Waterpipe smoke inhalation induces lung injury and aortic endothelial dysfunction in mice

. 2023 Jul 14 ; 72 (3) : 337-347.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37449747

Waterpipe tobacco smoking (WPS) inhalation has been shown to trigger endothelial dysfunction and atherosclerosis. However, the mechanisms underlying these effects are still unknown. Here, we assessed the impact and underlying mechanism of WPS exposure for one month on endothelial dysfunction using aortic tissue of mice. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Inhalation of WPS induced an increase in the number of macrophages and neutrophils and the concentrations of protein, tumor necrosis factor alpha (TNF alpha), interleukin (IL)-1beta, and glutathione in bronchoalveolar lavage fluid. Moreover, the concentrations of proinflammatory cytokines (TNF alpha, IL-6 and IL-1beta), adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and P-selectin) and markers of oxidative stress (lipid peroxidation, glutathione, superoxide dismutase and nitric oxide) in aortic homogenates of mice exposed to WPS were significantly augmented compared with air exposed mice. Likewise, the concentration of galectin-3 was significantly increased in the aortic homogenates of mice exposed to WPS compared with control group. WPS inhalation induced vascular DNA damage assessed by comet assay and apoptosis characterized by a significant increase in cleaved caspase-3. While the aortic expression of phosphorylated nuclear factor kappaB (NF-kappaB) was significantly increased following WPS inhalation, the concentration of sirtuin 1 (SIRT1) was significantly decreased in WPS group compared with air-exposed group. In conclusion, our study provided evidence that WPS inhalation triggers lung injury and endothelial inflammation, oxidative stress and apoptosis which were associated with nuclear factor-kappaB activation and SIRT1 down-regulation.

Zobrazit více v PubMed

Rababa'h AM, Mardini AN, Ababneh MA, Alzoubi KH. Waterpipe tobacco smoke and health: What we have learned from rodent models? Life Sci. 2021;284:119898. doi: 10.1016/j.lfs.2021.119898. PubMed DOI

Qasim H, Alarabi AB, Alzoubi KH, Karim ZA, Alshbool FZ, Khasawneh FT. The effects of hookah/waterpipe smoking on general health and the cardiovascular system. Environ Health Prev Med. 2019;24:58. doi: 10.1186/s12199-019-0811-y. PubMed DOI PMC

Jawad M, Charide R, Waziry R, Darzi A, Ballout RA, Akl EA. The prevalence and trends of waterpipe tobacco smoking: A systematic review. PLoS One. 2018;13:e0192191. doi: 10.1371/journal.pone.0192191. PubMed DOI PMC

Bhatnagar A, Maziak W, Eissenberg T, Ward KD, Thurston G, King BA, Sutfin EL, et al. Water pipe (Hookah) smoking and cardiovascular disease risk: a scientific statement from the American Heart Association. Circulation. 2019;139:e917–e936. doi: 10.1161/CIR.0000000000000671. PubMed DOI PMC

Nemmar A, Al-Salam S, Beegam S, Zaaba NE, Ali BH. Effect of smoking cessation on chronic waterpipe smoke inhalation-induced airway hyperresponsiveness, inflammation and oxidative stress. Am J Physiol Lung Cell Mol Physiol. 2021;320:L791–L802. doi: 10.1152/ajplung.00420.2020. PubMed DOI

Nemmar A, Al-Salam S, Yuvaraju P, Beegam S, Yasin J, Ali BH. Chronic exposure to water-pipe smoke induces alveolar enlargement, DNA damage and impairment of lung function. Cell Physiol Biochem. 2016;38:982–992. doi: 10.1159/000443050. PubMed DOI

Khan NA, Lawyer G, McDonough S, Wang Q, Kassem NO, Kas-Petrus F, Ye D, Singh KP, Rahman I. Systemic biomarkers of inflammation, oxidative stress and tissue injury and repair among waterpipe, cigarette and dual tobacco smokers. Tob Control. 2020;29(Suppl 2):S102–S109. doi: 10.1136/tobaccocontrol-2019-054958. PubMed DOI PMC

