Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients

. 2023 Jul ; 9 (7) : 1044-1056. [epub] 20230629

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37386149

Grantová podpora
AIST16-0052 NASA - United States

Odkazy

PubMed 37386149
DOI 10.1038/s41477-023-01446-5
PII: 10.1038/s41477-023-01446-5
Knihovny.cz E-zdroje

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.

Bent Creek Experimental Forest USDA Forest Service Asheville NC USA

Bilogo Dpto Conservacin y Manejo Parque Nacional Lanin Elordi y Perito Moreno San Marten de los Andes Neuqun Argentina

CEFE Universite Montpellier CNRS EPHE IRD Montpellier France

Centre d'Ecologie Fonctionnelle et Evolutive Montpellier France

Centre de Recerca Ecologica i Aplicacions Forestals Bellaterra Catalunya Spain

Centro de Investigacion Forestal Madrid Spain

CREA Research Ventre for Forestry and Wood Arezzo Italy

Department of Agricultural and Environmental Sciences Production Territory Agroenergy University of Milan Milano Italy

Department of Agriculture Forest and Food Sciences University of Torino Grugliasco Torino Italy

Department of Biodiversity Ecology and Evolution Complutense University of Madrid Madrid Spain

Department of Biologia Vegetal y Ecologia Universidad de Sevilla Sevilla Spain

Department of Biological Environment Akita Prefectural University Akita Japan

Department of Biological Sciences and Center for Adaptive Western Landscapes Flagstaff AZ USA

Department of Biological Sciences DePaul University Chicago IL USA

Department of Biological Sciences National Sun Yat sen University Kaohsiung Taiwan

Department of Biological Sciences Northern Arizona University Flagstaff AZ USA

Department of Biology Colby College Waterville ME USA

Department of Biology University of New Mexico Albuquerque NM USA

Department of Biology Wake Forest University Winston Salem NC USA

Department of Biology Washington University in St Louis St Louis MO USA

Department of Biology Wilkes University Wilkes Barre PA USA

Department of Ecology Evolution and Environmental Biology Columbia University New York NY USA

Department of Ecology Instituto de Investigaciones en Biodiversidad y Medioambiente Bariloche Argentina

Department of Ecosystem Science and Management Pennsylvania State University University Park PA USA

Department of Environmental Science and Ecology State University of New York Brockport Brockport NY USA

Department of Environmental Sciences University of Puerto Rico Rio Piedras PR USA

Department of Environmental Studies University of California Santa Cruz CA USA

Department of Forest and Rangeland Stewardship Colorado State University Fort Collins CO USA

Department of Forest Ecology Silva Tarouca Research Institute Brno Czech Republic

Department of Forest Vegetation Forestry and Forest Products Research Institute Tsukuba Japan Ibaraki

Department of Forestry and Renewable Forest Resources Biotechnical Faculty University of Ljubljana Ljubljana Slovenia

Department of Geography and Planning School of Environmental Sciences University of Liverpool Liverpool UK

Department of Natural Sciences Manchester Metropolitan University Manchester UK

Department of Plant Ecology Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan

Department of Systematic Zoology Faculty of Biology Adam Mickiewicz University Poznan Poland

Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA

Earth and Environment Boston University Boston MA USA

Eastern Forest Environmental Threat Assessment Center USDA Forest Service Southern Research Station Research Triangle Park NC USA

Ecological Restoration Institute Northern Arizona University Flagstaff AZ USA

Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza Universidad de Chile La Pintana Santiago Chile

Forest Research Institute University of Quebec in Abitibi Temiscamingue Rouyn Noranda Quebec Canada

Forest Resources University of Washington Seattle WA USA

Health and Environmental Sciences Department Xian Jiaotong Liverpool University Suzhou China

INRAE Bordeaux Sciences Agro Villenave d'Ornon France

INRAE UR EFNO Nogent sur Vernisson France

Institut National de Recherche pour Agriculture Alimentation et Environnement Ecologie des Forets Mediterranennes Avignon France

Institute of Arctic Biology University of Alaska Fairbanks AK USA

Institute of Forest Ecology Department of Forest and Soil Sciences University of Natural Resources and Life Sciences Wien Austria

Instituto de Recursos Naturales y Agrobiologia de Sevilla Consejo Superior de Investigaciones Cientificas Seville Andalucia Spain

