Machine Learning Detects Intraventricular Haemorrhage in Extremely Preterm Infants
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SFI 18/SIRG/5483
Science Foundation Ireland - Ireland
SFI 15/SIRG/3580
Science Foundation Ireland - Ireland
12/RC/2272
Science Foundation Ireland - Ireland
PubMed
37371150
PubMed Central
PMC10297241
DOI
10.3390/children10060917
PII: children10060917
Knihovny.cz E-resources
- Keywords
- extreme gradient boosting (XGBoost), near-infrared spectroscopy (NIRS), peripheral oxygen saturation (SpO2), prolonged relative desaturation (PRD), regional cerebral oxygen saturation (rcSO2),
- Publication type
- Journal Article MeSH
OBJECTIVE: To test the potential utility of applying machine learning methods to regional cerebral (rcSO2) and peripheral oxygen saturation (SpO2) signals to detect brain injury in extremely preterm infants. STUDY DESIGN: A subset of infants enrolled in the Management of Hypotension in Preterm infants (HIP) trial were analysed (n = 46). All eligible infants were <28 weeks' gestational age and had continuous rcSO2 measurements performed over the first 72 h and cranial ultrasounds performed during the first week after birth. SpO2 data were available for 32 infants. The rcSO2 and SpO2 signals were preprocessed, and prolonged relative desaturations (PRDs; data-driven desaturation in the 2-to-15-min range) were extracted. Numerous quantitative features were extracted from the biosignals before and after the exclusion of the PRDs within the signals. PRDs were also evaluated as a stand-alone feature. A machine learning model was used to detect brain injury (intraventricular haemorrhage-IVH grade II-IV) using a leave-one-out cross-validation approach. RESULTS: The area under the receiver operating characteristic curve (AUC) for the PRD rcSO2 was 0.846 (95% CI: 0.720-0.948), outperforming the rcSO2 threshold approach (AUC 0.593 95% CI 0.399-0.775). Neither the clinical model nor any of the SpO2 models were significantly associated with brain injury. CONCLUSION: There was a significant association between the data-driven definition of PRDs in rcSO2 and brain injury. Automated analysis of PRDs of the cerebral NIRS signal in extremely preterm infants may aid in better prediction of IVH compared with a threshold-based approach. Further investigation of the definition of the extracted PRDs and an understanding of the physiology underlying these events are required.
Department of Paediatrics University of Alberta Edmonton AB T6G 1C9 Canada
Faculty of Medicine and Health Sciences Royal College of Surgeons in Ireland D02 P796 Dublin Ireland
INFANT Research Centre University College Cork T12 AK54 Cork Ireland
Neonatal Intensive Care Katholieke Universiteit Hospital Leuven Herestraat 49 3000 Leuven Belgium
Paediatric and Newborn Medicine Coombe Women's Hospital D08 XW7X Dublin Ireland
See more in PubMed
Cheong J.L., Doyle L.W., Burnett A.C., Lee K.J., Walsh J.M., Potter C.R., Treyvaud K., Thompson D.K., Olsen J.E., Anderson P.J., et al. Association between Moderate and Late Preterm Birth and Neurodevelopment and Social-Emotional Development at Age 2 Years. JAMA Pediatr. 2017;171:e164805. doi: 10.1001/jamapediatrics.2016.4805. PubMed DOI
Bulbul L., Elitok G.K., Ayyıldız E., Kabakcı D., Uslu S., Köse G., Tiryaki Demir S., Bulbul A. Neuromotor Development Evaluation of Preterm Babies Less than 34 Weeks of Gestation with Bayley III at 18–24 Months. Biomed. Res. Int. 2020;2020:5480450. doi: 10.1155/2020/5480450. PubMed DOI PMC
Juul S.E., Wood T.R., Comstock B.A., Perez K., Gogcu S., Puia-Dumitrescu M., Berkelhamer S., Heagerty P.J. Deaths in a Modern Cohort of Extremely Preterm Infants from the Preterm Erythropoietin Neuroprotection Trial. JAMA Netw. Open. 2022;5:e2146404. doi: 10.1001/jamanetworkopen.2021.46404. PubMed DOI PMC
