, 8464–8469. doi:10.1073/pnas.0711650105. PubMed DOI PMC
Robinson DG, Scheuring D, Naramoto S, Friml J.. 2011. ARF1 localizes to the golgi and the trans-golgi network. The Plant Cell 23, 846–849. doi:10.1105/tpc.110.082099. PubMed DOI PMC
R Studio Team. 2020. Rstudio: integrated development environment for R. Boston, MA: RStudio.
Sanders CR, Mittendorf KF.. 2011. Tolerance to changes in membrane lipid composition as a selected trait of membrane proteins. Biochemistry 50, 7858–7867. doi:10.1021/bi2011527. PubMed DOI PMC
Sauer M, Paciorek T, Benková E, Friml J.. 2006. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nature Protocols 1, 98–103. doi:10.1038/nprot.2006.15. PubMed DOI
Schauberger P, Walker A.. 2022. Read, write and edit xlsx files. https://cran.r-project.org/web/packages/openxlsx/openxlsx.pdf
Schneider CA, Rasband WS, Eliceiri KW.. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 671, 675. doi:10.1038/nmeth.2089. PubMed DOI PMC
Sebastian TT, Baldridge RD, Xu P, Graham TR.. 2012. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochimica et Biophysica Acta 1821, 1068–1077. doi:10.1016/j.bbalip.2011.12.007. PubMed DOI PMC
Shin HW, Takatsu H, Nakayama K.. 2012. Mechanisms of membrane curvature generation in membrane traffic. Membranes 2, 118–133. doi:10.3390/membranes2010118. PubMed DOI PMC
Singh MK, Jurgens G.. 2018. Specificity of plant membrane trafficking—ARFs, regulators and coat proteins. Seminars in Cell & Developmental Biology 80, 85–93. doi:10.1016/j.semcdb.2017.10.005. PubMed DOI
Singh MK, Richter S, Beckmann H, et al. . 2018. A single class of ARF GTPase activated by several pathway-specific ARF-GEFs regulates essential membrane traffic in Arabidopsis. PLoS Genetics 14, e1007795. doi:10.1371/journal.,pgen.1007795. PubMed DOI PMC
Steibel JP, Poletto R, Coussens PM, Rosa GJ.. 2009. A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94, 146–152. doi:10.1016/j.ygeno.2009.04.008. PubMed DOI
Takeda M, Yamagami K, Tanaka K.. 2014. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae. Eukaryotic Cell 13, 363–375. doi:10.1128/ec.00279-13. PubMed DOI PMC
Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J.. 2009. Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Current Biology 19, 391–397. doi:10.1016/j.cub.2009.01.057. PubMed DOI
Tanaka H, Kitakura S, Rakusova H, Uemura T, Feraru MI, De Rycke R, Robert S, Kakimoto T, Friml J.. 2013. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genetics 9, e1003540. doi:10.1371/journal.,pgen.1003540. PubMed DOI PMC
Tanaka H, Nodzynski T, Kitakura S, Feraru MI, Sasabe M, Ishikawa T, Kleine-Vehn J, Kakimoto T, Friml J.. 2014. BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin transporters and auxin-mediated development in Arabidopsis. Plant and Cell Physiology 55, 737–749. doi:10.1093/pcp/pct196. PubMed DOI PMC
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ.. 1997. AUX/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9, 1963–1971. doi:10.1105/tpc.9.11.1963. PubMed DOI PMC
Underwood W, Ryan A, Somerville SC.. 2017. An arabidopsis lipid flippase is required for timely recruitment of defenses to the host–pathogen interface at the plant cell surface. Molecular Plant 10, 805–820. doi:10.1016/j.molp.2017.04.003. PubMed DOI
Ungewickell EJ, Hinrichsen L.. 2007. Endocytosis: clathrin-mediated membrane budding. Current Opinion in Cell Biology 19, 417–425. doi:10.1016/j.ceb.2007.05.003. PubMed DOI
van der Honing HS, van Bezouwen LS, Emons AM, Ketelaar T.. 2011. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development. Cytoskeleton (Hoboken) 68, 578–587. doi:10.1002/cm.20534. PubMed DOI
van Meer G, Voelker DR, Feigenson GW.. 2008. Membrane lipids: where they are and how they behave. Nature Reviews. Molecular Cell Biology 9, 112–124. doi:10.1038/nrm2330. PubMed DOI PMC
