Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
Grantová podpora
AIST16-0052
NASA - United States
PubMed
37386149
DOI
10.1038/s41477-023-01446-5
PII: 10.1038/s41477-023-01446-5
Knihovny.cz E-zdroje
- MeSH
- fertilita MeSH
- rozmnožování * MeSH
- semena rostlinná MeSH
- stromy * MeSH
- uspokojení potřeb MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.
Bent Creek Experimental Forest USDA Forest Service Asheville NC USA
CEFE Universite Montpellier CNRS EPHE IRD Montpellier France
Centre d'Ecologie Fonctionnelle et Evolutive Montpellier France
Centre de Recerca Ecologica i Aplicacions Forestals Bellaterra Catalunya Spain
Centro de Investigacion Forestal Madrid Spain
CREA Research Ventre for Forestry and Wood Arezzo Italy
Department of Agriculture Forest and Food Sciences University of Torino Grugliasco Torino Italy
Department of Biodiversity Ecology and Evolution Complutense University of Madrid Madrid Spain
Department of Biologia Vegetal y Ecologia Universidad de Sevilla Sevilla Spain
Department of Biological Environment Akita Prefectural University Akita Japan
Department of Biological Sciences and Center for Adaptive Western Landscapes Flagstaff AZ USA
Department of Biological Sciences DePaul University Chicago IL USA
Department of Biological Sciences National Sun Yat sen University Kaohsiung Taiwan
Department of Biological Sciences Northern Arizona University Flagstaff AZ USA
Department of Biology Colby College Waterville ME USA
Department of Biology University of New Mexico Albuquerque NM USA
Department of Biology Wake Forest University Winston Salem NC USA
Department of Biology Washington University in St Louis St Louis MO USA
Department of Biology Wilkes University Wilkes Barre PA USA
Department of Ecology Evolution and Environmental Biology Columbia University New York NY USA
Department of Ecosystem Science and Management Pennsylvania State University University Park PA USA
Department of Environmental Sciences University of Puerto Rico Rio Piedras PR USA
Department of Environmental Studies University of California Santa Cruz CA USA
Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO USA
Department of Forest Ecology Silva Tarouca Research Institute Brno Czech Republic
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Department of Plant Ecology Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan
Department of Systematic Zoology Faculty of Biology Adam Mickiewicz University Poznan Poland
Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA
Earth and Environment Boston University Boston MA USA
Ecological Restoration Institute Northern Arizona University Flagstaff AZ USA
Forest Research Institute University of Quebec in Abitibi Temiscamingue Rouyn Noranda Quebec Canada
Forest Resources University of Washington Seattle WA USA
Health and Environmental Sciences Department Xian Jiaotong Liverpool University Suzhou China
INRAE Bordeaux Sciences Agro Villenave d'Ornon France
INRAE UR EFNO Nogent sur Vernisson France
Institute of Arctic Biology University of Alaska Fairbanks AK USA
Instituto Pirenaico de Ecologla Consejo Superior de Investigaciones Cientificas Zaragoza Spain
Laboratoire Evolution et Diversite Biologique Toulouse France
Mammal Research Institute Polish Academy of Sciences Bialowieza Poland
Natural Resources Cornell University Ithaca NY USA
Nicholas School of the Environment Duke University Durham NC USA
NRAE Aix Marseille University UMR RECOVER Aix en Provence France
Pacific Forestry Centre Victoria British Columbia Canada
Research Centre for Forestry and Wood Arezzo Italy
School for Environment and Sustainability University of Michigan Ann Arbor MI USA
School of Life Sciences Keele University Staffordshire UK
School of Natural Sciences UC Merced Merced CA USA
Smithsonian Tropical Research Institute Balboa Republic of Panama
Tohoku Research Center Forestry and Forest Products Research Institute Morioka Iwate Japan
U S Geological Survey Fort Collins Science Center Fort Collins CO USA
U S Geological Survey Western Ecological Research Center Three Rivers CA USA
USDA Forest Service Southern Research Station Stoneville MS USA
Valles Caldera National Preserve National Park Service Jemez Springs NM USA
W Szafer Institute of Botany Polish Academy of Sciences Krakow Poland
Zobrazit více v PubMed
Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).
Kelly, D. & Sork, V. L. Mast seeding in perennial plants: why, how, where? Annu. Rev. Ecol. Syst. 33, 427–447 (2002).
Jansen, P. A., Bongers, F. & Hemerik, L. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent. Ecol. Monogr. 74, 569–589 (2004).
Herrera, C. M., Jordano, P., Guitian, J. & Traveset, A. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am. Nat. 152, 576–594 (1998). PubMed
Siepielski, A. M. & Benkman, C. W. Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64, 1120–1128 (2010). PubMed
Wang, Y. Y. et al. Variation and synchrony of tree species mast seeding in an old-growth temperate forest. J. Veg. Sci. 28, 413–423 (2017).
