Does the Sign of Charge Affect the Surface Affinity of Simple Ions?
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37399285
PubMed Central
PMC11755782
DOI
10.1021/acs.jpcb.3c02641
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The role the charge sign of simple ions plays in determining their surface affinity in aqueous solutions is investigated by computer simulation methods. For this purpose, the free surface of aqueous solutions of fictitious salts is simulated at finite concentration both with nonpolarizable point-charge and polarizable Gaussian-charge potential models. The salts consist of monovalent cations and anions that are, apart from the sign of their charge, identical to each other. In particular, we consider the small Na+ and the large I- ions together with their charge-inverted counterparts. In an attempt to avoid the interference even between the behavior of cations and anions, we also simulate systems containing only one of the above ions, and determine the free energy profile of these ions across the liquid-vapor interface of water at infinite dilution by potential of mean force (PMF) calculations. The obtained results reveal that, in the case of small ions, the anion is hydrated considerably stronger than the cation due to the close approach of water H atoms, bearing a positive fractional charge. As a consequence, the surface affinity of a small anion is even smaller than that of its cationic counterpart. However, considering that small ions are effectively repelled from the water surface, the importance of this difference is negligible. Further, a change in the hydration energy trends of the two oppositely charged ions is observed with their increasing size. This change is largely attributed to the fact that, with increasing ion size, the factor of 2 in the magnitude of the fractional charge of the closely approaching water atoms (i.e., O around cations and H around anions) outweighs the closer approach of the H than the O atom in the hydration energy. Thus, for large ions, being already surface active themselves, the surface affinity of the anion is larger than that of its positively charged counterpart. Further, such a difference is seen even in the case when the sign of the surface potential favors the adsorption of cations.
Budapest University of Technology and Economics Szt Gellért tér 4 H 1111 Budapest Hungary
Department of Chemistry Eszterházy Károly Catholic University Leányka utca 6 H 3300 Eger Hungary
See more in PubMed
Shaw D. J.Introduction to Colloid and Surface Chemistry; Butterworths: London, 1980.
Heydweiller A.About Physical Properties of Solutions in Their Context. II. Surface Tension and Electrical Conductivity of Aqueous Salt Solutions, Ann. Phys. 1910, 338, 145–185 (in German), 10.1002/andp.19103381108. DOI
Weissenborn P. K.; Pugh R. J. Surface Tension of Aqueous Solutions of Electrolytes: Relationship with Ion Hydration, Oxygen Solubility, and Bubble Coalescence. J. Colloid. Interface Sci. 1996, 184, 550–563. 10.1006/jcis.1996.0651. PubMed DOI
Ali K.; Haq A.; Bilal S.; Siddiqi S. Concentration and Temperature Dependence of Surface Parameters of Some Aqueous Salt Solutions. Colloid Surf. A 2006, 272, 105–110. 10.1016/j.colsurfa.2005.07.014. DOI
Chen H.; Li Z.; Wang F.; Wang Z.; Li H. Investigation of Surface Properties for Electrolyte Solutions: Measurement and Prediction of Surface Tension for Aqueous Concentrated Electrolyte Solutions. J. Chem. Eng. Data 2017, 62, 3783–3792. 10.1021/acs.jced.7b00503. DOI
Onsager L.; Samaras N. N. T. The Surface Tension of Debeye-Hückel Electrolytes. J. Chem. Phys. 1934, 2, 528–536. 10.1063/1.1749522. DOI
Markovich G.; Giniger R.; Levin M.; Cheshnovsky O. Photoelectron Spectroscopy of Iodine Anion Solvated in Water Clusters. J. Chem. Phys. 1991, 95, 9416–9419. 10.1063/1.461172. DOI
Markovich G.; Pollack S.; Giniger R.; Cheshnovsky O. Photoelectron Spectroscopy of Cl–, Br–, and I– Solvated in Water Clusters. J. Chem. Phys. 1994, 101, 9344–9353. 10.1063/1.467965. DOI
