Analytical Quality by Design-Compliant Development of a Cyclodextrin-Modified Micellar ElectroKinetic Chromatography Method for the Determination of Trimecaine and Its Impurities
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Grant No A2_FCHI_2022_005
University of Chemistry and Technology Prague
PubMed
37375300
PubMed Central
PMC10302722
DOI
10.3390/molecules28124747
PII: molecules28124747
Knihovny.cz E-zdroje
- Klíčová slova
- capillary electrophoresis, experimental design, impurities, method operable design region, quality by design, trimecaine,
- MeSH
- boritany MeSH
- chromatografie micelární elektrokinetická kapilární * metody MeSH
- cyklodextriny * chemie MeSH
- dodecylsíran sodný MeSH
- micely MeSH
- reprodukovatelnost výsledků MeSH
- trimekain MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- boritany MeSH
- cyklodextriny * MeSH
- dodecylsíran sodný MeSH
- micely MeSH
- trimekain MeSH
In 2022, the International Council for Harmonisation released draft guidelines Q2(R2) and Q14, intending to specify the development and validation activities that should be carried out during the lifespan of an analytical technique addressed to assess the quality of medicinal products. In the present study, these recommendations were implemented in Capillary Electrophoresis method development for the quality control of a drug product containing trimecaine, by applying Analytical Quality by Design. According to the Analytical Target Profile, the procedure should be able to simultaneously quantify trimecaine and its four impurities, with specified analytical performances. The selected operative mode was Micellar ElectroKinetic Chromatography employing sodium dodecyl sulfate micelles supplemented with dimethyl-β-cyclodextrin, in a phosphate-borate buffer. The Knowledge Space was investigated through a screening matrix encompassing the composition of the background electrolyte and the instrumental settings. The Critical Method Attributes were identified as analysis time, efficiency, and critical resolution values. Response Surface Methodology and Monte Carlo Simulations allowed the definition of the Method Operable Design Region: 21-26 mM phosphate-borate buffer pH 9.50-9.77; 65.0 mM sodium dodecyl sulfate; 0.25-1.29% v/v n-butanol; 21-26 mM dimethyl-β-cyclodextrin; temperature, 22 °C; voltage, 23-29 kV. The method was validated and applied to ampoules drug products.
Department of Chemistry U Schiff University of Florence 50019 Sesto Fiorentino Italy
Department of Pharmacy and Biotechnology University of Bologna 40126 Bologna Italy
Zobrazit více v PubMed
Řemínek R., Foret F. Capillary electrophoretic methods for quality control analyses of pharmaceuticals: A review. Electrophoresis. 2021;42:19–37. doi: 10.1002/elps.202000185. PubMed DOI
Aturki Z., Rocco A., Rocchi S., Fanali S. Current applications of miniaturized chromatographic and electrophoretic techniques in drug analysis. J. Pharm. Biomed. Anal. 2014;101:194–220. doi: 10.1016/j.jpba.2014.03.041. PubMed DOI
Görög S. Critical review of reports on impurity and degradation product profiling in the last decade. Trends Anal. Chem. 2018;101:2–16. doi: 10.1016/j.trac.2017.09.012. DOI
Jouyban A., Kenndler E. Impurity analysis of pharmaceuticals using capillary electromigration methods. Electrophoresis. 2008;29:3531–3551. doi: 10.1002/elps.200800054. PubMed DOI
Stěpánová S., Kašička V. Determination of impurities and counterions of pharmaceuticals by capillary electromigration methods. J. Sep. Sci. 2014;37:2039–2055. doi: 10.1002/jssc.201400266. PubMed DOI
El Deeb S., Wätzig H., Abd El-Hady D., Sänger-van de Griend C., Scriba G.K. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013–2015) Electrophoresis. 2016;37:1591–1608. doi: 10.1002/elps.201600058. PubMed DOI
Shah M., Patel N., Tripathi N., Vyas V.K. Capillary electrophoresis methods for impurity profiling of drugs: A review of the past decade. J. Pharm. Anal. 2022;12:15–28. doi: 10.1016/j.jpha.2021.06.009. PubMed DOI PMC
Dohnal J., Vytras K. A determination of local anaesthetics in parenteral preparations by potentiometric titration with ion selective electrode. Farm. Obz. 1985;54:405–411.
