Steroidogenic enzyme gene expression and testosterone production are developmentally modulated by bone morphogenetic protein receptor-1B in mouse testis
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37455641
PubMed Central
PMC10668998
DOI
10.33549/physiolres.935014
PII: 935014
Knihovny.cz E-zdroje
- MeSH
- aromatasa metabolismus MeSH
- exprese genu MeSH
- kostní morfogenetické proteiny metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- pohlavní dospělost MeSH
- receptory kostního morfogenetického proteinu metabolismus MeSH
- testis * metabolismus MeSH
- testosteron * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aromatasa MeSH
- kostní morfogenetické proteiny MeSH
- messenger RNA MeSH
- receptory kostního morfogenetického proteinu MeSH
- testosteron * MeSH
Bone morphogenetic proteins (BMPs) and receptors (BMPR-1A, BMPR-1B, BMPR-2) have been shown to be vital for female reproduction, while their roles in males are poorly described. Our study was undertaken to specify the function of BMPR-1B in steroidogenic enzyme gene expression, testosterone production and reproductive development in male mice, given that Bmpr1b mRNA is expressed in mouse testis and Bmpr1b knockout results in compromised fertility. Male mice were passively immunized for 6 days with anti-BMPR-1B in the presence or absence of exogenous gonadotrophins. We then measured the effects of anti-BMPR-1B on testicular hydroxysteroid dehydrogenase isoforms (Hsd3b1, Hsd3b6, and Hsd17b3) and aromatase (Cyp19) mRNA expression, testicular and serum testosterone levels, and testis and seminal vesicle weight. In vitro testosterone production in response to anti-BMPR-1B was determined using testicular culture, and Leydig cell culture in the presence or absence of gonadotrophins. In Leydig cell culture the contribution of seminiferous tubules and Leydig cells were examined by preconditioning the media with these testicular constituents. In adult mice, anti-BMPR-1B increased testosterone and Hsd3b1 but decreased Hsd3b6 and Cyp19 mRNA. In adult testicular culture and seminiferous tubule conditioned Leydig cell culture, anti-BMPR-1B reduced testosterone, while in normal and Leydig cell conditioned Leydig cell culture it increased testosterone levels. In pubertal mice, anti-BMPR-1B reduced gonadotrophin stimulated seminal vesicle growth. In conclusion, BMPR-1B has specific developmental functions in the autocrine and paracrine regulation of testicular steroidogenic enzyme gene expression and testosterone production in adults and in the development of seminal vesicles during puberty.
Zobrazit více v PubMed
Braunstein GD. Testes. In: GREENSPAN FS, GARDNER DG, editors. Basic & Clinical Endocrinology. 7th ed. McGraw-Hill Companies; New York: 2004. pp. 478–510.
Yamashita S. Localization of estrogen and androgen receptors in male reproductive tissues of mice and rats. Anat Rec A Discov Mol Cell Evol Biol. 2004;279:768–778. doi: 10.1002/ar.a.20061. PubMed DOI
Pellegrini M, Grimaldi P, Rossi P, Geremia R, Dolci S. Developmental expression of BMP4/ALK3/SMAD5 signalling pathway in the mouse testis: a potential role of BMP4 in spermatogonia differentiation. J Cell Sci. 2003;116:3363–3372. doi: 10.1242/jcs.00650. PubMed DOI
Puglisi R, Montanari M, Chiarella P, Stefanini M, Boitani C. Regulatory role of BMP2 and BMP7 in spermatogonia and Sertoli cell proliferation in the immature mouse. Eur J Endocrinol. 2004;151:511–520. doi: 10.1530/eje.0.1510511. PubMed DOI