Huang, L. et al. Benefit versus cost trade-offs of masting across seed-to-seedling transition for a dominant subtropical forest species. J. Ecol. 109, 3087–3098 (2021).
Seget, B. et al. Costs and benefits of masting: economies of scale are not reduced by negative density-dependence in seedling survival in Sorbus aucuparia. New Phytol. 233, 1931–1938 (2022). PubMed
Clark, J. S., Nunez, C. & Tomasek, B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecol. Monogr. 89, e01381 (2019).
Janzen, D. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
Clotfelter, E. D. et al. Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia 154, 493–503 (2007). PubMed
Chen, W. et al. Proximity to roads disrupts rodents’ contributions to seed dispersal services and subsequent recruitment dynamics. J. Ecol. 107, 2623–2634 (2019).
Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).
Pearse, I. S., LaMontagne, J. M., Lordon, M., Hipp, A. L. & Koenig, W. D. Biogeography and phylogeny of masting: do global patterns fit functional hypotheses? New Phytol. 227, 1557–1567 (2020). PubMed
Greenberg, C. H. Individual variation in acorn production by five species of southern Appalachian oaks. For. Ecol. Manage. 132, 199–210 (2000).
Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).
Chen, X., Brockway, D. G. & Guo, Q. Characterizing the dynamics of cone production for longleaf pine forests in the southeastern United States. For. Ecol. Manage. 429, 1–6 (2018).
Pucek, Z., Jedrzejewski, W., Jedrzejewska, B. & Pucek, M. Rodent population-dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop, and predation. Acta Theriol. 38, 199–232 (1993).
Bogdziewicz, M., Zwolak, R. & Crone, E. E. How do vertebrates respond to mast seeding? Oikos 125, 300–307 (2016).
Christensen, K. M. & Whitham, T. G. Impact of insect herbivores on competition between birds and mammals for pinyon pine seeds. Ecology 74, 2270–2278 (1993).
Crone, E. E. & Rapp, J. M. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. N. Y. Acad. Sci. 1322, 21–34 (2014). PubMed
Steele, M. A. & Yi, X. Squirrel-seed interactions: the evolutionary strategies and impact of squirrels as both seed predators and seed dispersers. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00259 (2020).
Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016). PubMed
Janzen, D. H. Tropical blackwater rivers, animals, and mast fruiting by the dipterocarpaceae. Biotropica 6, 69–103 (1974).
Smaill, S. J., Clinton, P. W., Allen, R. B. & Davis, M. R. Climate cues and resources interact to determine seed production by a masting species. J. Ecol. 99, 870–877 (2011).
Tanentzap, A. J., Lee, W. G. & Coomes, D. A. Soil nutrient supply modulates temperature-induction cues in mast-seeding grasses. Ecology 93, 462–469 (2012). PubMed
Fernández-Martínez, M. et al. Nutrient scarcity as a selective pressure for mast seeding. Nat. Plants 5, 1222–1228 (2019). PubMed
Rosecrance, R. C., Weinbaum, S. A. & Brown, P. H. Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Ann. Bot. 82, 463–470 (1998).
Sala, A., Hopping, K., McIntire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199 (2012). PubMed
Sork, V. L. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). Vegetatio 107, 133–147 (1993).
Sharma, A., Weindorf, D. C., Wang, D. D. & Chakraborty, S. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (cec). Geoderma 239, 130–134 (2015).
Hazelton, P. & Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? (CSIRO Publishing, 2016).
Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).
Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013). PubMed
Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).
Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B. & Retana, J. Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests. Ecology 89, 805–817 (2008). PubMed
Pérez-Ramos, I. M., Ourcival, J. M., Limousin, J. M. & Rambal, S. Mast seeding under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91, 3057–3068 (2010). PubMed
Koenig, W. D., Knops, J. M. H., Carmen, W. J. & Pearse, I. S. What drives masting? The phenological synchrony hypothesis. Ecology 96, 184–192 (2015). PubMed
Wion, A. P., Weisberg, P. J., Pearse, I. S. & Redmond, M. D. Aridity drives spatiotemporal patterns of masting across the latitudinal range of a dryland conifer. Ecography 43, 569–580 (2020).
LaMontagne, J. M., Pearse, I. S., Greene, D. F. & Koenig, W. D. Mast seeding patterns are asynchronous at a continental scale. Nat. Plants 6, 460–465 (2020). PubMed
Vacchiano, G. et al. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol. 215, 595–608 (2017). PubMed
Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–1991 (2014).
Lamontagne, J. M. & Boutin, S. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J. Ecol. 95, 991–1000 (2007).
Straub, J. N., Leach, A. G., Kaminski, R. M., Ezell, A. W. & Leininger, T. D. Red oak acorn yields in green-tree reservoirs and non-impounded forests in Mississippi. Wildl. Soc. Bull. 43, 491–499 (2019).
Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 2205 (2017). PubMed PMC
Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015). PubMed
Berdanier, A. B. & Clark, J. S. Divergent reproductive allocation trade-offs with canopy exposure across tree species in temperate forests. Ecosphere 7, e01313 (2016).
Redmond, M. D., Forcella, F. & Barger, N. N. Declines in pinyon pine cone production associated with regional warming. Ecosphere 3, 120 (2012).
Whipple, A. V. et al. Long-term studies reveal differential responses to climate change for trees under soil- or herbivore-related stress. Front. Plant Sci. 10, 132 (2019). PubMed PMC
Bogdziewicz, M., Kelly, D., Thomas, P. A., Lageard, J. G. A. & Hacket-Pain, A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat. Plants 6, 88–94 (2020). PubMed
Espelta, J. M., Bonal, R. & Sanchez-Humanes, B. Pre-dispersal acorn predation in mixed oak forests: interspecific differences are driven by the interplay among seed phenology, seed size and predator size. J. Ecol. 97, 1416–1423 (2009).
Yamauchi, A. Theory of mast reproduction in plants: storage-size dependent strategy. Evolution 50, 1795–1807 (1996). PubMed
Koenig, W. D. & Knops, J. M. H. The mystery of masting in trees: some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why? Am. Sci. 93, 340–347 (2005).
LaMontagne, J. M. & Boutin, S. Quantitative methods for defining mast-seeding years across species and studies. J. Vege. Sci. 20, 745–753 (2009).
Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010). PubMed
Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. Decadal changes in masting behaviour of oak trees with rising temperature. J. Ecol. 108, 1088–1100 (2020).
Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nat. Commun. 12, 1242 (2021). PubMed PMC
Qiu, T. et al. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nat. Commun. 13, 2381 (2022). PubMed PMC
Vander Wall, S. B. How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Phil. Trans. R. Soc. B 365, 989–997 (2010).
Zwolak, R., Bogdziewicz, M., Wrobel, A. & Crone, E. E. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia 180, 749–758 (2016). PubMed
Larue, C., Austruy, E., Basset, G. & Petit, R. J. Revisiting pollination mode in chestnut (Castanea spp.): an integrated approach. Bot. Lett. 168, 348–372 (2021).
Garcia, G., Re, B., Orians, C. & Crone, E. By wind or wing: pollination syndromes and alternate bearing in horticultural systems. Phil. Trans. R. Soc. B 376, 20200371 (2021). PubMed PMC
Journe, V. et al. Globally, tree fecundity exceeds productivity gradients. Ecol. Lett. 25, 1471–1482 (2022). PubMed
Smith, C. C., Hamrick, J. L. & Kramer, C. L. The advantage of mast years for wind pollination. Am. Nat. 136, 154–166 (1990).
Augspurger, C. K. Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators in Hybanthus prunifolius (Violaceae). Ecology 62, 775–788 (1981).
Crone, E. E. Responses of social and solitary bees to pulsed floral resources. Am. Nat. 182, 465–473 (2013). PubMed
Koenig, W. D. et al. Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos 102, 581–591 (2003).
Satake, A. & Kelly, D. Studying the genetic basis of masting. Phil. Trans. R. Soc. B 376, 20210116 (2021). PubMed PMC
Mueller, R. C., Wade, B. D., Gehring, C. A. & Whitham, T. G. Chronic herbivory negatively impacts cone and seed production, seed quality and seedling growth of susceptible pinyon pines. Oecologia 143, 558–565 (2005). PubMed
Schopmeyer, C. S. et al. Seeds of Woody Plants in the United States (US Department of Agriculture, 1974).
Crawley, M. J. & Long, C. R. Alternate bearing, predator satiation and seedling recruitment in Quercus robur L. J. Ecol. 83, 683–696 (1995).
Manson, R. H., Ostfeld, R. S. & Canham, C. D. The effects of tree seed and seedling density on predation rates by rodents in old fields. Écoscience 5, 183–190 (1998).
Zwolak, R., Celebias, P. & Bogdziewicz, M. Global patterns in the predator satiation effect of masting: a meta-analysis. Proc. Natl Acad. Sci. USA 119, e2105655119 (2022). PubMed PMC
Bascompte, J. Mutualistic networks. Front. Ecol. Environ. 7, 429–436 (2009).
Qui, T. et al. Is there tree senescence? The fecundity evidence. Proc. Natl Acad. Sci USA 118, e2106130118 (2021).
Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).
Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 26, 24–36 (1958).
Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J. & Zhang, S. Generalized joint attribute modeling for biodiversity analysis: median-zero, multivariate, multifarious data. Ecol. Monogr. 87, 34–56 (2017).
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002). PubMed
Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010). PubMed
Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).