Münzel T, Hahad O, Kuntic M, Keaney JF, Deanfield JE, Daiber A. Effects of tobacco cigarettes, e-cigarettes, and waterpipe smoking on endothelial function and clinical outcomes. Eur Heart J. 2020;41:4057–4070. doi: 10.1093/eurheartj/ehaa460. PubMed DOI PMC

Sinden NJ, Stockley RA. Systemic inflammation and comorbidity in COPD: a result of 'overspill' of inflammatory mediators from the lungs? Review of the evidence. Thorax. 2010;65:930–936. doi: 10.1136/thx.2009.130260. PubMed DOI

Slíva J, Charalambous C, Bultas J, Karetová D. A new strategy for the treatment of atherothrombosis - inhibition of inflammation. Physiol Res. 2019;68(Suppl 1):S17–S30. doi: 10.33549/physiolres.934327. PubMed DOI

Morgan AD, Zakeri R, Quint JK. Defining the relationship between COPD and CVD: what are the implications for clinical practice? Therapeutic advances in respiratory disease. 2018;12:1–16. doi: 10.1177/1753465817750524. PubMed DOI PMC

Pratiti R, Mukherjee D. Epidemiology and adverse consequences of Hookah/Waterpipe use: a systematic review. Cardiovasc Hematol Agents Med Chem. 2019;17:82–93. doi: 10.2174/1871525717666190904151856. PubMed DOI

Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 2021;9:781. doi: 10.3390/biomedicines9070781. PubMed DOI PMC

Török J, Gvozdjáková A, Kucharská J, Balazovjech I, Kyselá S, Simko F, Gvozdják J. Passive smoking impairs endothelium-dependent relaxation of isolated rabbit arteries. Physiol Res. 2000;49:135–141. PubMed

Poledne R. Jurčíková-Novotná L: Experimental models of hyperlipoproteinemia and atherosclerosis. Physiol Res. 2017;66(Suppl 1):S69–S75. doi: 10.33549/physiolres.933585. PubMed DOI

Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res. 2015;107:321–330. doi: 10.1093/cvr/cvv147. PubMed DOI PMC

Stulc T, Vrablík M, Kasalová Z, Marinov I, Svobodová H, Ceska R. Leukocyte and endothelial adhesion molecules in patients with hypercholesterolemia: the effect of atorvastatin treatment. Physiol Res. 2008;57:185–194. doi: 10.33549/physiolres.931132. PubMed DOI

Adetona O, Mok S, Rajczyk J, Brinkman MC, Ferketich AK. The adverse health effects of waterpipe smoking in adolescents and young adults: A narrative review. Tob Induc Dis. 2021;19:81. doi: 10.18332/tid/142521. PubMed DOI PMC

Hamadi N, Beegam S, Zaaba NE, Elzaki O, Ali BH, Nemmar A. Comparative study on the chronic vascular responses induced by regular versus occasional waterpipe smoke inhalation in mice. Cell Physiol Biochem. 2022;56:13–27. doi: 10.33594/000000491. PubMed DOI

Nemmar A, Yuvaraju P, Beegam S, John A, Raza H, Ali BH. Cardiovascular effects of nose-only water-pipe smoking exposure in mice. Am J Physiol Heart Circ Physiol. 2013;305:H740–H746. doi: 10.1152/ajpheart.00200.2013. PubMed DOI

Ali BH, Madanagopal TT, Ramkumar A, Boudaka A, Tageldin MH, Nemmar A. Some physiological and histological aspects of the gastrointestinal tract in a mouse model of chronic renal failure. J Pharmacol Toxicol Methods. 2014;69:162–166. doi: 10.1016/j.vascn.2013.09.001. PubMed DOI

