• This record comes from PubMed

Bipyridine Ruthenium(II) Complexes with Halogen-Substituted Salicylates: Synthesis, Crystal Structure, and Biological Activity

. 2023 Jun 07 ; 28 (12) : . [epub] 20230607

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-19-0087 Slovak Research and Development Agency
1/0686/23 the Scientific Grant Agency of the Slovak Republic
1/0145/20 the Scientific Grant Agency of the Slovak Republic
ITMS 26240220084 the Ministry of Education, Science, Research and Sport of the Slovak Republic within the Research and Development Operational Programe for the project "University Science Park of STU Bratislava"

Ruthenium complexes currently represent a perspective subject of investigation in terms of potential anticancer therapeutics. Eight novel octahedral ruthenium(II) complexes are the subject of this article. Complexes contain 2,2'-bipyridine molecules and salicylates as ligands, differing in position and type of halogen substituent. The structure of the complexes was determined via X-ray structural analysis and NMR spectroscopy. All complexes were characterized by spectral methods-FTIR, UV-Vis, ESI-MS. Complexes show sufficient stability in solutions. Therefore, their biological properties were studied. Binding ability to BSA, interaction with DNA, as well as in vitro antiproliferative effects against MCF-7 and U-118MG cell lines were investigated. Several complexes showed anticancer effects against these cell lines.

See more in PubMed

Cashman J.N. The Mechanisms of Action of NSAIDs in Analgesia. Drugs. 1996;52:13–23. doi: 10.2165/00003495-199600525-00004. PubMed DOI

Vane J.R., Botting R.M. The mechanism of action of aspirin. Tromb. Res. 2003;5–6:225–258. doi: 10.1016/S0049-3848(03)00379-7. PubMed DOI

Kirkby N.S., Sampaio W., Etelvino G., Alves D.T., Anders K.L., Temponi R., Shala F., Nair A.S., Ahmetaj-Shala B., Jiao J., et al. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway. Hypertension. 2018;71:297–305. doi: 10.1161/HYPERTENSIONAHA.117.09906. PubMed DOI PMC

Peskar B.M., Maricic N., Gretzer B., Schuligoi R., Schmassmann A. Role of cyclooxygenase-2 in gastric mucosal defense. Life Sci. 2001;25–26:2993–3003. doi: 10.1016/S0024-3205(01)01407-2. PubMed DOI

Vane J.R., Botting R.M. Mechanism of action of antiinflammatory drugs. Int. J. Tissue React. 1998;20:3–15. PubMed

Srivastava P., Mishra R., Verma M., Sivakumar S., Patra A.K. Cytotoxic ruthenium(II) polypyridyl complexes with naproxen as NSAID: Synthesis, biological interactions and antioxidant activity. Polyhedron. 2019;172:132–140. doi: 10.1016/j.poly.2019.04.009. DOI

Lipsky P.E., Brooks P., Crofford L.J., DuBois R., Graham D., Simon L.S., van de Putte L.B., Abrsamson S.B. Unresolved issues in the role of cyclooxygenase-2 in normal physiologic processes and disease. Arch. Intern. Med. 2000;160:913–920. doi: 10.1001/archinte.160.7.913. PubMed DOI

Chandrasekharan N.V., Dai H., Roos K.L.T., Evanson N.K., Tomsik J., Elton T.S., Simmons D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA. 2002;99:13926–13931. doi: 10.1073/pnas.162468699. PubMed DOI PMC

Wong R.S.Y. Role of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Cancer Prevention and Cancer Promotion. Adv. Pharmacol. Sci. 2019;2019:3418975. doi: 10.1155/2019/3418975. PubMed DOI PMC

Rayburn E.R., Ezell S.J., Zhang R. Anti-Inflammatory Agents for Cancer Therapy. Mol. Cell. Pharmacol. 2009;1:29–43. doi: 10.4255/mcpharmacol.09.05. PubMed DOI PMC

Wang H., Li M., Rinehart J.J., Zhang R. Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografts: In vivo activity, pharmacokinetics, and clinical implications for cancer chemotherapy. Clin. Cancer Res. 2004;10:1633–1644. doi: 10.1158/1078-0432.CCR-0829-3. PubMed DOI

Banti C.N., Hadjikakou K. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Metal Complexes and Their Effect at the Cellular Level. Eur. J. Inorg. Chem. 2016;2016:3048–3071. doi: 10.1002/ejic.201501480. DOI

Psomas G. Copper(II) and zinc(II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural deatures and antioxidant octivity. Coord. Chem. Rev. 2020;412:213259. doi: 10.1016/j.ccr.2020.213259. DOI