Instituto Pirenaico de Ecologla Consejo Superior de Investigaciones Cientificas Zaragoza Spain

Laboratoire Evolution et Diversite Biologique Toulouse France

Mammal Research Institute Polish Academy of Sciences Bialowieza Poland

Natural Resources Cornell University Ithaca NY USA

Nicholas School of the Environment Duke University Durham NC USA

NRAE Aix Marseille University UMR RECOVER Aix en Provence France

Pacific Forestry Centre Victoria British Columbia Canada

Research Centre for Forestry and Wood Arezzo Italy

School for Environment and Sustainability University of Michigan Ann Arbor MI USA

School of Life Sciences Keele University Staffordshire UK

School of Natural Sciences UC Merced Merced CA USA

Smithsonian Tropical Research Institute Balboa Republic of Panama

Tohoku Research Center Forestry and Forest Products Research Institute Morioka Iwate Japan

U S Geological Survey Fort Collins Science Center Fort Collins CO USA

U S Geological Survey Western Ecological Research Center Three Rivers CA USA

Universite Bordeaux Institut National de Recherche pour Agriculture Alimentation et Environnement Pessac France

Universite Grenoble Alpes Institut National de Recherche pour Agriculture Alimentation et Environnement St Martin d'Heres France

Universite Paris Saclay Centre national de la recherche scientifique AgroParisTech Ecologie Systematique et Evolution Orsay France

USDA Forest Service Southern Research Station Stoneville MS USA

Valles Caldera National Preserve National Park Service Jemez Springs NM USA

W Szafer Institute of Botany Polish Academy of Sciences Krakow Poland

Washington University in Saint Louis Center for Conservation and Sustainable Development Missouri Botanical Garden St Louis MO USA

Zobrazit více v PubMed

Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).

Kelly, D. & Sork, V. L. Mast seeding in perennial plants: why, how, where? Annu. Rev. Ecol. Syst. 33, 427–447 (2002).

Jansen, P. A., Bongers, F. & Hemerik, L. Seed mass and mast seeding enhance dispersal by a neotropical scatter-hoarding rodent. Ecol. Monogr. 74, 569–589 (2004).

Herrera, C. M., Jordano, P., Guitian, J. & Traveset, A. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. Am. Nat. 152, 576–594 (1998). PubMed

Siepielski, A. M. & Benkman, C. W. Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64, 1120–1128 (2010). PubMed

Wang, Y. Y. et al. Variation and synchrony of tree species mast seeding in an old-growth temperate forest. J. Veg. Sci. 28, 413–423 (2017).

Huang, L. et al. Benefit versus cost trade-offs of masting across seed-to-seedling transition for a dominant subtropical forest species. J. Ecol. 109, 3087–3098 (2021).

Seget, B. et al. Costs and benefits of masting: economies of scale are not reduced by negative density-dependence in seedling survival in Sorbus aucuparia. New Phytol. 233, 1931–1938 (2022). PubMed

Clark, J. S., Nunez, C. & Tomasek, B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecol. Monogr. 89, e01381 (2019).

Janzen, D. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

Clotfelter, E. D. et al. Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia 154, 493–503 (2007). PubMed

Chen, W. et al. Proximity to roads disrupts rodents’ contributions to seed dispersal services and subsequent recruitment dynamics. J. Ecol. 107, 2623–2634 (2019).

Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).

Pearse, I. S., LaMontagne, J. M., Lordon, M., Hipp, A. L. & Koenig, W. D. Biogeography and phylogeny of masting: do global patterns fit functional hypotheses? New Phytol. 227, 1557–1567 (2020). PubMed

Greenberg, C. H. Individual variation in acorn production by five species of southern Appalachian oaks. For. Ecol. Manage. 132, 199–210 (2000).

Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).

Chen, X., Brockway, D. G. & Guo, Q. Characterizing the dynamics of cone production for longleaf pine forests in the southeastern United States. For. Ecol. Manage. 429, 1–6 (2018).

Pucek, Z., Jedrzejewski, W., Jedrzejewska, B. & Pucek, M. Rodent population-dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop, and predation. Acta Theriol. 38, 199–232 (1993).

