Opioids Alleviate Oxidative Stress via the Nrf2/HO-1 Pathway in LPS-Stimulated Microglia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
790217
Charles University Grant Agency
SVV-260683
Charles University
PubMed
37446267
PubMed Central
PMC10342087
DOI
10.3390/ijms241311089
PII: ijms241311089
Knihovny.cz E-zdroje
- Klíčová slova
- NADPH, Nrf2/HO-1, glucose transporter, lipopolysaccharide, microglia, opioids, oxidative stress,
- MeSH
- antiflogistika farmakologie MeSH
- antioxidancia farmakologie metabolismus MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- ligandy MeSH
- lipopolysacharidy * toxicita metabolismus MeSH
- mikroglie * metabolismus MeSH
- myši MeSH
- opioidní analgetika farmakologie metabolismus MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- receptory opiátové metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika MeSH
- antioxidancia MeSH
- faktor 2 související s NF-E2 MeSH
- ligandy MeSH
- lipopolysacharidy * MeSH
- opioidní analgetika MeSH
- reaktivní formy kyslíku MeSH
- receptory opiátové MeSH
Opioids are known to have antioxidant effects and to modulate microglial function under certain conditions. It has been previously shown that opioid ligands can effectively inhibit the release of proinflammatory cytokines when stimulated with lipopolysaccharide (LPS) and convert microglia to an anti-inflammatory polarization state. Here, we used C8-B4 cells, the mouse microglial cell line activated by LPS as a model to investigate the anti-inflammatory/antioxidant potential of selected opioid receptor agonists (DAMGO, DADLE, and U-50488). We found that all of these ligands could exert cytoprotective effects through the mechanism affecting LPS-induced ROS production, NADPH synthesis, and glucose uptake. Interestingly, opioids elevated the level of reduced glutathione, increased ATP content, and enhanced mitochondrial respiration in microglial cells exposed to LPS. These beneficial effects were associated with the upregulation of the Nrf2/HO-1 pathway. The present results indicate that activation of opioid signaling supports the preservation of mitochondrial function with concomitant elimination of ROS in microglia and suggest that an Nrf2/HO-1 signaling pathway-dependent mechanism is involved in the antioxidant efficacy of opioids. Opioid receptor agonists may therefore be considered as agents to suppress oxidative stress and inflammatory responses of microglia.
Zobrazit více v PubMed
Glass C.K., Saijo K., Winner B., Marchetto M.C., Gage F.H. Mechanisms Underlying Inflammation in Neurodegeneration. Cell. 2010;140:918–934. doi: 10.1016/j.cell.2010.02.016. PubMed DOI PMC
Peterson L.J., Flood P.M. Oxidative Stress and Microglial Cells in Parkinson’s Disease. Mediat. Inflamm. 2012;2012:401264. doi: 10.1155/2012/401264. PubMed DOI PMC
Solleiro-Villavicencio H., Rivas-Arancibia S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated CD4+T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018;12:114. doi: 10.3389/fncel.2018.00114. PubMed DOI PMC