Zhao G, Deng K, Labosky PA, Liaw L, Hogan BLM. The gene encoding bone morphgogenetic protein 8B is required for the inititation and maintenance of spermatogenesis in the mouse. Gene Dev. 1996;10:1657–1669. doi: 10.1101/gad.10.13.1657. PubMed DOI
Schmierer B, Hill C. TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 2007;8:970–982. doi: 10.1038/nrm2297. PubMed DOI
Hirschhorn T, Levi-Hofman M, Danziger O, Smorodinsky NI, Ehrlich M. Differential molecular regulation of processing and membrane expression of Type-I BMP receptors: implications for signaling. Cell Mol Life Sci. 2017;74:2645–2662. doi: 10.1007/s00018-017-2488-y. PubMed DOI PMC
Ciller IM, Athiappan Palanisamy SK, Ciller UA, McFarlane JR. Postnatal expression of bone morphogenetic proteins and their receptors in the mouse testis. Physiol Res. 2016;65:673–682. doi: 10.33549/physiolres.933193. PubMed DOI
Hu J, Chen YX, Wang D, Qi X, Li TG, Hao J, Mishina Y, Garbers DL, Zhao GQ. Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Dev Biol. 2004;276:158–171. doi: 10.1016/j.ydbio.2004.08.034. PubMed DOI
Settle S, Marker P, Gurley K, Sinha A, Thacker A, Wang Y, Higgins K, Cunha G, Kingsley DM. The BMP family member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev Biol. 2001;234:138–150. doi: 10.1006/dbio.2001.0244. PubMed DOI
Zhao G, Liaw L, Hogan BLM. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development. 1998;125:1103–1112. doi: 10.1242/dev.125.6.1103. PubMed DOI
Zhao G, Chen Y, Liu X, Xu Z, Qi X. Mutation in Bmp7 exacerbates the phenotype of Bmp8a Mutants in spermatogenesis and epididymis. Dev Biol. 2001;240:212–222. doi: 10.1006/dbio.2001.0448. PubMed DOI
Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol. 2000;221:249–258. doi: 10.1006/dbio.2000.9670. PubMed DOI
Mishina Y, Suzuki A, Ueno N, Behringer RR. Bmpr encodes a type I bone morphogenetic protein receptor that is essentail for gastrulation during mouse embryogenesis. Gene Dev. 1995;9:3027–3037. doi: 10.1101/gad.9.24.3027. PubMed DOI
Yi SE, LaPolt PS, Yoon BS, Chen JY, Lu JKH, Lyons KM. The type I BMP receptor BmprIB is essential for female reproductive function. Proc Natl Acad Sci U S A. 2001;98:7994–7999. doi: 10.1073/pnas.141002798. PubMed DOI PMC
Belville C, Jamin SP, Picard J, Josso N, di Clemente N. Role of type I receptors for anti-mullerian hormone in the SMAT-1 Sertoli cell line. Oncogene. 2005;24:4984–4992. doi: 10.1038/sj.onc.1208686. PubMed DOI
Teixeira J, Fynn-Thompson E, Payne AH, Donahoe PK. Mullerian-inhibiting substance regulates androgen synthesis at the transcriptional level. Endocrinology. 1999;140:4732–4738. doi: 10.1210/endo.140.10.7075. PubMed DOI
Yadav H, Lal B. BMP15 in catfish testis: Cellular distribution, seasonal variation, and its role in steroidogenesis. Steroids. 2017;125:114–123. doi: 10.1016/j.steroids.2017.07.002. PubMed DOI
Baker PJ, Johnston H, Abel M, Charlton HM, O’Shaughnessy PJ. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice. Reprod Biol Endocrinol. 2003;1:4. doi: 10.1186/1477-7827-1-4. PubMed DOI PMC
Baker PJ, Sha JH, O’Shaughnessy PJ. Localisation and regulation of 17β-hydroxysteroid dehydrogenase type 3 mRNA during development in the mouse testis. Mol Cell Biol. 1997;133:127–133. doi: 10.1016/S0303-7207(97)00159-7. PubMed DOI