Bogdziewicz, M., Zwolak, R. & Crone, E. E. How do vertebrates respond to mast seeding? Oikos 125, 300–307 (2016).

Christensen, K. M. & Whitham, T. G. Impact of insect herbivores on competition between birds and mammals for pinyon pine seeds. Ecology 74, 2270–2278 (1993).

Crone, E. E. & Rapp, J. M. Resource depletion, pollen coupling, and the ecology of mast seeding. Ann. N. Y. Acad. Sci. 1322, 21–34 (2014). PubMed

Steele, M. A. & Yi, X. Squirrel-seed interactions: the evolutionary strategies and impact of squirrels as both seed predators and seed dispersers. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00259 (2020).

Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016). PubMed

Janzen, D. H. Tropical blackwater rivers, animals, and mast fruiting by the dipterocarpaceae. Biotropica 6, 69–103 (1974).

Smaill, S. J., Clinton, P. W., Allen, R. B. & Davis, M. R. Climate cues and resources interact to determine seed production by a masting species. J. Ecol. 99, 870–877 (2011).

Tanentzap, A. J., Lee, W. G. & Coomes, D. A. Soil nutrient supply modulates temperature-induction cues in mast-seeding grasses. Ecology 93, 462–469 (2012). PubMed

Fernández-Martínez, M. et al. Nutrient scarcity as a selective pressure for mast seeding. Nat. Plants 5, 1222–1228 (2019). PubMed

Rosecrance, R. C., Weinbaum, S. A. & Brown, P. H. Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Ann. Bot. 82, 463–470 (1998).

Sala, A., Hopping, K., McIntire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199 (2012). PubMed

Sork, V. L. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). Vegetatio 107, 133–147 (1993).

Sharma, A., Weindorf, D. C., Wang, D. D. & Chakraborty, S. Characterizing soils via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (cec). Geoderma 239, 130–134 (2015).

Hazelton, P. & Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? (CSIRO Publishing, 2016).

Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).

Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013). PubMed

Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).

Espelta, J. M., Cortés, P., Molowny-Horas, R., Sánchez-Humanes, B. & Retana, J. Masting mediated by summer drought reduces acorn predation in Mediterranean oak forests. Ecology 89, 805–817 (2008). PubMed

Pérez-Ramos, I. M., Ourcival, J. M., Limousin, J. M. & Rambal, S. Mast seeding under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91, 3057–3068 (2010). PubMed

Koenig, W. D., Knops, J. M. H., Carmen, W. J. & Pearse, I. S. What drives masting? The phenological synchrony hypothesis. Ecology 96, 184–192 (2015). PubMed

Wion, A. P., Weisberg, P. J., Pearse, I. S. & Redmond, M. D. Aridity drives spatiotemporal patterns of masting across the latitudinal range of a dryland conifer. Ecography 43, 569–580 (2020).

LaMontagne, J. M., Pearse, I. S., Greene, D. F. & Koenig, W. D. Mast seeding patterns are asynchronous at a continental scale. Nat. Plants 6, 460–465 (2020). PubMed

Vacchiano, G. et al. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. New Phytol. 215, 595–608 (2017). PubMed

Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–1991 (2014).

Lamontagne, J. M. & Boutin, S. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J. Ecol. 95, 991–1000 (2007).

Straub, J. N., Leach, A. G., Kaminski, R. M., Ezell, A. W. & Leininger, T. D. Red oak acorn yields in green-tree reservoirs and non-impounded forests in Mississippi. Wildl. Soc. Bull. 43, 491–499 (2019).

Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 2205 (2017). PubMed PMC

Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. & Thomas, P. A. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015). PubMed

Berdanier, A. B. & Clark, J. S. Divergent reproductive allocation trade-offs with canopy exposure across tree species in temperate forests. Ecosphere 7, e01313 (2016).

Redmond, M. D., Forcella, F. & Barger, N. N. Declines in pinyon pine cone production associated with regional warming. Ecosphere 3, 120 (2012).

Whipple, A. V. et al. Long-term studies reveal differential responses to climate change for trees under soil- or herbivore-related stress. Front. Plant Sci. 10, 132 (2019). PubMed PMC

Bogdziewicz, M., Kelly, D., Thomas, P. A., Lageard, J. G. A. & Hacket-Pain, A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nat. Plants 6, 88–94 (2020). PubMed

Espelta, J. M., Bonal, R. & Sanchez-Humanes, B. Pre-dispersal acorn predation in mixed oak forests: interspecific differences are driven by the interplay among seed phenology, seed size and predator size. J. Ecol. 97, 1416–1423 (2009).