Khan H.Y., Parveen S., Yousuf I., Tabassum S., Arjmand F. Metal complexes of NSAIDs as potent anti-tumor chemotherapeutics: Mechanistic insighhts into cytotoxic activity via multiple pathways primarily by inhibition of COX-1 and COX-2 enzymes. Coord. Chem. Rev. 2022;453:214316. doi: 10.1016/j.ccr.2021.214316. DOI

Jayamani A., Sengottuvelan N., Chakkaravarthi G. Synthesis, structural, electrochemical, DNA interaction, antimicrobial and molecular docking studies on dimeric copper(II) complexes involving some potential bidentate ligands. Polyhedron. 2014;81:764–776. doi: 10.1016/j.poly.2014.05.076. DOI

Kucková L., Jomová K., Švorcová A., Valko M., Segľa P., Moncoľ J., Kožíšek J. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate–Neocuproine Ternary Copper(II) Complexes. Molecules. 2015;20:2115–2137. doi: 10.3390/molecules20022115. PubMed DOI PMC

Kostova I. Ruthenium Complexes as Anticancer Agents. Curr. Med. Chem. 2006;13:1085–1107. doi: 10.2174/092986706776360941. PubMed DOI

Lee S.Y., Kim C.Y., Nam T.-G. Ruthenium Complexes as Anticancer Agents: A Brief History and Perspective. Drug Des. Dev. Ther. 2020;14:5375–5392. doi: 10.2147/DDDT.S275007. PubMed DOI PMC

Bouma M., Nuijen B., Jansen M.T., Sava G., Flaibani A., Bult A., Beijnen J.H. A kinetic study of the chemical stability of the antimetastatic ruthenium complex NAMI-A. Int. J. Pharm. 2002;248:239–246. doi: 10.1016/S0378-5173(02)00460-X. PubMed DOI

Wernitznig D., Kiakos K., Favero G.D., Harrer N., Machat H., Osswald A., Jakupec M.A., Wernitznig A., Sommergruber W., Keppler B.K. First-in-class ruthenium anticancer drug (KP1339/IT-139) induces an immunogenic cell death signature in colorectal spheroids in vitro. Metallomics. 2019;6:1044–1048. doi: 10.1039/c9mt00051h. PubMed DOI

Rausch M., Dyson P.J., Nowak-Sliwinska P. Recent Considerations in the Application of RAPTA-C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. Adv. Ther. 2019;2:1900042. doi: 10.1002/adtp.201900042. DOI

Monro S., Colón K.L., Yin H., Roque III J., Konda P., Gujar S., Thummel R.P., Lilge L., Cameron C.G., McFarland S.A. Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433. Chem. Rev. 2019;119:797–828. doi: 10.1021/acs.chemrev.8b00211. PubMed DOI PMC

Chen J.-C., Zhang Y., Jie X.-M., She J., Dongye G.-Z., Zhong Y., Deng Y.-Y., Wang J., Guo B.-Y., Chen L.-M. Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J. Inorg. Biochem. 2019;193:112–123. doi: 10.1016/j.jinorgbio.2019.01.011. PubMed DOI

Chen J.-C., Wang J., Deng Y.-Y., Wang T., Miao T.-F., Li C.-P., Cai X.-H., Liu Y., Henri J., Chen L.-M. Ruthenium(II) Complexes Bearing O,O-Chelating Ligands Induced Apoptosis in A549 Cells through the Mitochondrial Apoptotic Pathway. Bioinorg. Chem. Appl. 2020;2020:8890950. doi: 10.1155/2020/8890950. PubMed DOI PMC

Paunescu E., McArthur S., Soudani M., Scopelliti R., Dyson P.J. Nonsteroidal Anti-inflammatory—Organometallic Anticancer Compounds. Inorg. Chem. 2016;55:1788–1808. doi: 10.1021/acs.inorgchem.5b02690. PubMed DOI

School M.T., Rudbari H.A., Gil-Antón T., Cuevas-Vicario J.V., García B., Busto N., Moini N., Blacque O. The effect of halogenation of salicylaldehyde on the antiproliferative activities of {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} complexes. Dalton Trans. 2022;51:7658–7672. doi: 10.1039/D2DT00401A. PubMed DOI

Nakamoto I. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B. 6th ed. Wiley; New York, NY, USA: 2009.

Reichardt C., Erlton T. Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH Verlag GmbH & Co. KgaA; Weinheim, Germany: 2010.