Toukan Y, Hakim F, Bentur Y, Aharon-Peretz J, Elemy A, Gur M, Hanna M, Fisher T, Scherb I, Bentur L. The Effect of a 30-min water-pipe smoking session on cognitive measures and cardio-pulmonary parameters. Nicotine Tob Res. 2020;22:1347–1353. doi: 10.1093/ntr/ntz109. PubMed DOI

Hakim F, Hellou E, Goldbart A, Katz R, Bentur Y, Bentur L. The acute effects of water-pipe smoking on the cardiorespiratory system. Chest. 2011;139:775–781. doi: 10.1378/chest.10-1833. PubMed DOI

Nemmar A, Al-Salam S, Yuvaraju P, Beegam S, Ali BH. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice. Respir Physiol Neurobiol. 2015;215:51–57. doi: 10.1016/j.resp.2015.05.006. PubMed DOI

Nemmar A, Melghit K, Al-Salam S, Zia S, Dhanasekaran S, Attoub S, Al-Amri I, Ali BH. Acute respiratory and systemic toxicity of pulmonary exposure to rutile Fe-doped TiO(2) nanorods. Toxicology. 2011;279:167–175. doi: 10.1016/j.tox.2010.10.007. PubMed DOI

Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Aortic oxidative stress, inflammation and DNA damage following pulmonary exposure to cerium oxide nanoparticles in a rat model of vascular injury. Biomolecules. 2019;9:376. doi: 10.3390/biom9080376. PubMed DOI PMC

Jiang Y, Shan S, Gan T, Zhang X, Lu X, Hu H, Wu Y, Sheng J, Yang J. Effects of cisplatin on the contractile function of thoracic aorta of Sprague-Dawley rats. BiomedRep. 2014;2:893–897. doi: 10.3892/br.2014.349. PubMed DOI PMC

Tsikas D. Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res. 2005;39:797–815. doi: 10.1080/10715760500053651. PubMed DOI

Nemmar A, Yuvaraju P, Beegam S, Yasin J, Kazzam EE, Ali BH. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int J Nanomedicine. 2016;11:919–928. doi: 10.2147/IJN.S92278. PubMed DOI PMC

McEvoy JW, Blaha MJ, DeFilippis AP, Lima JA, Bluemke DA, Hundley WG, Min JK, et al. Cigarette smoking and cardiovascular events: role of inflammation and subclinical atherosclerosis from the MultiEthnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:700–709. doi: 10.1161/ATVBAHA.114.304562. PubMed DOI PMC

Inoue T, Oku K, Kimoto K, Takao M, Nomoto J, Handa K, Kono S, Arakawa K. Relationship of cigarette smoking to the severity of coronary and thoracic aortic atherosclerosis. Cardiology. 1995;86:374–379. doi: 10.1159/000176904. PubMed DOI

Brassington K, Selemidis S, Bozinovski S, Vlahos R. Chronic obstructive pulmonary disease and atherosclerosis: common mechanisms and novel therapeutics. Clin Sci (Lond) 2022;136:405–423. doi: 10.1042/CS20210835. PubMed DOI PMC

Trinkmann F, Saur J, Borggrefe M, Akin I. Cardiovascular comorbidities in Chronic Obstructive Pulmonary Disease (COPD)-current considerations for clinical practice. J Clin Med. 2019;8:69. doi: 10.3390/jcm8010069. PubMed DOI PMC

Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009;33:1165–1185. doi: 10.1183/09031936.00128008. PubMed DOI

Alomari MA, Khabour OF, Alzoubi KH, Shqair DM, Eissenberg T. Central and peripheral cardiovascular changes immediately after waterpipe smoking. Inhal Toxicol. 2014;26:579–587. doi: 10.3109/08958378.2014.936572. PubMed DOI