Perera L.; Berkowitz M. L. Many-Body Effects in Molecular Dynamics Simulations of Na+(H2O)n and Cl–(H2O)n Clusters. J. Chem. Phys. 1991, 95, 1954–1963. 10.1063/1.460992. DOI
Dang L. X.; Smith D. E. Molecular Dynamics Simulations of Aqueous Ionic Clusters Using Polarizable Water. J. Chem. Phys. 1991, 95, 6950–6956. 10.1063/1.465441. DOI
Perera L.; Berkowitz M. L. Structures of Cl–(H2O)n and F–(H2O)n (n=2,3,...,15) Clusters. Molecular Dynamics Computer Simulations. J. Chem. Phys. 1994, 100, 3085–3093. 10.1063/1.466450. DOI
Jungwirth P.; Tobias D. J. Molecular Structure of Salt Solutions: A New View of the Interface with Implications for Heterogeneous Atmospheric Chemistry. J. Phys. Chem. B. 2001, 105, 10468–10472. 10.1021/jp012750g. DOI
Jungwirth P.; Tobias D. J. Ions at the Air/Water Interface. J. Phys. Chem. B 2002, 106, 6361–6373. 10.1021/jp020242g. DOI
Vrbka L.; Mucha M.; Minofar B.; Jungwirth P.; Brown E. C.; Tobias D. J. Propensity of Soft Ions for the Air/Water Interface. Curr. Opin. Colloid. Interface Sci. 2004, 9, 67–73. 10.1016/j.cocis.2004.05.028. DOI
Ottosson N.; Heyda J.; Wernersson E.; Pokapanich W.; Svensson S.; Winter B.; Öhrwall G.; Jungwirth P.; Björneholm O. The Influence of Concentration on the Molecular Surface Structure of Simple and Mixed Aqueous Electrolytes. Phys. Chem. Chem. Phys. 2010, 12, 10693–10700. 10.1039/c0cp00365d. PubMed DOI
Stern A. C.; Baer M.; Mundy C. J.; Tobias D. J. Thermodynamics of Iodide Adsorption at the Instantaneous Air-Water Interface. J. Chem. Phys. 2013, 138, 114709.10.1063/1.4794688. PubMed DOI
Olivieri G.; Parry K. M.; D’Auria R.; Tobias D. J.; Brown M. A. Specific Anion Effects on Na+ Adsorption at the Aqueous Solution–Air Interface: MD Simulations, SESSA Calculations, and Photoelectron Spectroscopy Experiments. J. Phys. Chem. B 2017, 122, 910–918. 10.1021/acs.jpcb.7b06981. PubMed DOI
Hantal G.; Horváth R. A.; Kolafa J.; Sega M.; Jedlovszky P. Surface Affinity of Alkali and Halide Ions in Their Aqueous Solution: Insight from Intrinsic Density Analysis. J. Phys. Chem. B 2020, 124, 9884–9897. 10.1021/acs.jpcb.0c05547. PubMed DOI
Eggimann B. L.; Siepmann J. I. Size Effects on the Solvation of Anions at the Aqueous Liquid-Vapor Interface. J. Phys. Chem. C 2008, 112, 210–218. 10.1021/jp076054d. DOI
dos Santos D. J. V. A.; Müller-Plathe F.; Weiss V. C. Consistency of Ion Adsorption and Excess Surface Tension in Molecular Dynamics Simulations of Aqueous Salt Solutions. J. Phys. Chem. C 2008, 112, 19431–19442. 10.1021/jp804811u. DOI
Horinek D.; Herz A.; Vrbka L.; Sedlmeier F.; Mamatkulov S. I.; Netz R. R. Specific Ion Adsorption at the Air/Water Interface: The Role of Hydrophobic Solvation. Chem. Phys. Lett. 2009, 479, 173–183. 10.1016/j.cplett.2009.07.077. DOI
Bresme F.; Chacón E.; Tarazona P.; Wynveen A. The Structure of Ionic Aqueous Solutions at Interfaces: An Intrinsic Structure Analysis. J. Chem. Phys. 2012, 137, 114706.10.1063/1.4753986. PubMed DOI
Liu D.; Ma G.; Levering L. M.; Allen H. C. Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air-Liquid Interfaces: Observation of Increased Interfacial Depth. J. Phys. Chem. B 2004, 108, 2252–2260. 10.1021/jp036169r. DOI
Petersen P. B.; Johnson J. C.; Knutsen K. P.; Saykally R. J. Direct Experimental Validation of the Jones-Ray Effect. Chem. Phys. Lett. 2004, 397, 46–50. 10.1016/j.cplett.2004.08.048. DOI
Padmanabhan V.; Daillant J.; Belloni L.; Mora S.; Alba M.; Konovalov O. Specific Ion Adsorption and Short-Range Interactions at the Air Aqueous Solution Interface. Phys. Rev. Lett. 2007, 99, 08610510.1103/PhysRevLett.99.086105. PubMed DOI
Levin Y; Dos Santos A. P.; Diehl A. Ions at the Air-Water Interface: An End to a Hundred-Year-Old Mystery?. Phys. Rev. Lett. 2009, 103, 25780210.1103/PhysRevLett.103.257802. PubMed DOI
Levin Y. Polarizable Ions at Interfaces. Phys. Rev. Lett. 2009, 102, 14780310.1103/PhysRevLett.102.147803. PubMed DOI
Atkins P.; de Paula J.. Physical Chemistry; Freeman: New York, 2006.
