Bipyridine Ruthenium(II) Complexes with Halogen-Substituted Salicylates: Synthesis, Crystal Structure, and Biological Activity
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-19-0087
Slovak Research and Development Agency
1/0686/23
the Scientific Grant Agency of the Slovak Republic
1/0145/20
the Scientific Grant Agency of the Slovak Republic
ITMS 26240220084
the Ministry of Education, Science, Research and Sport of the Slovak Republic within the Research and Development Operational Programe for the project "University Science Park of STU Bratislava"
PubMed
37375164
PubMed Central
PMC10303062
DOI
10.3390/molecules28124609
PII: molecules28124609
Knihovny.cz E-resources
- Keywords
- BSA, DNA, NSAID, Ruthenium(II), anticancer drugs, antiproliferative activity, crystal structure, medicinal inorganic chemistry, salicylate,
- MeSH
- Halogens MeSH
- Heterocyclic Compounds * MeSH
- Coordination Complexes * chemistry MeSH
- Cell Line, Tumor MeSH
- Antineoplastic Agents * chemistry MeSH
- Ruthenium * pharmacology chemistry MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Halogens MeSH
- Heterocyclic Compounds * MeSH
- Coordination Complexes * MeSH
- Antineoplastic Agents * MeSH
- Ruthenium * MeSH
Ruthenium complexes currently represent a perspective subject of investigation in terms of potential anticancer therapeutics. Eight novel octahedral ruthenium(II) complexes are the subject of this article. Complexes contain 2,2'-bipyridine molecules and salicylates as ligands, differing in position and type of halogen substituent. The structure of the complexes was determined via X-ray structural analysis and NMR spectroscopy. All complexes were characterized by spectral methods-FTIR, UV-Vis, ESI-MS. Complexes show sufficient stability in solutions. Therefore, their biological properties were studied. Binding ability to BSA, interaction with DNA, as well as in vitro antiproliferative effects against MCF-7 and U-118MG cell lines were investigated. Several complexes showed anticancer effects against these cell lines.
See more in PubMed
Cashman J.N. The Mechanisms of Action of NSAIDs in Analgesia. Drugs. 1996;52:13–23. doi: 10.2165/00003495-199600525-00004. PubMed DOI
Vane J.R., Botting R.M. The mechanism of action of aspirin. Tromb. Res. 2003;5–6:225–258. doi: 10.1016/S0049-3848(03)00379-7. PubMed DOI
Kirkby N.S., Sampaio W., Etelvino G., Alves D.T., Anders K.L., Temponi R., Shala F., Nair A.S., Ahmetaj-Shala B., Jiao J., et al. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway. Hypertension. 2018;71:297–305. doi: 10.1161/HYPERTENSIONAHA.117.09906. PubMed DOI PMC
Peskar B.M., Maricic N., Gretzer B., Schuligoi R., Schmassmann A. Role of cyclooxygenase-2 in gastric mucosal defense. Life Sci. 2001;25–26:2993–3003. doi: 10.1016/S0024-3205(01)01407-2. PubMed DOI
Vane J.R., Botting R.M. Mechanism of action of antiinflammatory drugs. Int. J. Tissue React. 1998;20:3–15. PubMed
Srivastava P., Mishra R., Verma M., Sivakumar S., Patra A.K. Cytotoxic ruthenium(II) polypyridyl complexes with naproxen as NSAID: Synthesis, biological interactions and antioxidant activity. Polyhedron. 2019;172:132–140. doi: 10.1016/j.poly.2019.04.009. DOI
Lipsky P.E., Brooks P., Crofford L.J., DuBois R., Graham D., Simon L.S., van de Putte L.B., Abrsamson S.B. Unresolved issues in the role of cyclooxygenase-2 in normal physiologic processes and disease. Arch. Intern. Med. 2000;160:913–920. doi: 10.1001/archinte.160.7.913. PubMed DOI
Chandrasekharan N.V., Dai H., Roos K.L.T., Evanson N.K., Tomsik J., Elton T.S., Simmons D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA. 2002;99:13926–13931. doi: 10.1073/pnas.162468699. PubMed DOI PMC
Wong R.S.Y. Role of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Cancer Prevention and Cancer Promotion. Adv. Pharmacol. Sci. 2019;2019:3418975. doi: 10.1155/2019/3418975. PubMed DOI PMC
Rayburn E.R., Ezell S.J., Zhang R. Anti-Inflammatory Agents for Cancer Therapy. Mol. Cell. Pharmacol. 2009;1:29–43. doi: 10.4255/mcpharmacol.09.05. PubMed DOI PMC