Serré J, Mathyssen C, Ajime TT, Heigl T, Verlinden L, Maes K, Verstuyf A, Cataldo D, Vanoirbeek J, Vanaudenaerde B, Janssens W, Gayan-Ramirez G. Local nebulization of 1α,25(OH)(2)D(3) attenuates LPS-induced acute lung inflammation. Respir Res. 2022;23:76. doi: 10.1186/s12931-022-01997-9. PubMed DOI PMC

Nemmar A, Karaca T, Beegam S, Yuvaraju P, Yasin J, Ali BH. Lung oxidative stress, DNA damage, apoptosis and fibrosis in adenine-induced chronic kidney disease in mice. Front Physiol. 2017;8:896. doi: 10.3389/fphys.2017.00896. PubMed DOI PMC

Scandalios JG. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res. 2005;38:995–1014. doi: 10.1590/S0100-879X2005000700003. PubMed DOI

Khan NA, Sundar IK, Rahman I. Strain-and sex-dependent pulmonary toxicity of waterpipe smoke in mouse. Physiol Rep. 2018;6:e13579. doi: 10.14814/phy2.13579. PubMed DOI PMC

Khabour OF, Alzoubi KH, Bani-Ahmad M, Dodin A, Eissenberg T, Shihadeh A. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung. Inhal Toxicol. 2012;24:667–675. doi: 10.3109/08958378.2012.710918. PubMed DOI PMC

Badran M, Laher I. Waterpipe (shisha, hookah) smoking, oxidative stress and hidden disease potential. Redox Biol. 2020;34:101455. doi: 10.1016/j.redox.2020.101455. PubMed DOI PMC

Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792. doi: 10.1155/2013/956792. PubMed DOI PMC

Nemmar A, Yuvaraju P, Beegam S, Ali BH. Short-term nose-only water-pipe (shisha) smoking exposure accelerates coagulation and causes cardiac inflammation and oxidative stress in mice. Cell Physiol Biochem. 2015;35:829–840. doi: 10.1159/000369741. PubMed DOI

Kuchařová M, Hronek M, Rybáková K, Zadák Z, Štětina R, Josková V, Patková A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol Res. 2019;68:1–15. doi: 10.33549/physiolres.933901. PubMed DOI

Al Hariri M, Zibara K, Farhat W, Hashem Y, Soudani N, Al Ibrahim F, Hamade E, Zeidan A, Husari A, Kobeissy F. E:\JOB\Final\22-NovCigarette smoking-induced cardiac hypertrophy, vascular inflammation and injury are attenuated by antioxidant supplementation in an animal model. Front Pharmacol. 2016;7:397. doi: 10.3389/fphar.2016.00397. PubMed DOI PMC

Qiu S, Cai X, Liu J, Yang B, Zügel M, Steinacker JM, Sun Z, Schumann U. Association between circulating cell adhesion molecules and risk of type 2 diabetes: A meta-analysis. Atherosclerosis. 2019;287:147–154. doi: 10.1016/j.atherosclerosis.2019.06.908. PubMed DOI

Demerath E, Towne B, Blangero J, Siervogel RM. The relationship of soluble ICAM-1, VCAM-1, P-selectin and E-selectin to cardiovascular disease risk factors in healthy men and women. Ann Hum Biol. 2001;28:664–678. doi: 10.1080/03014460110048530. PubMed DOI

Rababa'h AM, Bsoul RW, Alkhatatbeh MJ, Alzoubi KH, Khabour OF. Waterpipe tobacco smoke distresses cardiovascular biomarkers in mice: alterations in protein expression of metalloproteinases, endothelin and myeloperoxidase. Inhal Toxicol. 2019;31:99–106. doi: 10.1080/08958378.2019.1606366. PubMed DOI

Hu T, Zhu P, Liu Y, Zhu H, Geng J, Wang B, Yuan G, Peng Y, Xu B. PM25 induces endothelial dysfunction via activating NLRP3 inflammasome. Environ Toxicol. 2021;36:1886–1893. doi: 10.1002/tox.23309. PubMed DOI