Siffel C., Kistler K.D., Sarda S.P. Global incidence of intraventricular hemorrhage among extremely preterm infants: A systematic literature review. J. Perinat. Med. 2021;49:1017–1026. doi: 10.1515/jpm-2020-0331. PubMed DOI
Allan W.C., Vohr B., Makuch R.W., Katz K.H., Ment L.R. Antecedents of Cerebral Palsy in a Multicenter Trial of Indomethacin for Intraventricular Hemorrhage. Arch. Pediatr. Adolesc. Med. 1997;151:580–585. doi: 10.1001/archpedi.1997.02170430046010. PubMed DOI
Adams-Chapman I., Hansen N.I., Stoll B.J., Higgins R. Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics. 2008;121:e1167–e1177. doi: 10.1542/peds.2007-0423. PubMed DOI PMC
Hollebrandse N.L., Spittle A.J., Burnett A.C., Anderson P.J., Roberts G., Doyle L.W., Cheong J.L.Y. School-age outcomes following intraventricular haemorrhage in infants born extremely preterm. Arch. Dis. Child. Fetal Neonatal Ed. 2021;106:4–8. doi: 10.1136/archdischild-2020-318989. PubMed DOI
du Plessis A.J., Volpe J.J. Perinatal brain injury in the preterm and term newborn. Curr. Opin. Neurol. 2002;15:151–157. doi: 10.1097/00019052-200204000-00005. PubMed DOI
Matsushita F.A.-O., Krebs V.L.J., de Carvalho W.B. Identifying clinical phenotypes in extremely low birth weight infants-an unsupervised machine learning approach. Eur. J. Pediatr. 2022;181:1085–1097. doi: 10.1007/s00431-021-04298-3. PubMed DOI
Ng I.A.-O., da Costa C.S., Zeiler F.A., Wong F.Y., Smielewski P., Czosnyka M., Austin T. Burden of hypoxia and intraventricular haemorrhage in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2020;105:242–247. doi: 10.1136/archdischild-2019-316883. PubMed DOI
Noori S., McCoy M., Anderson M.P., Ramji F., Seri I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J. Pediatr. 2014;164:e261–e263. doi: 10.1016/j.jpeds.2013.09.045. PubMed DOI
O’Leary H., Gregas M.C., Limperopoulos C., Zaretskaya I., Bassan H., Soul J.S., Di Salvo D.N., du Plessis A.J. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics. 2009;124:302–309. doi: 10.1542/peds.2008-2004. PubMed DOI PMC
Alderliesten T., Lemmers P.M., Smarius J.J., van de Vosse R.E., Baerts W., van Bel F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J. Pediatr. 2013;162:698–704.e692. doi: 10.1016/j.jpeds.2012.09.038. PubMed DOI
Martini S., Czosnyka M., Smielewski P., Iommi M., Galletti S., Vitali F., Paoletti V., Camela F., Austin T., Corvaglia L. Clinical determinants of cerebrovascular reactivity in very preterm infants during the transitional period. Pediatr. Res. 2022;92:135–141. doi: 10.1038/s41390-022-02090-z. PubMed DOI
Pavlek L.R., Mueller C., Jebbia M.R., Kielt M.J., Fathi O. Near-Infrared Spectroscopy in Extremely Preterm Infants. Front. Pediatr. 2021;8:624113. doi: 10.3389/fped.2020.624113. PubMed DOI PMC
Kalteren W.S., Verhagen E.A., Mintzer J.P., Bos A.F., Kooi E.M.W. Anemia and Red Blood Cell Transfusions, Cerebral Oxygenation, Brain Injury and Development, and Neurodevelopmental Outcome in Preterm Infants: A Systematic Review. Front. Pediatr. 2021;9:644462. doi: 10.3389/fped.2021.644462. PubMed DOI PMC
Plomgaard A.M., Alderliesten T., van Bel F., Benders M., Claris O., Cordeiro M., Dempsey E., Fumagalli M., Gluud C., Hyttel-Sorensen S., et al. No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC II) in preterm infants during the first days of life. Acta Paediatr. 2019;108:275–281. doi: 10.1111/apa.14463. PubMed DOI PMC
van Bel F., Lemmers P., Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: Value and pitfalls. Neonatology. 2008;94:237–244. doi: 10.1159/000151642. PubMed DOI