Kereichuk A.S., Pantsurkin V.I., Ptukha E.V., Potemkin K.D., Chekryshkina L.A. Determination of trimecaine and lidocaine using an ion-sensitive electrode. J. Anal. Chem. USSR. 1990;45:409–413.
Netesina I.P., Tkach V.I., Tsyganok L.P., Kopytin A.V., Politov Y.A. Determination of novacaine, sovcaine, and trimecaine using ion-sensitive electrodes. J. Anal. Chem. 1992;47:523–526.
Plotycya S., Dubenska L., Blazheyeyskiy M., Pysarevska S., Sarahman O. Determination of local anesthetics of amide group in pharmaceutical preparations by cyclic voltammetry. Electroanalysis. 2016;28:2575–2581. doi: 10.1002/elan.201600134. DOI
Matysová L., Koblová P., Galla L., Sklenářová H., Havlíková L., Solich P. Chromatographic determination of active compounds in topical formulations. Anal. Methods. 2011;4:1525–1529. doi: 10.1039/c1ay05336a. DOI
Piotrovskii V.K., Blagodatskikh S.V. Determination of pyromecaine and trimecaine in blood serum by GLC method. Khim. Farm. Zh. 1983;17:1381–1383. doi: 10.1007/BF00765143. DOI
Björk M., Pettersson K.-J., Österlöf G. Capillary gas chromatographic method for the simultaneous determination of local anaesthetic in plasma samples. J. Chromatogr. Biomed. 1990;533:229–234. doi: 10.1016/S0378-4347(00)82207-0. PubMed DOI
Stránský Z., Chmela Z., Pec P., Safarik L. Determination of trimecaine metabolites in blood plasma by capillary isotachophoresis. J. Chromatogr. 1985;342:167–174. doi: 10.1016/S0378-4347(00)84499-0. PubMed DOI
Department of Health and Human Services, U.S Food and Drug Administration . Pharmaceutical CGMPs for the 21st Century—A Risk-Based Approach. Department of Health and Human Services, U.S Food and Drug Administration; Siler Spring, MD, USA: 2004. Final Report.
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use . ICH Harmonised Tripartite Guideline. Pharmaceutical Development Q8(R2) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; Geneva, Switzerland: 2009.
Borman P., Truman K., Thompson D., Nethercote P., Chatfield M. The application of Quality by Design to analytical methods. Pharm. Technol. 2007;31:142–152.
Vogt F.G., Kord A.S. Development of quality-by-design analytical methods. J. Pharm. Sci. 2011;100:797–812. doi: 10.1002/jps.22325. PubMed DOI
Monks K., Molnár I., Rieger H.J., Bogáti B., Szabó E. Quality by Design: Multidimensional exploration of the design space in high performance liquid chromatography method development for better robustness before validation. J. Chromatogr. A. 2012;1232:218–230. doi: 10.1016/j.chroma.2011.12.041. PubMed DOI
Orlandini S., Pinzauti S., Furlanetto S. Application of quality by design to the development of analytical separation methods. Anal. Bioanal. Chem. 2013;405:443–450. doi: 10.1007/s00216-012-6302-2. PubMed DOI
Rozet E., Lebrun P., Hubert P., Debrus B., Boulanger B. Design Spaces for analytical methods. Trends Anal. Chem. 2013;42:157–167. doi: 10.1016/j.trac.2012.09.007. DOI
Deidda R., Orlandini S., Hubert P., Hubert C. Risk-based approach for method development in pharmaceutical quality control context: A critical review. J. Pharm. Biomed. Anal. 2018;161:110–121. doi: 10.1016/j.jpba.2018.07.050. PubMed DOI
Tome T., Žigart N., Časar Z., Obreza A. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances. Org. Process Res. Dev. 2019;23:1784–1802. doi: 10.1021/acs.oprd.9b00238. DOI
Ermer J., Aguiar D., Boden A., Ding B., Obeng D., Rose M., Vokrot J. Lifecycle management in pharmaceutical analysis: How to establish an efficient and relevant continued performance monitoring program. J. Pharm. Biomed. Anal. 2020;181:113051. doi: 10.1016/j.jpba.2019.113051. PubMed DOI
Volta e Sousa L., Gonçalves R., Menezes J.C., Ramos A. Analytical method lifecycle management in pharmaceutical industry: A review. AAPS PharmSciTech. 2021;22:128. doi: 10.1208/s12249-021-01960-9. PubMed DOI
Borman P., Campa C., Delpierre G., Hook E., Jackson P., Kelley W., Protz M., Vandeputte O. Selection of analytical technology and development of analytical procedures using the analytical target profile. Anal. Chem. 2022;94:559–570. doi: 10.1021/acs.analchem.1c03854. PubMed DOI
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use . ICH Harmonised Tripartite Guideline. Analytical Procedure Development Q14. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; Geneva, Switzerland: 2022.