Benko F, Chomová M, Uličná O, Ďuračka M, Kováč J, Tvrdá E. The impact of diabetes mellitus type 2 on the steroidogenesis of male Zucker Diabetic Fatty rats. Physiol Res. 2022;71:713–717. doi: 10.33549/physiolres.934881. PubMed DOI PMC
Valladares LE, Payne AH. Acute stimulation of aromatization in Leydig cells by human chorionic gonadotropin in vitro. Proc Natl Acad Sci U S A. 1979;76:4469–4463. doi: 10.1073/pnas.76.9.4460. PubMed DOI PMC
Coviello AD, Bremner WJ, Matsumoto AM, Herbst KL, Amory JK, Anawalt BD, Yan X, Brown TR, Wright WW, Zirkin BR, Jarow JP. Intratesticular testosterone concentrations comparable with serum levels are not sufficient to maintain normal sperm production in men receiving a hormonal contraceptive regimen. J Androl. 2004;25:931–938. doi: 10.1002/j.1939-4640.2004.tb03164.x. PubMed DOI
Gouédard L, Chen YG, Thevenet L, Racine C, Borie S, Lamarre I, Josso N, Massague J, di Clemente N. Engagement of bone morphogenetic protein type IB receptor and Smad1 signalling by anti-Mullerian hormone and its type II receptor. J Biol Chem. 2000;275:27973–27978. doi: 10.1074/jbc.M002704200. PubMed DOI
Dewulf N, Verschueren K, Lonnoy O, Morén A, Grimsby S, Vande Spiegle K, Miyazono K, Huylebroeck D, Ten Dijke P. Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology. 1995;136:2652–2663. doi: 10.1210/endo.136.6.7750489. PubMed DOI
Du X, Wu S, Wei Y, Yu X, Ma F, Zhai Y, Yang D, Zhang M, Liu W, Zhu H, Wu J, Liao M, Li N, Bai C, Li G, Hua J. PAX7 promotes CD49f-positive dairy goat spermatogonial stem cells’ self-renewal. J Cell Physiol. 2020;236:1481–1493. doi: 10.1002/jcp.29954. PubMed DOI
Yıldırım Y, Ouriachi T, Woehlbier U, Ouahioune W, Balkan M, Malik S, Tolun A. Linked homozygous BMPR1B and PDHA2 variants in a consanguineous family with complex digit malformation and male infertility. Eur J Hum Genet. 2018;26:876–885. doi: 10.1038/s41431-018-0121-7. PubMed DOI PMC
Fustino N, Rakheja D, Ateek CS, Neumann JC, Amatruda JF. Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. Int J Androl. 2011;34:e218–e233. doi: 10.1111/j.1365-2605.2011.01186.x. PubMed DOI PMC
Neumann JC, Chandler GL, Damoulis VA, Fustino NJ, Lillard K, Looijenga L, Margraf L, Rakheja D, Amatruda JF. Mutation in the type IB bone morphogenetic protein receptor alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A. 2011;108:13153–13158. doi: 10.1073/pnas.1102311108. PubMed DOI PMC
Hussein N, Lu J, Casse H, Fontanière S, Morera AM, Guittot SM, Calender A, Di Clemente N, Zhang CX. Deregulation of anti-Mullerian hormone/BMP and transforming growth factor-beta pathways in Leydig cells lesions developed in male heterozygous multiple endocrine neoplasia type 1 mutant mice. Endocr Relat Cancer. 2008;15:217–227. doi: 10.1677/ERC-06-0046. PubMed DOI
Kim IY, Lee DH, Lee DK, Ahn HJ, Kim MM, Kim SJ, Morton RA. Loss of expression of bone morphogenetic protein receptor type II in human prostate cancer cells. Oncogene. 2004;23:7651–7659. doi: 10.1038/sj.onc.1207924. PubMed DOI
Buijs JT, Rentsch CA, van der Horst G, van Overveld PG, Wetterwald A, Schwaninger R, Henriquez NV, et al. BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am J Pathol. 2007;171:1047–1057. doi: 10.2353/ajpath.2007.070168. PubMed DOI PMC