Hofmeister F.On the Effects of Salts. Archiv f. Experiment. Pathol. U. Pharmakol. 1888, 24, 247–260 (in German), 10.1007/BF01918191. DOI
Jungwirth P.; Cremer P. S. Beyond Hofmeister. Nat. Chem. 2014, 6, 261–263. 10.1038/nchem.1899. PubMed DOI
Hantal G.; Sega M.; Horvai G.; Jedlovszky P. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions. II: Role of the Size and Charge Sign of the Counterions. J. Phys. Chem. B 2021, 125, 9005–9018. 10.1021/acs.jpcb.1c04216. PubMed DOI
Netz R. R.; Horinek D. Progress in Modeling of Ion Effects at the Vapor/Water Interface. Annu. Rev. Phys. Chem. 2012, 63, 401–418. 10.1146/annurev-physchem-032511-143813. PubMed DOI
Lbadaoui-Darvas M.; Idrissi A.; Jedlovszky P. Computer Simulation of the Surface of Aqueous Ionic and Surfactant Solutions. J. Phys. Chem. B 2022, 126, 751–765. 10.1021/acs.jpcb.1c08553. PubMed DOI PMC
McFegan L.; Juhász Á.; Márton P.; Hórvölgyi Z.; Jedlovszky-Hajdú A.; Hantal G.; Jedlovszky P. Surface Affinity of Tetramethylammonium Iodide in Aqueous Solutions – A Combined Experimental and Computer Simulation Study. J. Phys. Chem. B 2023, 127, 5341–5352. 10.1021/acs.jpcb.3c01370. PubMed DOI PMC
Wilson M. A.; Pohorille A.; Pratt L. R. Surface Potential of the Water Liquid-Vapor Interface. J. Chem. Phys. 1988, 88, 3281–3285. 10.1063/1.453923. PubMed DOI
Kathmann S. M.; Kuo I. F. W.; Mundy C. J.; Schenter G. K. Understanding the Surface Potential of Water. J. Phys. Chem. B 2011, 115, 4369–4377. 10.1021/jp1116036. PubMed DOI
Baer M. D.; Stern A. C.; Levin Y.; Tobias D. J.; Mundy C. J. Electrochemical Surface Potential Due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface. J. Phys. Chem. Lett. 2012, 3, 1565–1570. 10.1021/jz300302t. PubMed DOI
Dang L. X.; Chang T. M. Molecular Dynamics Study of Water Clusters, Liquid, and Liquid–Vapor Interface of Water with Many-Body Potentials. J. Chem. Phys. 1997, 106, 8149–8159. 10.1063/1.473820. DOI
Olivieri; Goel A.; Kleibert A.; Cvetko D.; Brown M. A. Quantitative Ionization energies and Work Functions of Aqueous Solutions. Phys. Chem. Chem. Phys. 2016, 18, 29506–29515. 10.1039/C6CP05682B. PubMed DOI
Allen M. P.; Tildesley D. J.. Computer Simulation of Liquids; Clarendon: Oxford, 1987.