Wang H., Li M., Rinehart J.J., Zhang R. Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografts: In vivo activity, pharmacokinetics, and clinical implications for cancer chemotherapy. Clin. Cancer Res. 2004;10:1633–1644. doi: 10.1158/1078-0432.CCR-0829-3. PubMed DOI
Banti C.N., Hadjikakou K. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Metal Complexes and Their Effect at the Cellular Level. Eur. J. Inorg. Chem. 2016;2016:3048–3071. doi: 10.1002/ejic.201501480. DOI
Psomas G. Copper(II) and zinc(II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural deatures and antioxidant octivity. Coord. Chem. Rev. 2020;412:213259. doi: 10.1016/j.ccr.2020.213259. DOI
Khan H.Y., Parveen S., Yousuf I., Tabassum S., Arjmand F. Metal complexes of NSAIDs as potent anti-tumor chemotherapeutics: Mechanistic insighhts into cytotoxic activity via multiple pathways primarily by inhibition of COX-1 and COX-2 enzymes. Coord. Chem. Rev. 2022;453:214316. doi: 10.1016/j.ccr.2021.214316. DOI
Jayamani A., Sengottuvelan N., Chakkaravarthi G. Synthesis, structural, electrochemical, DNA interaction, antimicrobial and molecular docking studies on dimeric copper(II) complexes involving some potential bidentate ligands. Polyhedron. 2014;81:764–776. doi: 10.1016/j.poly.2014.05.076. DOI
Kucková L., Jomová K., Švorcová A., Valko M., Segľa P., Moncoľ J., Kožíšek J. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate–Neocuproine Ternary Copper(II) Complexes. Molecules. 2015;20:2115–2137. doi: 10.3390/molecules20022115. PubMed DOI PMC
Kostova I. Ruthenium Complexes as Anticancer Agents. Curr. Med. Chem. 2006;13:1085–1107. doi: 10.2174/092986706776360941. PubMed DOI
Lee S.Y., Kim C.Y., Nam T.-G. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspective. Drug Des. Dev. Ther. 2020;14:5375–5392. doi: 10.2147/DDDT.S275007. PubMed DOI PMC
Bouma M., Nuijen B., Jansen M.T., Sava G., Flaibani A., Bult A., Beijnen J.H. A kinetic study of the chemical stability of the antimetastatic ruthenium complex NAMI-A. Int. J. Pharm. 2002;248:239–246. doi: 10.1016/S0378-5173(02)00460-X. PubMed DOI
Wernitznig D., Kiakos K., Favero G.D., Harrer N., Machat H., Osswald A., Jakupec M.A., Wernitznig A., Sommergruber W., Keppler B.K. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics. 2019;6:1044–1048. doi: 10.1039/c9mt00051h. PubMed DOI
Rausch M., Dyson P.J., Nowak-Sliwinska P. Recent Considerations in the Application of RAPTA-C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. Adv. Ther. 2019;2:1900042. doi: 10.1002/adtp.201900042. DOI
Monro S., Colón K.L., Yin H., Roque III J., Konda P., Gujar S., Thummel R.P., Lilge L., Cameron C.G., McFarland S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019;119:797–828. doi: 10.1021/acs.chemrev.8b00211. PubMed DOI PMC
Chen J.-C., Zhang Y., Jie X.-M., She J., Dongye G.-Z., Zhong Y., Deng Y.-Y., Wang J., Guo B.-Y., Chen L.-M. Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J. Inorg. Biochem. 2019;193:112–123. doi: 10.1016/j.jinorgbio.2019.01.011. PubMed DOI
Chen J.-C., Wang J., Deng Y.-Y., Wang T., Miao T.-F., Li C.-P., Cai X.-H., Liu Y., Henri J., Chen L.-M. Ruthenium(II) Complexes Bearing O,O-Chelating Ligands Induced Apoptosis in A549 Cells through the Mitochondrial Apoptotic Pathway. Bioinorg. Chem. Appl. 2020;2020:8890950. doi: 10.1155/2020/8890950. PubMed DOI PMC
Paunescu E., McArthur S., Soudani M., Scopelliti R., Dyson P.J. Nonsteroidal Anti-inflammatory—Organometallic Anticancer Compounds. Inorg. Chem. 2016;55:1788–1808. doi: 10.1021/acs.inorgchem.5b02690. PubMed DOI
School M.T., Rudbari H.A., Gil-Antón T., Cuevas-Vicario J.V., García B., Busto N., Moini N., Blacque O. The effect of halogenation of salicylaldehyde on the antiproliferative activities of {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} complexes. Dalton Trans. 2022;51:7658–7672. doi: 10.1039/D2DT00401A. PubMed DOI
Nakamoto I. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. 6th ed. Wiley; New York, NY, USA: 2009.