Guzman-Martinez L., Maccioni R.B., Andrade V., Navarrete L.P., Pastor M.G., Ramos-Escobar N. Neuroinflammation as a Common Feature of Neurodegenerative Disorders. Front. Pharmacol. 2019;10:1008. doi: 10.3389/fphar.2019.01008. PubMed DOI PMC
Fiebich B.L., Batista C.R.A., Saliba S.W., Yousif N.M., De Oliveira A.C.P. Role of Microglia TLRs in Neurodegeneration. Front. Cell. Neurosci. 2018;12:329. doi: 10.3389/fncel.2018.00329. PubMed DOI PMC
Zhou T., Huang Z., Sun X., Zhu X., Zhou L., Li M., Cheng B., Liu X., He C. Microglia Polarization with M1/M2 Phenotype Changes in Rd1 Mouse Model of Retinal Degeneration. Front. Neuroanat. 2017;11:77. doi: 10.3389/fnana.2017.00077. PubMed DOI PMC
Subedi L., Lee J., Yumnam S., Ji E., Kim S. Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-ΚB Inhibition and Nrf2/HO-1 Activation. Cells. 2019;8:194. doi: 10.3390/cells8020194. PubMed DOI PMC
Milosevic K., Stevanovic I., Bozic I.D., Milosevic A., Janjic M.M., Laketa D., Bjelobaba I., Lavrnja I., Savic D. Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response. Int. J. Mol. Sci. 2022;23:3561. doi: 10.3390/ijms23073561. PubMed DOI PMC
Simpson D.S.A., Oliver P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020;9:743. doi: 10.3390/antiox9080743. PubMed DOI PMC
Ma Q. Role of Nrf2 in Oxidative Stress and Toxicity. Annu. Rev. Pharmacol. Toxicol. 2013;53:401–426. doi: 10.1146/annurev-pharmtox-011112-140320. PubMed DOI PMC
Tossetta G., Fantone S., Piani F., Crescimanno C., Ciavattini A., Giannubilo S.R., Marzioni D. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells. 2023;12:1545. doi: 10.3390/cells12111545. PubMed DOI PMC
Tossetta G., Marzioni D. Targeting the NRF2/KEAP1 Pathway in Cervical and Endometrial Cancers. Eur. J. Pharmacol. 2023;941:175503. doi: 10.1016/j.ejphar.2023.175503. PubMed DOI
Bukke V.N., Moola A., Serviddio G., Vendemiale G., Bellanti F. Nuclear Factor Erythroid 2-Related Factor 2-Mediated Signaling and Metabolic Associated Fatty Liver Disease. World J. Gastroenterol. 2022;28:6909–6921. doi: 10.3748/wjg.v28.i48.6909. PubMed DOI PMC
Khan N.M., Sandur S.K., Checker R., Sharma D., Poduval T.B., Sainis K.B. Pro-Oxidants Ameliorate Radiation-Induced Apoptosis through Activation of the Calcium–ERK1/2–Nrf2 Pathway. Free Radic. Biol. Med. 2011;51:115–128. doi: 10.1016/j.freeradbiomed.2011.03.037. PubMed DOI
Loboda A., Damulewicz M., Pyza E., Jozkowicz A., Dulak J. Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC
Xiong J., Yang J., Yan K., Guo J. Ginsenoside Rk1 Protects Human Melanocytes from H2O2-induced Oxidative Injury via Regulation of the PI3K/AKT/Nrf2/HO-1 Pathway. Mol. Med. Rep. 2021;24:821. doi: 10.3892/mmr.2021.12462. PubMed DOI PMC
Nair S., Sobotka K.S., Joshi P., Gressens P., Fleiss B., Thornton C., Mallard C., Hagberg H. Lipopolysaccharide-induced Alteration of Mitochondrial Morphology Induces a Metabolic Shift in Microglia Modulating the Inflammatory Response in Vitro and in Vivo. Glia. 2019;67:1047–1061. doi: 10.1002/glia.23587. PubMed DOI