Ji Z., Huang S.D., Guadalupe A.R. Synthesis, X-ray structures, spectroscopic and electrochemical properties of ruthenium(II) complexes containing 2,2′-bipyrimidine. Inorg. Chim. Acta. 2000;305:127–134. doi: 10.1016/S0020-1693(00)00123-7. DOI

Ghosh A., Mandoli A., Damdoaran K.K., Yadav N.S., Ghosh T., Jha B., Thomas J.A., Das A. DNA binding and cleavage properties of a newly synthesised Ru(II)-polypyridyl complex. Dalton Trans. 2009;42:9312–9321. doi: 10.1039/b906756f. PubMed DOI

Constantino V.R.L., Toma H.E., de Oliveira L.F.C., Rein F.N., Rocha R.C., de Oliveira Silva D. Structure, spectroscopy and electrochemistry of the bis(2,2’-bipyridine)(salicylato)ruthenium(II) complex. J. Chem. Soc. Dalton Trans. 1999;11:1735–1740. doi: 10.1039/a902219h. DOI

Topala T., Bodocki A., Opean L., Opean R. Bovine Serum Albumin Interactions with Metal Complexes. Clujul. Med. 2014;87:215–219. doi: 10.15386/cjmed-357. PubMed DOI PMC

Jozefíková F., Perontsis S., Koňáriková K., Švorc Ľ., Mazúr M., Psomas G., Moncoľ J. In vitro biological activity of copper(II) complexes with NSAIDs and nicotinamide: Characterization, DNA- and BSA-interaction study and anticancer activity. J. Inorg. Biochem. 2022;228:111696. doi: 10.1016/j.jinorgbio.2021.111696. PubMed DOI

Topala T., Bodoki A., Oprean L., Oprean R. Experimental techniques in the study of metal complex-DNA-interactions. Farmacia. 2014;62:1049–1061.

Lay P.A., Sargeson A.M., Taube H., Chou M.H., Creutz C. Cis-Bis(2,2′-Bipyridine-N,N′) Complexes of Ruthenium(III)/(II) and Osmium(III)/(II) Inorg. Synth. 1986;24:291–299. doi: 10.1002/9780470132555.ch78. DOI

Koziskova J., Hahn F., Richter J., Kožíšek J. Comparison of different absorption corrections on the model structure of tetrakis(μ2-acetato)-diaqua-di-copper(II) Acta Chim. Slovaca. 2016;9:136–140. doi: 10.1515/acs-2016-0023. DOI

CrysAlisPRO. Oxford Diffraction/Agilent Technologies UK Ltd.; Yarnton, UK: 2009.

Sheldrick G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015;A71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Spackman P.R., Turner M.J., McKinnon J.J., Wolff S.K., Grimwood D.J., Jayalitaka D., Spackman M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021;54:1006–1011. doi: 10.1107/S1600576721002910. PubMed DOI PMC

Hirshfeld F.L. Vobded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 1977;44:129–138. doi: 10.1007/BF00549096. DOI

McKinnon J.J., Jayalitaka D., Spackman M.A. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun. 2007;37:3814–3816. doi: 10.1039/b704980c. PubMed DOI

Parkin A., Barr G., Dong W., Gilmore C.J., Jayalitaka D., McKinnon J.J., Spackman M.A., Wilson C.C. Comparing entire crystal structures: Structural genetic fingerprinting. CrystEngComm. 2007;9:648–652. doi: 10.1039/b704177b. DOI

Malis G., Geromichalou E., Geromichalos G.D., Hatzidimitriou A.G., Psomas G. Copper(II) complexes with non-steroidal anti-inflammatory drugs: Structural characterization, in vitro and in silico biological profile. J. Inorg. Biochem. 2021;224:111563. doi: 10.1016/j.jinorgbio.2021.111563. PubMed DOI

Pyle A.M., Rehmann J.P., Meshoyrer R., Kumar C.V., Turro N.J., Barton J.K. Mixed-ligand complexes of ruthenium(II)—Factors governing binding to DNA. J. Am. Chem. Soc. 1989;111:3051–3058. doi: 10.1021/ja00190a046. DOI

Wolfe A., Shimer G.H., Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. Biochemistry. 1987;26:6392–6396. doi: 10.1021/bi00394a013. PubMed DOI

Sirajuddin M., Ali S., Badshah A. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J. Photochem. Photobiol. B Biol. 2013;124:1–19. doi: 10.1016/j.jphotobiol.2013.03.013. PubMed DOI

Jozefíková F., Perontsis S., Šimunková M., Barbieriková Z., Švorc Ľ., Valko M., Psomas G., Moncol J. Novel copper(II) complexes with fenamates and isonicotinamide: Structure and properties, and interactions with DNA and serum albumin. New J. Chem. 2020;44:12827–12842. doi: 10.1039/D0NJ02007A. DOI

Carmichael J., DeGraff W.G., Gazdar A.F., Minna J.D., Mitchell J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res. 1987;47:936–942. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...