Reichardt C., Erlton T. Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH Verlag GmbH & Co. KgaA; Weinheim, Germany: 2010.
Ji Z., Huang S.D., Guadalupe A.R. Synthesis, X-ray structures, spectroscopic and electrochemical properties of ruthenium(II) complexes containing 2,2′-bipyrimidine. Inorg. Chim. Acta. 2000;305:127–134. doi: 10.1016/S0020-1693(00)00123-7. DOI
Ghosh A., Mandoli A., Damdoaran K.K., Yadav N.S., Ghosh T., Jha B., Thomas J.A., Das A. DNA binding and cleavage properties of a newly synthesised Ru(II)-polypyridyl complex. Dalton Trans. 2009;42:9312–9321. doi: 10.1039/b906756f. PubMed DOI
Constantino V.R.L., Toma H.E., de Oliveira L.F.C., Rein F.N., Rocha R.C., de Oliveira Silva D. Structure, spectroscopy and electrochemistry of the bis(2,2’-bipyridine)(salicylato)ruthenium(II) complex. J. Chem. Soc. Dalton Trans. 1999;11:1735–1740. doi: 10.1039/a902219h. DOI
Topala T., Bodocki A., Opean L., Opean R. Bovine Serum Albumin Interactions with Metal Complexes. Clujul. Med. 2014;87:215–219. doi: 10.15386/cjmed-357. PubMed DOI PMC
Jozefíková F., Perontsis S., Koňáriková K., Švorc Ľ., Mazúr M., Psomas G., Moncoľ J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J. Inorg. Biochem. 2022;228:111696. doi: 10.1016/j.jinorgbio.2021.111696. PubMed DOI
Topala T., Bodoki A., Oprean L., Oprean R. Experimental techniques in the study of metal complex-DNA-interactions. Farmacia. 2014;62:1049–1061.
Lay P.A., Sargeson A.M., Taube H., Chou M.H., Creutz C. Cis-Bis(2,2′-Bipyridine-N,N′) Complexes of Ruthenium(III)/(II) and Osmium(III)/(II) Inorg. Synth. 1986;24:291–299. doi: 10.1002/9780470132555.ch78. DOI
Koziskova J., Hahn F., Richter J., Kožíšek J. Comparison of different absorption corrections on the model structure of tetrakis(μ2-acetato)-diaqua-di-copper(II) Acta Chim. Slovaca. 2016;9:136–140. doi: 10.1515/acs-2016-0023. DOI
CrysAlisPRO. Oxford Diffraction/Agilent Technologies UK Ltd.; Yarnton, UK: 2009.
Sheldrick G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., Jayalitaka D., Spackman M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021;54:1006–1011. doi: 10.1107/S1600576721002910. PubMed DOI PMC
Hirshfeld F.L. Vobded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 1977;44:129–138. doi: 10.1007/BF00549096. DOI
McKinnon J.J., Jayalitaka D., Spackman M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007;37:3814–3816. doi: 10.1039/b704980c. PubMed DOI
Parkin A., Barr G., Dong W., Gilmore C.J., Jayalitaka D., McKinnon J.J., Spackman M.A., Wilson C.C. Comparing entire crystal structures: Structural genetic fingerprinting. CrystEngComm. 2007;9:648–652. doi: 10.1039/b704177b. DOI
Malis G., Geromichalou E., Geromichalos G.D., Hatzidimitriou A.G., Psomas G. Copper(II) complexes with non-steroidal anti-inflammatory drugs: Structural characterization, in vitro and in silico biological profile. J. Inorg. Biochem. 2021;224:111563. doi: 10.1016/j.jinorgbio.2021.111563. PubMed DOI
Pyle A.M., Rehmann J.P., Meshoyrer R., Kumar C.V., Turro N.J., Barton J.K. Mixed-ligand complexes of ruthenium(II)—Factors governing binding to DNA. J. Am. Chem. Soc. 1989;111:3051–3058. doi: 10.1021/ja00190a046. DOI
Wolfe A., Shimer G.H., Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry. 1987;26:6392–6396. doi: 10.1021/bi00394a013. PubMed DOI
Sirajuddin M., Ali S., Badshah A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B Biol. 2013;124:1–19. doi: 10.1016/j.jphotobiol.2013.03.013. PubMed DOI
Jozefíková F., Perontsis S., Šimunková M., Barbieriková Z., Švorc Ľ., Valko M., Psomas G., Moncol J. Novel copper(II) complexes with fenamates and isonicotinamide: Structure and properties, and interactions with DNA and serum albumin. New J. Chem. 2020;44:12827–12842. doi: 10.1039/D0NJ02007A. DOI
Carmichael J., DeGraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 1987;47:936–942. PubMed