Orihuela R., McPherson C.A., Harry G.J. Microglial M1/M2 Polarization and Metabolic States: Microglia Bioenergetics with Acute Polarization. Br. J. Pharmacol. 2016;173:649–665. doi: 10.1111/bph.13139. PubMed DOI PMC
Wu T., Liang X., Liu X., Li Y., Wang Y., Kong L., Tang M. Induction of Ferroptosis in Response to Graphene Quantum Dots through Mitochondrial Oxidative Stress in Microglia. Part. Fibre Toxicol. 2020;17:30. doi: 10.1186/s12989-020-00363-1. PubMed DOI PMC
Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science. 2009;324:1029–1033. doi: 10.1126/science.1160809. PubMed DOI PMC
Hu S., Chao C.C., Hegg C.C., Thayer S., Peterson P.K. Morphine Inhibits Human Microglial Cell Production of, and Migration towards, RANTES. J. Psychopharmacol. 2000;14:238–243. doi: 10.1177/026988110001400307. PubMed DOI
Mali A.S., Novotny J. Opioid Receptor Activation Suppresses the Neuroinflammatory Response by Promoting Microglial M2 Polarization. Mol. Cell. Neurosci. 2022;121:103744. doi: 10.1016/j.mcn.2022.103744. PubMed DOI
Burlacu C.-C., Neag M.-A., Mitre A.-O., Sirbu A.-C., Badulescu A.-V., Buzoianu A.-D. The Role of MiRNAs in Dexmedetomidine’s Neuroprotective Effects against Brain Disorders. Int. J. Mol. Sci. 2022;23:5452. doi: 10.3390/ijms23105452. PubMed DOI PMC
Cai B., Zhong L., Liu Y., Xu Q., Chen T. δ-Opioid Receptor Activation Inhibits Ferroptosis by Activating the Nrf2 Pathway in MPTP-Induced Parkinson Disease Models. Evid.-Based Complement. Altern. Med. 2023;2023:4130937. doi: 10.1155/2023/4130937. PubMed DOI PMC
Chao D., Xia Y. Ionic Storm in Hypoxic/Ischemic Stress: Can Opioid Receptors Subside It? Prog. Neurobiol. 2010;90:439–470. doi: 10.1016/j.pneurobio.2009.12.007. PubMed DOI PMC
He X., Sandhu H.K., Yang Y., Hua F., Belser N., Kim D.H., Xia Y. Neuroprotection against Hypoxia/Ischemia: δ-Opioid Receptor-Mediated Cellular/Molecular Events. Cell. Mol. Life Sci. 2013;70:2291–2303. doi: 10.1007/s00018-012-1167-2. PubMed DOI PMC
dos-Santos-Pereira M., Guimarães F.S., Del-Bel E., Raisman-Vozari R., Michel P.P. Cannabidiol Prevents LPS-induced Microglial Inflammation by Inhibiting ROS/NF-κB-dependent Signaling and Glucose Consumption. Glia. 2020;68:561–573. doi: 10.1002/glia.23738. PubMed DOI
Wang L., Pavlou S., Du X., Bhuckory M., Xu H., Chen M. Glucose Transporter 1 Critically Controls Microglial Activation through Facilitating Glycolysis. Mol. Neurodegener. 2019;14:2. doi: 10.1186/s13024-019-0305-9. PubMed DOI PMC
Xiang X., Wind K., Wiedemann T., Blume T., Shi Y., Briel N., Beyer L., Biechele G., Eckenweber F., Zatcepin A., et al. Microglial Activation States Drive Glucose Uptake and FDG-PET Alterations in Neurodegenerative Diseases. Sci. Transl. Med. 2021;13:eabe5640. doi: 10.1126/scitranslmed.abe5640. PubMed DOI
Fu D., Liu H., Li S., Chen L., Yao J. Antioxidative and Antiapoptotic Effects of Delta-Opioid Peptide [D-Ala2, D-Leu5] Enkephalin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. Front. Neurosci. 2017;11:603. doi: 10.3389/fnins.2017.00603. PubMed DOI PMC