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use . ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures Q2(R2) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; Geneva, Switzerland: 2022.
Dispas A., Avohou H.T., Lebrun P., Hubert P., Hubert C. Quality by Design’ approach for the analysis of impurities in pharmaceutical drug products and drug substances. Trends Anal. Chem. 2018;101:24–33. doi: 10.1016/j.trac.2017.10.028. DOI
Pasquini B., Gotti R., Villar-Navarro M., Douša M., Renai L., Del Bubba M., Orlandini S., Furlanetto S. Analytical quality by design in the development of a solvent-modified micellar electrokinetic chromatography method for the determination of sitagliptin and its related compounds. J. Pharm. Biomed. Anal. 2021;202:114163. doi: 10.1016/j.jpba.2021.114163. PubMed DOI
Krait S., Schneidmadel F.R., Scriba G.K.E. Quality by design-assisted development of a capillary electrophoresis method for the enantiomeric purity determination of tenofovir. Electrophoresis. 2022;43:964–969. doi: 10.1002/elps.202100345. PubMed DOI
Modroiu A., Krait S., Hancu G., Scriba G.K.E. Quality by design-guided development of a capillary electrophoresis method for the chiral purity determination of silodosin. J. Pharm. Biomed. Anal. 2023;222:115117. doi: 10.1016/j.jpba.2022.115117. PubMed DOI
Orlandini S., Gotti R., Furlanetto S. Multivariate optimization of capillary electrophoresis methods: A critical review. J. Pharm. Biomed. Anal. 2014;87:290–307. doi: 10.1016/j.jpba.2013.04.014. PubMed DOI
Orlandini S., Hancu G., Szabó Z.-I., Modroiu A., Papp L.-A., Gotti R., Furlanetto S. New trends in the quality control of enantiomeric drugs: Quality by Design-compliant development of chiral capillary electrophoresis methods. Molecules. 2022;27:7058. doi: 10.3390/molecules27207058. PubMed DOI PMC
Perovani I.S., Serpellone C.O., de Oliveira A.R.M. An appraisal of experimental designs: Application to enantioselective capillary electromigration techniques. Electrophoresis. 2021;42:1726–1743. doi: 10.1002/elps.202000334. PubMed DOI
Caprini C., Pasquini B., Melani F., Del Bubba M., Giuffrida A., Calleri E., Orlandini S., Furlanetto S. Exploring the intermolecular interactions acting in solvent-modified MEKC by Molecular Dynamics and NMR: The effect of n-butanol on the separation of diclofenac and its impurities. J. Pharm. Biomed. Anal. 2018;149:249–257. doi: 10.1016/j.jpba.2017.11.010. PubMed DOI
Lewis G.A., Mathieu D., Phan-Tan-Luu R. Pharmaceutical Experimental Design. Marcel Dekker; New York, NY, USA: 1999.
Montgomery D.C. Design and Analysis of Experiments. 4th ed. John Wiley & Sons; New York, NY, USA: 1997.
Eriksson L., Johansson E., Kettaneh-Wold N., Wikström C., Wold S. Design of Experiments-Principles and Applications. 3rd ed. Umetrics AB; Umeå, Sweden: 2008.
Herrador M.A., Asuero A.G., Gonzalez A.G. Estimation of the uncertainty of indirect measurements from the propagation of distributions by using the Monte-Carlo method: An overview. Chemom. Intell. Lab. Syst. 2005;79:115–122. doi: 10.1016/j.chemolab.2005.04.010. DOI
International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use . ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q1(R2) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use; Geneva, Switzerland: 2005.