Hansen M.L., Hyttel-Sørensen S., Jakobsen J.C., Gluud C., Kooi E.M.W., Mintzer J., de Boode W.P., Fumagalli M., Alarcon A., Alderliesten T., et al. Cerebral near-infrared spectroscopy monitoring (NIRS) in children and adults: A systematic review with meta-analysis. Pediatr. Res. 2022 doi: 10.1038/s41390-022-01995-z. PubMed DOI
Alderliesten T., Lemmers P.M., van Haastert I.C., de Vries L.S., Bonestroo H.J., Baerts W., van Bel F. Hypotension in preterm neonates: Low blood pressure alone does not affect neurodevelopmental outcome. J. Pediatr. 2014;164:986–991. doi: 10.1016/j.jpeds.2013.12.042. PubMed DOI
Verhagen E.A., Van Braeckel K.N., van der Veere C.N., Groen H., Dijk P.H., Hulzebos C.V., Bos A.F. Cerebral oxygenation is associated with neurodevelopmental outcome of preterm children at age 2 to 3 years. Dev. Med. Child. Neurol. 2015;57:449–455. doi: 10.1111/dmcn.12622. PubMed DOI
Alderliesten T., Dix L., Baerts W., Caicedo A., van Huffel S., Naulaers G., Groenendaal F., van Bel F., Lemmers P. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr. Res. 2016;79:55–64. doi: 10.1038/pr.2015.186. PubMed DOI
Dix L.M., van Bel F., Baerts W., Lemmers P.M. Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate. Pediatr. Res. 2013;74:557–563. doi: 10.1038/pr.2013.133. PubMed DOI
O’Toole J.M., Kenosi M., Finn D., Boylan G.B., Dempsey E.M. Features of cerebral oxygenation detects brain injury in premature infants; Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Orlando, FL, USA. 16–20 August 2016; pp. 3614–3617. PubMed DOI
O’Toole J.M., Dempsey E.M., Boylan G.B. Extracting transients from cerebral oxygenation signals of preterm infants: A new singular-spectrum analysis method; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 18–21 July 2018; pp. 5882–5885. PubMed DOI
Dempsey E.M., Barrington K.J., Marlow N., O’Donnell C.P.F., Miletin J., Naulaers G., Cheung P.Y., Corcoran J.D., El-Khuffash A.F., Boylan G.B., et al. Hypotension in Preterm Infants (HIP) randomised trial. Arch. Dis. Child. Fetal Neonatal Ed. 2021;106:398–403. doi: 10.1136/archdischild-2020-320241. PubMed DOI PMC
Volpe J.J. Neurology of the Newborn. 5th ed. Saunders Elsevier; Philadelphia, PA, USA: 2008.
Payne A.H., Hintz S.R., Hibbs A.M., Walsh M.C., Vohr B.R., Bann C.M., Wilson-Costello D.E. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr. 2013;167:451–459. doi: 10.1001/jamapediatrics.2013.866. PubMed DOI PMC
Ouchi E., Usuniwa H., Nemoto K., Inagaki T. Simultaneous measurement under resting-state of autonomic nervous activity and brain activity by near-infrared spectroscopy alone. Infrared Phys. Technol. 2022;122:104065. doi: 10.1016/j.infrared.2022.104065. DOI
Hessel T.W., Hyttel-Sorensen S., Greisen G. Cerebral oxygenation after birth—A comparison of INVOS(®) and FORE-SIGHT™ near-infrared spectroscopy oximeters. Acta Paediatr. 2014;103:488–493. doi: 10.1111/apa.12567. PubMed DOI PMC
Buekers J., Theunis J., De Boever P., Vaes A.W., Koopman M., Janssen E.V., Wouters E.F., Spruit M.A., Aerts J.M. Wearable Finger Pulse Oximetry for Continuous Oxygen Saturation Measurements during Daily Home Routines of Patients with Chronic Obstructive Pulmonary Disease (COPD) over One Week: Observational Study. JMIR Mhealth Uhealth. 2019;7:e12866. doi: 10.2196/12866. PubMed DOI PMC
Ashoori M., Dempsey E.M., McDonald F.B., O’Toole J.M. Sparse-Denoising Methods for Extracting Desaturation Transients in Cerebral Oxygenation Signals of Preterm Infants; Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); Guadalajara, Mexico. 1–5 November 2021; pp. 1010–1013. PubMed DOI
Fan J., Upadhye S., Worster A. Understanding receiver operating characteristic (ROC) curves. Cjem. 2006;8:19–20. doi: 10.1017/S1481803500013336. PubMed DOI