Reymond S., Vujić T., Schvartz D., Sanchez J.-C. Morphine-Induced Modulation of Nrf2-Antioxidant Response Element Signaling Pathway in Primary Human Brain Microvascular Endothelial Cells. Sci. Rep. 2022;12:4588. doi: 10.1038/s41598-022-08712-0. PubMed DOI PMC
Matsuo K., Abiko Y., Yamano S., Toriba A., Matsusue K., Kumagai Y. Activation of the Keap1/Nrf2 Pathway as an Adaptive Response to an Electrophilic Metabolite of Morphine. Biol. Pharm. Bull. 2023;46:338–342. doi: 10.1248/bpb.b22-00543. PubMed DOI
Gwak M.-S., Li L., Zuo Z. Morphine Preconditioning Reduces Lipopolysaccharide and Interferon-γ-Induced Mouse Microglial Cell Injury via Δ1 Opioid Receptor Activation. Neuroscience. 2010;167:256–260. doi: 10.1016/j.neuroscience.2010.02.017. PubMed DOI PMC
Skrabalova J., Karlovska I., Hejnova L., Novotny J. Protective Effect of Morphine Against the Oxidant-Induced Injury in H9c2 Cells. Cardiovasc. Toxicol. 2018;18:374–385. doi: 10.1007/s12012-018-9448-0. PubMed DOI
Sasaki A., Yamaguchi H., Horikoshi Y., Tanaka G., Nakazato Y. Expression of Glucose Transporter 5 by Microglia in Human Gliomas: GLUT5 in Human Gliomas. Neuropathol. Appl. Neurobiol. 2004;30:447–455. doi: 10.1111/j.1365-2990.2004.00556.x. PubMed DOI
Yang T.-T., Liu I.-M., Wu H.-T., Cheng J.-T. Mediation of Protein Kinase C Zeta in μ-Opioid Receptor Activation for Increase of Glucose Uptake into Cultured Myoblast C2C12 Cells. Neurosci. Lett. 2009;465:177–180. doi: 10.1016/j.neulet.2009.08.026. PubMed DOI
Huang J.-C., Yue Z.-P., Yu H.-F., Yang Z.-Q., Wang Y.-S., Guo B. TAZ Ameliorates the Microglia-Mediated Inflammatory Response via the Nrf2-ROS-NF-ΚB Pathway. Mol. Ther.-Nucleic Acids. 2022;28:435–449. doi: 10.1016/j.omtn.2022.03.025. PubMed DOI PMC
Huang S.C.-C., Everts B., Ivanova Y., O’Sullivan D., Nascimento M., Smith A.M., Beatty W., Love-Gregory L., Lam W.Y., O’Neill C.M., et al. Cell-Intrinsic Lysosomal Lipolysis Is Essential for Alternative Activation of Macrophages. Nat. Immunol. 2014;15:846–855. doi: 10.1038/ni.2956. PubMed DOI PMC
Pavlou S., Wang L., Xu H., Chen M. Higher Phagocytic Activity of Thioglycollate-Elicited Peritoneal Macrophages Is Related to Metabolic Status of the Cells. J. Inflamm. 2017;14:4. doi: 10.1186/s12950-017-0151-x. PubMed DOI PMC
Zhou Y., Zhen Y., Wang G., Liu B. Deconvoluting the Complexity of Reactive Oxygen Species (ROS) in Neurodegenerative Diseases. Front. Neuroanat. 2022;16:910427. doi: 10.3389/fnana.2022.910427. PubMed DOI PMC
Jang J., Hong A., Chung Y., Jin B. Interleukin-4 Aggravates LPS-Induced Striatal Neurodegeneration In Vivo via Oxidative Stress and Polarization of Microglia/Macrophages. Int. J. Mol. Sci. 2022;23:571. doi: 10.3390/ijms23010571. PubMed DOI PMC
Khan M.S., Ali T., Kim M.W., Jo M.H., Jo M.G., Badshah H., Kim M.O. Anthocyanins Protect against LPS-Induced Oxidative Stress-Mediated Neuroinflammation and Neurodegeneration in the Adult Mouse Cortex. Neurochem. Int. 2016;100:1–10. doi: 10.1016/j.neuint.2016.08.005. PubMed DOI