Brassington K, Chan SMH, Seow HJ, Dobric A, Bozinovski S, Selemidis S, Vlahos R. Ebselen reduces cigarette smoke-induced endothelial dysfunction in mice. Br J Pharmacol. 2021;178:1805–1818. doi: 10.1111/bph.15400. PubMed DOI PMC

Blanda V, Bracale UM, Di Taranto MD, Fortunato G. Galectin-3 in Cardiovascular Diseases. Int J Mol Sci. 2020;21:9232. doi: 10.3390/ijms21239232. PubMed DOI PMC

Pei C, Wang X, Lin Y, Fang L, Meng S. Inhibition of galectin-3 alleviates cigarette smoke extract-induced autophagy and dysfunction in endothelial progenitor cells. Oxid Med Cell Longev. 2019;2019:7252943. doi: 10.1155/2019/7252943. PubMed DOI PMC

Alsaad AM, Al-Arifi MN, Maayah ZH, Attafi IM, Alanazi FE, Belali OM, Alhoshani A, Asiri YA, Korashy HM. Genotoxic impact of long-term cigarette and waterpipe smoking on DNA damage and oxidative stress in healthy subjects. Toxicol Mech Methods. 2019;29:119–127. doi: 10.1080/15376516.2018.1528650. PubMed DOI

Al-Amrah HJ, Aboznada OA, Alam MZ, ElAssouli MZ, Mujallid MI, ElAssouli SM. Genotoxicity of waterpipe smoke in buccal cells and peripheral blood leukocytes as determined by comet assay. Inhal Toxicol. 2014;26:891–896. doi: 10.3109/08958378.2014.970787. PubMed DOI

Izzotti A, Camoirano A, Cartiglia C, Tampa E, De Flora S. Formation of DNA adducts in the aorta of smoke-exposed rats and modulation by chemopreventive agents. Mutat Res. 2001;494:97–106. doi: 10.1016/S1383-5718(01)00183-8. PubMed DOI

Nowsheen S, Yang ES. The intersection between DNA damage response and cell death pathways. Exp Oncol. 2012;34:243–254. PubMed PMC

McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656. doi: 10.1101/cshperspect.a008656. PubMed DOI PMC

Wang J, Wilcken DE, Wang XL. Cigarette smoke activates caspase-3 to induce apoptosis of human umbilical venous endothelial cells. Mol Genet Metab. 2001;72:82–88. doi: 10.1006/mgme.2000.3115. PubMed DOI

Senoner T, Dichtl W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients. 2019;11:2090. doi: 10.3390/nu11092090. PubMed DOI PMC

Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol. 2019;10:85. doi: 10.3389/fimmu.2019.00085. PubMed DOI PMC

Cui Y, Liu KWK, Ip MSM, Liang Y, Mak JCW. Protective effect of selegiline on cigarette smoke-induced oxidative stress and inflammation in rat lungs in vivo. Ann Transl Med. 2020;8:1418. doi: 10.21037/atm-20-2426. PubMed DOI PMC

Nemmar A, Al-Salam S, Beegam S, Yuvaraju P, Ali BH. Waterpipe smoke exposure triggers lung injury and functional decline in mice: protective effect of Gum Arabic. Oxid Med Cell Longev. 2019;2019:8526083. doi: 10.1155/2019/8526083. PubMed DOI PMC

Ministrini S, Puspitasari YM, Beer G, Liberale L, Montecucco F, Camici GG. Sirtuin 1 in endothelial dysfunction and cardiovascular aging. Front Physiol. 2021;12:733696. doi: 10.3389/fphys.2021.733696. PubMed DOI PMC

Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I. SIRT1 regulates oxidant-and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem Biophys Res Commun. 2010;393:66–72. doi: 10.1016/j.bbrc.2010.01.080. PubMed DOI PMC

Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013;25:1939–1948. doi: 10.1016/j.cellsig.2013.06.007. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...