Hansen M.L., Pellicer A., Hyttel-Sørensen S., Ergenekon E., Szczapa T., Hagmann C., Naulaers G., Mintzer J., Fumagalli M., Dimitriou G., et al. Cerebral Oximetry Monitoring in Extremely Preterm Infants. N. Engl. J. Med. 2023;388:1501–1511. doi: 10.1056/NEJMoa2207554. PubMed DOI
Hansen M.L., Pellicer A., Gluud C., Dempsey E., Mintzer J., Hyttel-Sørensen S., Heuchan A.M., Hagmann C., Ergenekon E., Dimitriou G., et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: A protocol for the SafeBoosC randomised clinical phase III trial. Trials. 2019;20:811. doi: 10.1186/s13063-019-3955-6. PubMed DOI PMC
Suppan E., Pichler G., Binder-Heschl C., Schwaberger B., Urlesberger B. Three Physiological Components That Influence Regional Cerebral Tissue Oxygen Saturation. Front. Pediatr. 2022;10:913223. doi: 10.3389/fped.2022.913223. PubMed DOI PMC
Bresesti I., Avian A., Bruckner M., Binder-Heschl C., Schwaberger B., Baik-Schneditz N., Schmölzer G., Pichler G., Urlesberger B. Impact of bradycardia and hypoxemia on oxygenation in preterm infants requiring respiratory support at birth. Resuscitation. 2021;164:62–69. doi: 10.1016/j.resuscitation.2021.05.004. PubMed DOI
Janaillac M., Beausoleil T.P., Barrington K.J., Raboisson M.J., Karam O., Dehaes M., Lapointe A. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur. J. Pediatr. 2018;177:541–550. doi: 10.1007/s00431-018-3096-z. PubMed DOI
Sweet D., Bevilacqua G., Carnielli V., Greisen G., Plavka R., Didrik S.O., Simeoni U., Speer C.P., Soler A., Valls I., et al. European consensus guidelines on the management of neonatal respiratory distress syndrome. Zhonghua Er Ke Za Zhi. 2008;46:30–34. doi: 10.1515/JPM.2007.048. PubMed DOI
The American Academy of Pediatrics and the American College of Obstetricians and Gynecologists . Guidelines for Perinatal Care. American Academy of Pediatrics; Elk Grove Village, IL, USA: 2007.
Askie L.M., Darlow B.A., Finer N., Schmidt B., Stenson B., Tarnow-Mordi W., Davis P.G., Carlo W.A., Brocklehurst P., Davies L.C., et al. Association between Oxygen Saturation Targeting and Death or Disability in Extremely Preterm Infants in the Neonatal Oxygenation Prospective Meta-analysis Collaboration. JAMA. 2018;319:2190–2201. doi: 10.1001/jama.2018.5725. PubMed DOI PMC
Sullivan B.A., Wallman-Stokes A., Isler J., Sahni R., Moorman J.R., Fairchild K.D., Lake D.E. Early Pulse Oximetry Data Improves Prediction of Death and Adverse Outcomes in a Two-Center Cohort of Very Low Birth Weight Infants. Am. J. Perinatol. 2018;35:1331–1338. doi: 10.1055/s-0038-1654712. PubMed DOI PMC
Vesoulis Z.A., Bank R.L., Lake D., Wallman-Stokes A., Sahni R., Moorman J.R., Isler J.R., Fairchild K.D., Mathur A.M. Early hypoxemia burden is strongly associated with severe intracranial hemorrhage in preterm infants. J. Perinatol. 2019;39:48–53. doi: 10.1038/s41372-018-0236-2. PubMed DOI PMC
Zanelli S.A.-O., Abubakar M., Andris R., Patwardhan K., Fairchild K.D., Vesoulis Z.A. Early Vital Sign Differences in Very Low Birth Weight Infants with Severe Intraventricular Hemorrhage. Am. J. Perinatol. 2021 doi: 10.1055/s-0041-1733955. in press . PubMed DOI PMC
DeMeulenaere S. Pulse Oximetry: Uses and Limitations. J. Nurse Pract. 2007;3:312–317. doi: 10.1016/j.nurpra.2007.02.021. DOI
Pritišanac E., Urlesberger B., Schwaberger B., Pichler G. Accuracy of Pulse Oximetry in the Presence of Fetal Hemoglobin-A Systematic Review. Children. 2021;8:361. doi: 10.3390/children8050361. PubMed DOI PMC
Sankaran V.G., Orkin S.H. The switch from fetal to adult hemoglobin. Cold Spring Harb. Perspect. Med. 2013;3:a011643. doi: 10.1101/cshperspect.a011643. PubMed DOI PMC