Vieten A, Sauer M, Brewer PB, Friml J.. 2007. Molecular and cellular aspects of auxin-transport-mediated development. Trends in Plant Science 12, 160–168. doi:10.1016/j.tplants.2007.03.006. PubMed DOI
Viotti C, Bubeck J, Stierhof YD, et al. . 2010. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. The Plant Cell 22, 1344–1357. doi:10.1105/tpc.109.072637. PubMed DOI PMC
Western TL, Skinner DJ, Haughn GW.. 2000. Differentiation of mucilage secretory cells of the arabidopsis seed coat. Plant Physiology 122, 345–356. doi:10.1104/pp.122.2.345. PubMed DOI PMC
Wicky S, Schwarz H, Singer-Krüger B.. 2004. Molecular interactions of yeast Neo1p, an essential member of the Drs2 family of aminophospholipid translocases, and its role in membrane trafficking within the endomembrane system. Molecular and Cellular Biology 24, 7402–7418. doi:10.1128/mcb.24.17.7402-7418.2004. PubMed DOI PMC
Xu J, Scheres B.. 2005. Dissection of Arabidopsis ADP-ribosylation factor 1 function in epidermal cell polarity. The Plant Cell 17, 525–536. doi:10.1105/tpc.104.028449. PubMed DOI PMC
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y.. 2022. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. The Plant Cell 34, 3718–3736. doi:10.1093/plcell/koac208. PubMed DOI PMC
Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL.. 2008. Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. The Plant Cell 20, 1623–1638. doi:10.1105/tpc.108.058842. PubMed DOI PMC
Zhang X, Oppenheimer DG.. 2009. IRREGULAR TRICHOME BRANCH 2 (ITB2) encodes a putative aminophospholipid translocase that regulates trichome branch elongation in Arabidopsis. The Plant Journal 60, 195–206. doi:10.1111/j.1365-313X.2009.03954.x. PubMed DOI
Zhang XX, Adamowski M, Marhava P, et al. . 2020. Arabidopsis flippases cooperate with ARF GTPase exchange factors to regulate the trafficking and polarity of PIN auxin transporters. The Plant Cell 32, 1644–1664. doi:10.1105/tpc.19.00869. PubMed DOI PMC
Zhou Y, Yang Y, Niu Y, Fan T, Qian D, Luo C, Shi Y, Li S, An L, Xiang Y.. 2020. The tip-localized phosphatidylserine established by Arabidopsis ALA3 is crucial for Rab GTPase-mediated vesicle trafficking and pollen tube growth. The Plant Cell 32, 3170–3187. doi:10.1105/tpc.19.00844. PubMed DOI PMC
Zhu JH, Gong ZZ, Zhang CQ, Song CP, Damsz B, Inan G, Koiwa H, Zhu JK, Hasegawa PM, Bressan RA.. 2002. OSM1/SYP61: a syntaxin protein in arabidopsis controls abscisic acid-mediated and non-abscisic acid-mediated responses to abiotic stress. The Plant Cell 14, 3009–3028. doi:10.1105/tpc.006981. PubMed DOI PMC
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167, 313–324. doi:10.1016/j.cell.2016.08.029. PubMed DOI PMC
Zonia L, Munnik T.. 2007. Life under pressure: hydrostatic pressure in cell growth and function. Trends in Plant Science 12, 90–97. doi:10.1016/j.tplants.2007.01.006. PubMed DOI
Zwiewka M, Bielach A, Tamizhselvan P, et al. . 2019. Root adaptation to H2O2-induced oxidative stress by ARF-GEF BEN1- and cytoskeleton-mediated PIN2 trafficking. Plant and Cell Physiology 60, 255–273. doi:10.1093/pcp/pcz001. PubMed DOI
Zwiewka M, Feraru E, Moller B, Hwang I, Feraru MI, Kleine-Vehn J, Weijers D, Friml J.. 2011. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis. Cell Research 21, 1711–1722. doi:10.1038/cr.2011.99. PubMed DOI PMC
Zwiewka M, Friml J.. 2012. Fluorescence imaging-based forward genetic screens to identify trafficking regulators in plants. Frontiers in Plant Science 3, 97. doi:10.3389/fpls.2012.00097. PubMed DOI PMC
Zwiewka M, Nodzynski T, Robert S, Vanneste S, Friml J.. 2015. Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsis thaliana. Molecular Plant 8, 1175–1187. doi:10.1016/j.molp.2015.03.007. PubMed DOI