Song S., Jiang L., Oyarzabal E.A., Wilson B., Li Z., Shih Y.-Y.I., Wang Q., Hong J.-S. Loss of Brain Norepinephrine Elicits Neuroinflammation-Mediated Oxidative Injury and Selective Caudo-Rostral Neurodegeneration. Mol. Neurobiol. 2019;56:2653–2669. doi: 10.1007/s12035-018-1235-1. PubMed DOI PMC
Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid. Redox Signal. 2014;20:1126–1167. doi: 10.1089/ars.2012.5149. PubMed DOI PMC
Halliwell B. Oxidative Stress and Neurodegeneration: Where Are We Now? J. Neurochem. 2006;97:1634–1658. doi: 10.1111/j.1471-4159.2006.03907.x. PubMed DOI
Pei J., Pan X., Wei G., Hua Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023;14:1147414. doi: 10.3389/fphar.2023.1147414. PubMed DOI PMC
Chinta S.J., Rajagopalan S., Butterfield D.A., Andersen J.K. In Vitro and in Vivo Neuroprotection by γ-Glutamylcysteine Ethyl Ester against MPTP: Relevance to the Role of Glutathione in Parkinson’s Disease. Neurosci. Lett. 2006;402:137–141. doi: 10.1016/j.neulet.2006.03.056. PubMed DOI
Mendiola A.S., Ryu J.K., Bardehle S., Meyer-Franke A., Ang K.K.-H., Wilson C., Baeten K.M., Hanspers K., Merlini M., Thomas S., et al. Transcriptional Profiling and Therapeutic Targeting of Oxidative Stress in Neuroinflammation. Nat. Immunol. 2020;21:513–524. doi: 10.1038/s41590-020-0654-0. PubMed DOI PMC
Tossetta G., Fantone S., Marzioni D., Mazzucchelli R. Role of Natural and Synthetic Compounds in Modulating NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Cancers. 2023;15:3037. doi: 10.3390/cancers15113037. PubMed DOI PMC
Liu T., Sun L., Zhang Y., Wang Y., Zheng J. Imbalanced GSH/ROS and Sequential Cell Death. J. Biochem. Mol. Toxicol. 2022;36:e22942. doi: 10.1002/jbt.22942. PubMed DOI
Yang W., Wang Y., Zhang C., Huang Y., Yu J., Shi L., Zhang P., Yin Y., Li R., Tao K. Maresin1 Protect Against Ferroptosis-Induced Liver Injury Through ROS Inhibition and Nrf2/HO-1/GPX4 Activation. Front. Pharmacol. 2022;13:865689. doi: 10.3389/fphar.2022.865689. PubMed DOI PMC
Sivandzade F., Prasad S., Bhalerao A., Cucullo L. NRF2 and NF-ҚB Interplay in Cerebrovascular and Neurodegenerative Disorders: Molecular Mechanisms and Possible Therapeutic Approaches. Redox Biol. 2019;21:101059. doi: 10.1016/j.redox.2018.11.017. PubMed DOI PMC
Kansanen E., Kuosmanen S.M., Leinonen H., Levonen A.-L. The Keap1-Nrf2 Pathway: Mechanisms of Activation and Dysregulation in Cancer. Redox Biol. 2013;1:45–49. doi: 10.1016/j.redox.2012.10.001. PubMed DOI PMC
Khan N.M., Haseeb A., Ansari M.Y., Devarapalli P., Haynie S., Haqqi T.M. Wogonin, a Plant Derived Small Molecule, Exerts Potent Anti-Inflammatory and Chondroprotective Effects through the Activation of ROS/ERK/Nrf2 Signaling Pathways in Human Osteoarthritis Chondrocytes. Free Radic. Biol. Med. 2017;106:288–301. doi: 10.1016/j.freeradbiomed.2017.02.041. PubMed DOI PMC
Lu M.-C., Ji J.-A., Jiang Z.-Y., You Q.-D. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update: THE KEAP1-NRF2-ARE PATHWAY. Med. Res. Rev. 2016;36:924–963. doi: 10.1002/med.21396. PubMed DOI