Yamauchi, A. Theory of mast reproduction in plants: storage-size dependent strategy. Evolution 50, 1795–1807 (1996). PubMed

Koenig, W. D. & Knops, J. M. H. The mystery of masting in trees: some trees reproduce synchronously over large areas, with widespread ecological effects, but how and why? Am. Sci. 93, 340–347 (2005).

LaMontagne, J. M. & Boutin, S. Quantitative methods for defining mast-seeding years across species and studies. J. Vege. Sci. 20, 745–753 (2009).

Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010). PubMed

Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. Decadal changes in masting behaviour of oak trees with rising temperature. J. Ecol. 108, 1088–1100 (2020).

Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nat. Commun. 12, 1242 (2021). PubMed PMC

Qiu, T. et al. Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nat. Commun. 13, 2381 (2022). PubMed PMC

Vander Wall, S. B. How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Phil. Trans. R. Soc. B 365, 989–997 (2010).

Zwolak, R., Bogdziewicz, M., Wrobel, A. & Crone, E. E. Advantages of masting in European beech: timing of granivore satiation and benefits of seed caching support the predator dispersal hypothesis. Oecologia 180, 749–758 (2016). PubMed

Larue, C., Austruy, E., Basset, G. & Petit, R. J. Revisiting pollination mode in chestnut (Castanea spp.): an integrated approach. Bot. Lett. 168, 348–372 (2021).

Garcia, G., Re, B., Orians, C. & Crone, E. By wind or wing: pollination syndromes and alternate bearing in horticultural systems. Phil. Trans. R. Soc. B 376, 20200371 (2021). PubMed PMC

Journe, V. et al. Globally, tree fecundity exceeds productivity gradients. Ecol. Lett. 25, 1471–1482 (2022). PubMed

Smith, C. C., Hamrick, J. L. & Kramer, C. L. The advantage of mast years for wind pollination. Am. Nat. 136, 154–166 (1990).

Augspurger, C. K. Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators in Hybanthus prunifolius (Violaceae). Ecology 62, 775–788 (1981).

Crone, E. E. Responses of social and solitary bees to pulsed floral resources. Am. Nat. 182, 465–473 (2013). PubMed

Koenig, W. D. et al. Dissecting components of population-level variation in seed production and the evolution of masting behavior. Oikos 102, 581–591 (2003).

Satake, A. & Kelly, D. Studying the genetic basis of masting. Phil. Trans. R. Soc. B 376, 20210116 (2021). PubMed PMC

Mueller, R. C., Wade, B. D., Gehring, C. A. & Whitham, T. G. Chronic herbivory negatively impacts cone and seed production, seed quality and seedling growth of susceptible pinyon pines. Oecologia 143, 558–565 (2005). PubMed

Schopmeyer, C. S. et al. Seeds of Woody Plants in the United States (US Department of Agriculture, 1974).

Crawley, M. J. & Long, C. R. Alternate bearing, predator satiation and seedling recruitment in Quercus robur L. J. Ecol. 83, 683–696 (1995).

Manson, R. H., Ostfeld, R. S. & Canham, C. D. The effects of tree seed and seedling density on predation rates by rodents in old fields. Écoscience 5, 183–190 (1998).

Zwolak, R., Celebias, P. & Bogdziewicz, M. Global patterns in the predator satiation effect of masting: a meta-analysis. Proc. Natl Acad. Sci. USA 119, e2105655119 (2022). PubMed PMC

Bascompte, J. Mutualistic networks. Front. Ecol. Environ. 7, 429–436 (2009).

Qui, T. et al. Is there tree senescence? The fecundity evidence. Proc. Natl Acad. Sci USA 118, e2106130118 (2021).

Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).

Tobin, J. Estimation of relationships for limited dependent variables. Econometrica 26, 24–36 (1958).

Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P. J. & Zhang, S. Generalized joint attribute modeling for biodiversity analysis: median-zero, multivariate, multifarious data. Ecol. Monogr. 87, 34–56 (2017).

Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed

Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002). PubMed

Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010). PubMed

Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...