Joung I. S.; Cheatham T. E. III Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Berendsen H. J. C.; Grigera J. R.; Straatsma T. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI
Kiss P. T.; Baranyai A. A Systematic Development of a Polarizable Potential of Water. J. Chem. Phys. 2013, 138, 204507.10.1063/1.4807600. PubMed DOI
Kiss P. T.; Baranyai A. A New Polarizable Force Field for Alkali and Halide Ions. J. Chem. Phys. 2014, 141, 114501.10.1063/1.4895129. PubMed DOI
Dočkal J.; Lísal M.; Moučka F. Polarizable Force Fields for Accurate Molecular Simulations of Aqueous Solutions of Electrolytes, Crystalline Salts, and Solubility: Li+, Na+, K+, Rb+, F–, Cl–, Br–, I–. J. Mol. Liq. 2022, 362, 11965910.1016/j.molliq.2022.119659. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25. 10.1016/j.softx.2015.06.001. DOI
Nosé S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 1984, 52, 255–268. 10.1080/00268978400101201. DOI
Hoover W. G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. 10.1103/PhysRevA.31.1695. PubMed DOI
Essman U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Int Veld P. J.; Ismail A. E.; Grest G. S. Application of Ewald Summations to Long–Range Dispersion Forces. J. Chem. Phys. 2007, 127, 144711.10.1063/1.2770730. PubMed DOI
Miyamoto S.; Kollman P. A. Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992, 13, 952–962. 10.1002/jcc.540130805. DOI
Kolafa J.MACSIMUS (Macromolecule Simulation Software), release 2019-10-08 with blend V2.4a and cook V3.3k. Freely available software from URL: http://www.vscht.cz/fch/software/macsimus/ (last accessed Feb 28, 2023).
Kolafa J.; Lísal M. Time-Reversible Velocity Predictors for Verlet Integration with Velocity-Dependent Right-Hand Side. J. Chem. Theory Comput. 2011, 7, 3596–3607. 10.1021/ct200108g. PubMed DOI
Ewald P. Die Berechnung Optischer und Elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369, 253–287. 10.1002/andp.19213690304. DOI
de Leeuw S. W.; Perram J. W.; Smith E. R. Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants. Proc. R. Soc. Lond. A 1980, 373, 27–56. 10.1098/rspa.1980.0135. DOI
Kolafa J.; Perram J. W. Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems. Mol. Simul. 1992, 9, 351–368. 10.1080/08927029208049126. DOI
Yeh I. C.; Berkowitz M. L. Ewald Summation for Systems with Slab Geometry. J. Chem. Phys. 1999, 111, 3155–3162. 10.1063/1.479595. DOI
Kolafa J. Time-Reversible Always Stable Predictor-Corrector Method for Molecular Dynamics of Polarizable Molecules. J. Comput. Chem. 2004, 25, 335–342. 10.1002/jcc.10385. PubMed DOI
Ryckaert J. P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System With Constraints; Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI
Pártay L. B.; Hantal G.; Jedlovszky P.; Vincze Á.; Horvai G. A New Method for Determining the Interfacial Molecules and Characterizing the Surface Roughness in Computer Simulations. Application to the Liquid–Vapor Interface of Water. J. Comput. Chem. 2008, 29, 945–956. 10.1002/jcc.20852. PubMed DOI
Jorge M.; Jedlovszky P.; Cordeiro M. N. D. S. A Critical Assessment of Methods for the Intrinsic Analysis of Liquid Interfaces. 1. Surface Site Distributions. J. Phys. Chem. C 2010, 114, 11169–11179. 10.1021/jp101035r. DOI
Sega M.; Hantal G.; Fábián B.; Jedlovszky P. PYTIM: A Python Package for the Interfacial Analysis of Molecular Simulations. J. Comput. Chem. 2018, 39, 2118–2125. 10.1002/jcc.25384. PubMed DOI PMC
Pickard C. J. Real-Space Pairwise Electrostatic Summation in a Uniform Neutralizing Background. Phys. Rev. Mater. 2018, 2, 01380610.1103/PhysRevMaterials.2.013806. DOI
Thompson A. P.; Aktulga H. M.; Berger R.; Bolintineanu D. S.; Brown W. M.; Crozier P.; Jint Veld S. P.; Kohlmeyer A.; Moore S. G.; Nguyen T. D.; et al. LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 10817110.1016/j.cpc.2021.108171. DOI
Sega M.; Fábián B.; Jedlovszky P. Nonzero Ideal Gas Contribution to the Surface Tension of Water. J. Phys. Chem. Lett. 2017, 8, 2608–2612. 10.1021/acs.jpclett.7b01024. PubMed DOI