Mitsuishi Y., Motohashi H., Yamamoto M. The Keap1–Nrf2 System in Cancers: Stress Response and Anabolic Metabolism. Front. Oncol. 2012;2:200. doi: 10.3389/fonc.2012.00200. PubMed DOI PMC
Uruno A., Yamamoto M. The KEAP1-NRF2 System and Neurodegenerative Diseases. Antioxid. Redox Signal. 2023;38:974–988. doi: 10.1089/ars.2023.0234. PubMed DOI
Chen Q.M., Maltagliati A.J. Nrf2 at the Heart of Oxidative Stress and Cardiac Protection. Physiol. Genom. 2018;50:77–97. doi: 10.1152/physiolgenomics.00041.2017. PubMed DOI PMC
Rushworth S.A., Chen X.-L., Mackman N., Ogborne R.M., O’Connell M.A. Lipopolysaccharide-Induced Heme Oxygenase-1 Expression in Human Monocytic Cells Is Mediated via Nrf2 and Protein Kinase C. J. Immunol. 2005;175:4408–4415. doi: 10.4049/jimmunol.175.7.4408. PubMed DOI
Immenschuh S., Stritzke J., Iwahara S.-I., Ramadori G. Up-regulation of heme-binding protein 23 (HBP23) gene expression by lipopolysaccharide is mediated via a nitric oxide-dependent signaling pathway in rat Kupffer cells. Hepatology. 1999;30:118–127. doi: 10.1002/hep.510300142. PubMed DOI
Lee T.-S., Tsai H.-L., Chau L.-Y. Induction of Heme Oxygenase-1 Expression in Murine Macrophages Is Essential for the Anti-Inflammatory Effect of Low Dose 15-Deoxy-Δ12,14-Prostaglandin J2. J. Biol. Chem. 2003;278:19325–19330. doi: 10.1074/jbc.M300498200. PubMed DOI
Shi J., Du S.-H., Yu J.-B., Zhang Y.-F., He S.-M., Dong S.-A., Zhang Y., Wu L.-L., Li C., Li H.-B. Hydromorphone Protects against CO2 Pneumoperitoneum-Induced Lung Injury via Heme Oxygenase-1-Regulated Mitochondrial Dynamics. Oxidative Med. Cell. Longev. 2021;2021:9034376. doi: 10.1155/2021/9034376. PubMed DOI PMC
Zhang J., Li J., An Z., Qi J. Hydromorphone Mitigates Cardiopulmonary Bypass-Induced Acute Lung Injury by Repressing Pyroptosis of Alveolar Macrophages. Shock. 2023 doi: 10.1097/SHK.0000000000002138. Publish Ahead of Print . PubMed DOI
Dai H., Wang P., Mao H., Mao X., Tan S., Chen Z. Dynorphin Activation of Kappa Opioid Receptor Protects against Epilepsy and Seizure-Induced Brain Injury via PI3K/Akt/Nrf2/HO-1 Pathway. Cell Cycle. 2019;18:226–237. doi: 10.1080/15384101.2018.1562286. PubMed DOI PMC
Wu T., Yao H., Zhang B., Zhou S., Hou P., Chen K. κ Opioid Receptor Agonist Inhibits Myocardial Injury in Heart Failure Rats through Activating Nrf2/HO-1 Pathway and Regulating Ca2+-SERCA2a. Oxidative Med. Cell. Longev. 2021;2021:7328437. doi: 10.1155/2021/7328437. PubMed DOI PMC
Kauffman M., Kauffman M., Traore K., Zhu H., Trush M., Jia Z., Li Y. MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS. React. Oxyg. Species. 2016;2:361. doi: 10.20455/ros.2016.865. PubMed DOI PMC
Hall A., Moghimi S.M. Determination of Polycation-Mediated Perturbation of Mitochondrial Respiration in Intact Cells by High-Resolution Respirometry (Oxygraph-2k, OROBOROS) Volume 1943. Springer; New York, NY, USA: 2019. pp. 313–322. (Methods in Molecular Biology). PubMed