Qiu T, Grizzle WE, Oelschlager DK, Shen X, Cao X. Control of prostate cell growth: BMP antagonizes androgen mitogenic activity with incorporation of MARK signals in Smad1. EMBO J. 2007;26:346–357. doi: 10.1038/sj.emboj.7601499. PubMed DOI PMC
Bokobza SM, Ye L, Kynaston E, Mansel RE, Jiang WG. Reduced expression of BMPR-IB correlates with poor prognosis and increased proliferation of breast cancer cells. Cancer Genomics Proteomics. 2009;6:101–108. PubMed
Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH, Kotliarova S, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell. 2008;13:69–80. doi: 10.1016/j.ccr.2007.12.005. PubMed DOI PMC
Miyazaki H, Watabe KT, Miyazono K. BMP signals inhibit proliferation and in vivo tumor growth of androgen-insensitive prostate carcinoma cells. Oncogene. 2004;23:9326–9335. doi: 10.1038/sj.onc.1208127. PubMed DOI
Al-Samerria S, Al-Ali I, McFarlane JR, Almahbobi G. The impact of passive immunization against BMPRIB and BMP4 on follicle development and ovulation in mice. Reproduction. 2015;149:403–411. doi: 10.1530/REP-14-0451. PubMed DOI
Tanwar PS, McFarlane JR. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reprod. 2011;142:573–579. doi: 10.1530/REP-10-0299. PubMed DOI
Tanwar PS, O’Shea T, McFarlane JR. In vivo evidence of role of bone morphogenetic protein-4 in the mouse ovary. Anim Reprod Sci. 2008;106:232–240. doi: 10.1016/j.anireprosci.2007.04.015. PubMed DOI
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Murphy BD, Martinuk SD. Equine chorionic gonadotropin. Endocr Rev. 1991;12:27–44. doi: 10.1210/edrv-12-1-27. PubMed DOI
Kerr JB, Robertson DM, de Kretser DM. Morphological and functional characterisation of interstitial cells from mouse testes fractionated on Percoll density gradients. Endocrinology. 1985;116:1030–1043. doi: 10.1210/endo-116-3-1030. PubMed DOI
Klinefelter GR, Hall PF, Ewing LL. Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multistep procedure. Biol Reprod. 1987;36:769–783. doi: 10.1095/biolreprod36.3.769. PubMed DOI
Coder DM. Assessment of cell viability. Curr Protoc Cytom. 2001;15(Suppl):1–14. doi: 10.1002/0471142956.cy0902s15. PubMed DOI
McFarlane JR, Laslett A, de Kretser DM, Risbridger GP. Evidence that heparin binding autocrine factors modulate testosterone production by the adult rat Leydig cell. Mol Cell Endocrinol. 1996;118:57–63. doi: 10.1016/0303-7207(96)03766-5. PubMed DOI
Walters BJ, Saldanha JS. Glial aromatization increases the expression of bone morphogenetic protein-2 in the injured zebra finch brain. J Neurochem. 2008;106:216–223. doi: 10.1111/j.1471-4159.2008.05352.x. PubMed DOI
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367:eaay5947. doi: 10.1126/science.aay5947. PubMed DOI
Douglas ML, Richardson MM, Nicol DL. Testicular germ cell tumors exhibit evidence of hormone dependence. Int J Cancer. 2006;118:98–102. doi: 10.1002/ijc.21330. PubMed DOI
Sarraj MA, Escalona RM, Umbers A, Chua HK, Small C, Griswold M, Loveland K, Findlay JK, Stenvers KL. Fetal testis dysgenesis and compromised Leydig cell function in Tgfbr3 (Betaglycan) knockout mice. Biol Reprod. 2010;82:153–162. doi: 10.1095/biolreprod.109.078766. PubMed DOI
Lin H, Hu GX, Dong L, Dong Q, Mukai M, Chen BB, Holsberger DR, et al. Increased proliferation but decreased steroidogenic capacity in Leydig cells from mice lacking cyclin-dependent kinase inhibitor 1B1. Biol Reprod. 2009;80:1232–1238. doi: 10.1095/biolreprod.108.074229. PubMed DOI PMC